用户名: 密码: 验证码:
三乙醇胺功能化金纳米粒子和二氧化硅纳米粒子的分析特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料具有不同于宏观物质的性质,是现代材料科学研究的热点之一。纳米材料的功能化是纳米材料研究和应用的基础。本学位论文首先综述了金纳米粒子的性质、制备方法、在分析化学中的应用及功能化金纳米粒子的意义和方法。在三乙醇胺可以通过静电作用修饰在纳米粒子的表面的基础上,建立了三乙醇胺功能化金纳米粒子和二氧化硅纳米粒子测定金属离子的分析方法,具体工作如下:
     一、三乙醇胺功能化金纳米粒子比色分析法的研究。
     半胱氨酸和巯基乙酸可以通过巯基与金纳米粒子形成Au-S键,被固定在金纳米粒子的表面。钙离子与半胱氨酸分子中的氨基和羧基的配位作用,可以迅速引起功能化的金纳米粒子发生团聚。同时,当三乙醇胺通过静电作用被进一步修饰到功能化金纳米粒子表面,可以有效金降低金纳米粒子表面的静电斥力,从而提高了金纳米粒子比色分析方法的灵敏度。透射电子显微镜、紫外可见吸收实验和电泳实验等用于该比色分析方法实现对钙离子和镁离子的测定。在最佳实验条件下,半胱氨酸-巯基乙酸-三乙醇胺修饰的金纳米粒子对钙离子和镁离子的响应具有良好的选择性和较高的灵敏度,对钙离子测定的检出限为3.0×10-7 mol·L-1。在1.0×10-6 mol·L-1到1.4×10-5 mol·L-1范围内,金纳米粒子的吸光度与钙镁离子的浓度呈线性关系。
     二、基于三乙醇胺功能化联钌吡啶-二氧化硅纳米粒子构建铜离子传感器的研究。
     研究发现三乙醇胺可通过静电作用吸附于联钌吡啶-二氧化硅纳米粒子表面,形成三乙醇胺功能化的二氧化硅荧光纳米粒子。在此研究基础上,基于三乙醇胺与铜离子的配位效应,以及铜离子对联钌吡啶荧光的猝灭作用,构建了铜离子纳米粒子传感器。在优化的试验条件下,该传感器对铜离子测定的检出限为2.0×10-6 mol·L-1,响应线性范围为6.0×10-6 mol·L-1到1.0×10-4 mol·L-1。
Nowadays, nanomaterials have been the focus of modern scientific due to the unique physical properties. Functional nanomaterials are the basis of the study and application of nanomaterials. This thesis reviews the nature of gold nanoparticles, preparation methods, application in analytical chemistry and significance and methods of functionalization of gold nanoparticles. Analytical method for metal ions was established based on triethanolamine functional gold nanoparticles and silica nanoparticles. The thesis includes the following parts:
     1. Colorimetric method based on triethanolamine functional gold nanoparticles.
     It was found that, after cysteine and thioglycolic acid were immobilized on the surface of gold nanoparticles with the thiol-Au chemistry, calcium ion could rapidly induce aggregation of the functional gold nanoparticles based on complex effect of calcium ion with amino and carboxyl groups in the immobilized cysteine molecules. At the same time, it was also found that triethanolamine could obviously enhance the sensitivity of calcium ion based on decreasing the electrostatic repulsion force between the interparticle gold nanoparticles. Thereafter, the Transmission Electron Microscopy, electrophoresis technique and absorption spectrum method, were used to investigate the sensing mechanism of the functional gold part les for calcium ion. Under the optimum experiment condition, the cysteine-thioglycolic acid-triethanolamine modified gold nanoparticles were highly sensitive (the detection limit was 3.0×10-7 mol·L-1) and selective toward calcium and magnesium ions, with a linear detection range from 1.0×10-6 mol·L-1 to 1.4×10-5 mol·L-1. Based on these findings, a rapid, simple and selective colorimetric method for assaying the hardness in tap water was developed.
     2. The fabrication of Copper Ions fluorescence nanosensor with Triethanolamine Functionalizing Ru(bpy)32+-doped Silica Nanoparticles.
     It was found that triethanolamine could be adsorbed on the surface of Ru(bpy)32+-doped SiO2 nanoparticles based on electrostatic interaction of triethanolamine with silica nanoparticles. Then, based on the complex effect between copper ions and triethanolamine as well as the quenching effect of copper ions for doped state Ru(bpy)32+, a fluorescence nanosensor for copper ions was developed. Under the optimum experiment condition, the detection limit of the nanosensor for copper ions was 2.0×10-6 mol·L-1 and the response dynamic range was from 6.0×10-6 mol·L-1 to 1.0×10-4 mol·L-1.
引文
[1]S. Eustis, M. E. Sayed. Why Gold Nanoparticles are More Precious than Pretty Gold: Noble Metal Surface Plasmon Resonance and its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes[J]. Chemical Society Reviews,2006,35:209-217.
    [2]Min Hu, Jingyi Chen, Zhi-Yuan Li, Leslie Au, G. V. Hartland, Xingde Li, M. Marqueze, Younan Xia. Gold Nanostructures:Engineering their Plasmonic Properties for Biomedical Applications[J]. Chemical Society Reviews,2006, 35:1084-1094.
    [3]杨生春,董守安,唐春,李品将.金纳米粒子自球形向棒状的转变和生长的光化学法研究[J].化学学报,2005,10(63):873-879.
    [4]V. Myroshnychenko, R. F. Jessica, P. S. Isabel, A. M. Funston, C. Novo, P. Mulvaney, M. Luis, F. J. G. Abajo. Modelling the Optical Response of Gold Nanoparticles[J]. Chem. Soc. Rev.,2008,37:1792-1805.
    [5]W. P. Faulk, G. M. Taylor. An Immunocolloid Method for the Electron Microscope[J]. Immunochemistry,1971,8:1081-1083.
    [6]E. Boisselier, D. Astruc. Gold Nanoparticles in Nanomedicine:Preparations, Imaging, Diagnostics, Therapies and Toxicityw[J]. Chem. Soc. Rev.,2009, 38:1759-1782.
    [7]殷焕顺,艾仕云,汪建.制备金纳米粒子的研究进展[J].材料研究与应用.2007,4(1):277-280.
    [8]S. Mayilo, M. A. Kloster, M. Wunderlich, A. Lutich, T. A. Klar, A. Nichtl, K. R. Konrad, F. D. Stefani, J. Feldmann. Long-Range Fluorescence Quenching by Gold Nanoparticles in a Sandwich Immunoassay for Cardiac Troponin T[J]. Nano Letters, 2009,9(12):4558-4563.
    [9]A. E. Muniz, C. S. Espinel, D. F. Belen, A. G. Fernandez, M. M. Costa, A. Merkoci. Rapid Identification and Quantification of Tumor Cells Using an Electrocatalytic Method Based on Gold Nanoparticles[J]. Anal. Chem.,2009,81:10268-10274.
    [10]R. A. Sperling, P. R. Gil, Feng Zhang, M. Zanella, W. J. Parak. Biological Applications of Gold Nanoparticles[J]. Chem. Soc. Rev.,2008,37:1896-1908.
    [11]J. Turkevitch, P. C. Stevenson, J. Hillier. Nucleation, Growth Process in the Synthesis of Colloidal Gold[J]. Faraday Soc.,1951,11:55-75.
    [12]G. Frens. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions [J]. Nature,1973,241:20-22.
    [13]M. Giersig, P. Mulvaney. Preparation of Ordered Colloid Monolayers by Electrophoretic Deposition[J]. Langmuir,1993,9:3408-3413.
    [14]A. C. Templeton, M. J. Hostetler, C. T. Kraft, R. W. Murray. Reactivity of Monolayer-Protected Gold Cluster Molecules:Steric Effects[J]. J. Am. Chem. Soc., 1998,120:1906-1911.
    [15]K. Youngjin, R. C. Johnson, J. T. Hupp. Gold Nanoparticle-Based Sensing of "Spectroscopically Silent" Heavy Metal Ions[J]. Nano Lett.,2001,1(4):165-167.
    [16]C. Huang, H. T. Chang. Selective Gold-Nanoparticle-Based "Turn-On" Fluorescent Sensors for Detection of Mercury (Ⅱ) in Aqueous Solution[J]. Anal. Chem.,2006,78:8332-8338.
    [17]H. S. Kim, S. J. Lee, N. H. Kim, J. K. Yoon, H. K. Park, K. Kim. Adsorption Characteristics of 1,4-Phenylene Disocyanide on Gold Nanoparticles:Infrared and Raman Spectroscopy Study[J]. Langmuir,2003,19:6701-6710.
    [18]L. G. Lauer, M. Schulz, A. Boettcher, F. Fuhrhop. Spherical and Planar Gold Nanoparticles with a Rigid Gold-Anion or a Fluid Gold-(0)-Acetone Surface[J]. Langmuir,2003,19:6483-6491.
    [19]R. Elghanian, J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin. Science[J], 1997,277:1078.
    [20]I. S. Lim, I. Wui, E. Crew, P. N. Njoki, D. Mott, C. J. Zhong, Yi Pan, Shuiqin Zhou. Homocysteine-Mediated Reactivity and Assembly of Gold Nanoparticles[J]. Langmuir,2007,23:826-833.
    [21]S. I. Lim, D. Mott, Wui Ip, P. N. Njoki, Yi Pan, Shuiqin Zhou, Chuan-Jian Zhong. Interparticle Interactions in Glutathione Mediated Assembly of Gold Nanoparticles [J]. Langmuir,2008,24:8857-8863.
    [22]J. M. Fuente, A. G. Barrientos, T. C. Rojas, J. Rojo, J. Canada, A. Fernandez, S. Penades. Gold Glyconanoparticles as Water-Soluble Polyvalent Models To Study Carbohydrate Interactions [J]. Angew. Chem.,2001,40(12):2258-2261.
    [23]A. M. Escosura, C. S. Espinel, B. D. Freitas, A. G. Fernandez, M. C. Marisa, A. Merkoci Rapid Identification and Quantification of Tumor Cells Using an Electrocatalytic Method Based on Gold Nanoparticles[J]. Anal. Chem.,2009, 81:10268-10274.
    [24]C. A. Mirkin. Programming the Assembly of Two- and Three-Dimensional Architectures with DNA and Nanoscale Inorganic Building Blocks[J]. Inorg Chem. 2000,39:2260.
    [25]G. C. Papavassiliou. Optical Properties of Small Inorganic and Organic Metal Particles[J]. Solid State Chem,1980,12:185.
    [26]P. K. Aravind, A. Nitzan, H. Metiu. The Interaction between Electromagnetic Resonances and its Role in Spectroscopic Studies of Molecules Adsorbed on Colloidal Particles or Metal Spheres[J]. Surf Sci.,1981,110:189.
    [27]M. Quinten, U. Kreibig. Absorption and Elastic Scattering of Light by Particle Aggregates[J]. Appl Opt.,1993,32:6173.
    [28]U. Kreibig, A. Althoff, H. Pressmann. Veiling of Optical Single Particle Properties in Many Particle Systems by Effective Medium and Clustering Effects[J]. Surf Sci., 1981,106:308.
    [29]M. Quinten, U. Kreibig. Optical Properties of Aggregates of Small Metal Particles[J]. Surf Sci.,1986,172:557.
    [30]L. Genzel, T. P. Martin. Infrared Absorption by Surface Phonons and Surface Plasmons in Small Crystals[J]. Surf Sci.,1973,34:33.
    [31]J. Turkevich. Colloidal Gold. Part Ⅰ. Gold Bull,1985,18:86.
    [32]M. Quinten, U. Kreibig. Absorption and Elastic Scattering of Light by Particle Aggregates[J]. Appl Opt.,1993,32:6173-6182.
    [33]T. Ung, M. L. Luis, P. Mulvaney. Gold Nanoparticle Thin Films[J]. Colloids Surf. A.,2002,202:119.
    [34]T. J. Norman, C. D. Grant, D. Magana, Z. Jin, A. V. Buuren. Near Infrared Optical Absorption of Gold Nanoparticle Aggregates [J]. J. Phys. Chem. B.,2002, 106:7005.
    [35]R. Elghanian, J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles[J]. Science,1997,277:1078.
    [36]Tao Liu, Jing Zhao, Dongmei Zhang, Genxi Li. Novel Method to Detect DNA Methylation Using Gold Nanoparticles Coupled with Enzyme-Linkage Reactions[J]. Anal Chem,2010,82:229.
    [37]N. T. Thanh, Z. Rosenzweig. Development of an Aggregation-Based Immunoassay for Anti-Protein A Using Gold Nanoparticles[J]. Anal Chem,2002,74:1624.
    [38]H. W. Cheng, S. Y. Huan, H. L. Wu, G. L. Shen, R. Q. Yu. Surface-Enhanced Raman Spectroscopic Detection of a Bacteria Biomarker Using Gold Nanoparticle Immobilized Substrates[J]. Anal Chem,2009,81:9902.
    [39]Y. Y. Chen, H. T. Chang, Y. C. Shiang, Y. L. Hung, C. K. Chiang, C. C. Huang. Colorimetric Assay for Lead Ions Based on the Leaching of Gold Nanoparticles[J]. Anal Chem,2009,81:9433.
    [40]C. E. Lisowski, J. E. Hutchison. Malonamide-Functionalized Gold Nanoparticles for Selective, Colorimetric Sensing of Trivalent Lanthanide Ions[J]. Anal Chem.2009,81:10246.
    [41]Y. W. Hui, S. Geroge, V. D. Richard. Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J Chem Phys,1995,103:869.
    [42]Tongxin Wang, Deqing Zhang, Wei Xu, Shuhong Li, Daoben Zhu. New Approach to the Assembly of Gold Nanoparticles:Formation of Stable Gold Nanoparticle Ensemble with Chainlike Structures by Chemical Oxidation in Solution[J]. Langmuir,2002,18:8655.
    [43]N. T. K. Thanh, Z. Rosenzweig. Development of an Aggregation-Based Immunoassay for Anti-Protein A Using Gold Nanoparticles[J]. Anal Chem,2002, 74:1624.
    [44]S. J. Hurst, A. K. R. Lytton-Jean, C. A. Mirkin. Maximizing DNA Loading on a Range of Gold Nanoparticle Sizes[J]. Anal Chem,2002,78:8313.
    [45]Di Li, A. Wieckowska, I. Willner. Optical Analysis of Hg2+Ions by Oligonucleotide-Gold-Nanoparticle Hybrids and DNA-Based Machines [J]. Angew Chem,2008,47:3927.
    [46]Xuejia Xue, Feng Wang, Xiaogang Liu. One-Step, Room Temperature, Colorimetric Detection of Mercury (Hg2+) Using DNA-Nanoparticle Conjugates[J]. J Am Chem Soc,2008,130:3244.
    [47]S. Y. Lin, C. Chen, M. C. Lin, H. F. Hsu. A Cooperative Effect of Bifunctionalized Nanoparticles on Recognition:Sensing Alkali Ions by Crown and Carboxylate Moieties in Aqueous Media[J]. Anal Chem,2005,77:4821.
    [48]Z. Zhong, S. Patskovskyy, P. Bouvrette, J. H. T. Luong., A. Gedanken. The Surface Chemistry of Au Colloids and Their Interactions with Functional Amino Acids[J]. J Phys Chem B.,2004,108:4046.
    [49]S. K. Ghosh, T. Pal. Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles:From Theory to Applications[J]. Chem Rev., 2007,107:4797.
    [50]Tongxin Wang, Deqing Zhang, Wei Xu, Shuhong Li, Daoben Zhu. New Approach to the Assembly of Gold Nanoparticles:Formation of Stable Gold Nanoparticle Ensemble with Chainlike Structures by Chemical Oxidation in Solution[J]. Langmuir,2002,18:8655.
    [51]S. H. Wu, Y. S. Wu, C. Chen. Colorimetric Sensitivity of Gold Nanoparticles: Minimizing Interparticular Repulsion as a General Approach[J]. Anal Chem,2008, 80:6560.
    [52]J. Traci, K. Lance, L. Anne, S. George. Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters[J]. Cluster Sci.,1999,10:295.
    [53]Bingling Li, Yan Du, Shaojun Dong. DNA Based Gold Nanoparticles Colorimetric Sensors for Sensitive and Selective Detection of Ag (I) ions[J]. Anal Chim Acta, 2009,644:78.
    [54]S. Kim, J. W. Park, D. Kim, D. Kim, I. H. Lee, S. Jon. Bioinspired Colorimetric Detection of Calcium (Ⅱ) Ions in Serum Using Calsequestrin-Functionalized Gold Nanoparticles[J]. Angew Chem,2009,48:4138.
    [55]A. J. Reynolds, A. H. Haines, D. A. Russell. Gold Glyconanoparticles for Mimics and Measurement of Metal Ion-Mediated Carbohydrate-Carbohydrate Interactions. Langmuir,2006,22:1156.
    [56]N. R. Jana, L. Gearheart, C. J. Murphy. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods[J]. J Phys Chem B.,2001,105:4065.
    [57]G. K. Darbha, U. S. Rai, A. K. Singh, P. C. Ray. Gold-Nanorod-Based Sensing of Sequence Specific HIV-1 Virus DNA by Using Hyper-Rayleigh Scattering Spectroscopy[J]. Chem Eur,2008,14:3896.
    [58]P. C. Ray. Diagnostics of Single Base-Mismatch DNA Hybridization on Gold Nanoparticles by Using the Hyper-Rayleigh Scattering Technique [J]. Angew Chem, 2006,45:1151.
    [59]G. K. Darbha, A. K. Singh, U. S. Rai, E. Yu, H. Yu, P. C. Ray. Selective Detection of Mercury (Ⅱ) Ion Using Nonlinear Optical Properties of Gold Nanoparticles[J]. Am Chem Soc,2008,130:8038.
    [60]M. M. Maye, S. C. Chun, Li Han, D. Rabinovich, Chuan-Jian Zhong. Novel Spherical Assembly of Gold Nanoparticles Mediated by a Tetradentate Thioether[J]. Am Chem Soc,2002,124:4958.
    [61]M. M. Maye, I. S. Lim, Jin Luo, Z. Rab, D. Rabinovich, T. Liu, C. J. Zhong. Mediator-Template Assembly of Nanoparticles [J]. Am Chem Soc,2005, 127:1519.
    [62]K. Uvdal, P. Bodo, B. J. Liedberg. L-Cysteine Adsorbed on Gold and Copper:An X-Ray Photoelectron Spectroscopy Study[J]. Colloid Interface Sci,1992,149:162.
    [63]Li Li, Baoxin Li. Sensitive and Selective Detection of Systeine Using Gold Nanoparticles as Colorimetric Probes[J]. Analyst,2009,134:1361.
    [64]Z. Zhong, S. Patskovskyy, P. Bouvrette, J. H. T. Luong, A. Gedanken. The Surface Chemistry of Au Colloids and Their Interactions with Functional Amino Acids[J]. Phys Chem B.,2004,108:4046-4051.
    [65]I. S. Lim, W. Ip, E. Crew, P. N. Njoki, D. Mott, C. J. Zhong, Yi Pan, Shuiqin Zhou. Homocysteine-Mediated Reactivity and Assembly of Gold Nanoparticles [J]. Langmuir,2007,23:826-830.
    [66]I. S. Lim, D. Mott, Wui Ip, P. N. Njoki, Yi Pan, Shuiqin Zhou, C. J. Zhong. Interparticle Interactions in Glutathione Mediated Assembly of Gold Nanoparticles[J]. Langmuir,2008,24:8857-8862.
    [67]A. Mocanu, I. Cernica, G. Tomoaia, L. D. Bobos, O. Horovitz, M. T. Cotisel. Self-assembly Characteristics of Gold Nanoparticles in the Presence of Cysteine[J]. Colloids and Surfaces A.,2009,338:93-98.
    [68]S. Aryal, R. Bahadur, N. Bhattarai, C. K. Kim, H. Y. Kim. Study of Electrolyte Induced Aggregation of Gold Nanoparticles Capped by Amino Acids [J]. Colloid and Interface Science,2006,299:191-1100.
    [69]Y. Kim, R. C. Johnson, J. T. Hupp. Gold Nanoparticle-Based Sensing of "Spectroscopically Silent" Heavy Metal Ions[J]. Nano Lett.,2001,1:165-173.
    [70]R. J. Hunter. Foundations of Colloid Science. Oxford University:New York.1992, 2nd.
    [71]S. O. Obare, R. E. Hollowell, C. J. Murphy. Sensing Strategy for Lithium Ion Based on Gold Nanoparticles [J]. Langmuir,2002,18:10407-10413.
    [72]H. D. Hill, J. E. Millstone, M. J. Banholzer, C. A. Mirkin. The Role Radius of Curvature Plays in Thiolated Oligonucleotide Loading on Gold Nanoparticles[J]. ACS Nano,2009,3:418-424.
    [73]A. C. Templeton, S. Chen, S. M. Gross, R. W. Murray. Water-Soluble, Isolable Gold Clusters Protected by Tiopronin and Coenzyme A Monolayers[J]. Langmuir, 1999,15:66-76.
    [74]T. Kakiuchi, M. Iida, S. Imabayashi, K. Niki. Double-Layer-Capacitance Titration of Self-Assembled Monolayers of o-Functionalized Alkanethiols on Au(111) Surface[J]. Langmuir,1999,16:5397-5401.
    [75]T. C. Preston, M. Nuruzzaman, N. D. Jones, S. Mittler. Role of Hydrogen Bonding in the pH-Dependent Aggregation of Colloidal Gold Particles Bearing Solution-Facing Carboxy[J]. J. Am. Chem. Soc.,2009,1:85-92.
    [76]S. Zanarini, E. Rampazzo, L. D. Ciana, M. Marcaccio, E. Marzocchi, M. Montalti, F. Paolucci, L. Prodi. Ru(bpy)3 Covalently Doped Silica Nanoparticles as Multicenter Tunable Structures for Electrochemiluminescence Amplification [J]. J. Am. Chem. Soc.,2009,131:2260-2267.
    [77]Lihua Zhang, Shaojun Dong. Electrogenerated Chemiluminescence Sensors Using Ru(bpy)32+ Doped in Silica Nanoparticles [J]. Anal. Chem.,2006,78:5119-5123.
    [78]T. Ribeiro, C. Baleizao, J. S. Farinha. Synthesis and Characterization of Perylenediimide Labeled Core-Shell Hybrid Silica-Polymer Nanoparticles [J]. Phys. Chem. C.,2009,113:18082-18090.
    [79]O. V. Makarova, A. E. Ostafin, H. Miyoshi, J. R. Norris. Adsorption and Encapsulation of Fluorescent Probes in Nanoparticles [J]. Phys. Chem. B,1999, 103:9080-9084.
    [80]R. P. Bagwe, Chaoyong Yang, L. R. Hilliard, Weihong Tan. Optimization of Dye-Doped Silica Nanoparticles Prepared Using a Reverse Microemulsion Method[J]. Langmuir,2004,20:8336-8342.
    [81]Changfeng Wu, C. Szymanski, J. McNeill. Preparation and Encapsulation of Highly Fluorescent Conjugated Polymer Nanoparticles [J]. Langmuir,2006, 22:2956-2960.
    [82]M. Lal, L. Levy, K. S. Kim, G. S. He, X. Wang, Y. H. Min, S. Pakatchi, P. N. Prasad. Silica Nanobubbles Containing an Organic Dye in a Multilayered Organic-Inorganic Heterostructure with Enhanced Luminescence[J]. Chem. Mater., 2000,12:2632-2639.
    [83]S. Sivasankar, S. Chu. Nanoparticle-Mediated Nonfluorescent Bonding of Microspheres to Atomic Force Microscope Cantilevers and Imaging Fluorescence from Bonded Cantilevers with Single Molecule Sensitivity[J]. Nano Letters,2009, 9:2120-2124.
    [84]M. M. Schooneveld, E. Vucic, R. Koole, Yu Zhou, J. Stocks, D. P. Cormode, C. Y. Tang, R. E. Gordon, K. Nicolay, A. Meijerink, Z. A. Fayad, W. J. M. Mulder. Improved Biocompatibility and Pharmacokinetics of Silica Nanoparticles by Means of a Lipid Coating:A Multimodality Investigation[J]. Nano Letters,2008, 8:2517-2525.
    [85]M. Liong, J. Lu, M. Kovochich, Tian Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, J. I. Zink. Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery[J]. ACS NANO,2008,2(5):889-896.
    [86]D. Gao, Zhenyang Wang, B. Liu, Lin Ni, Minghong Wu, Zhongping Zhang. Resonance Energy Transfer-Amplifying Fluorescence Quenching at the Surface of Silica Nanoparticles toward Ultrasensitive Detection of TNT[J]. Anal. Chem., 2008,80:8545-8553.
    [87]V. Lebret, L. Raehm, J. O. Durand, M. Smaihi, C. Gerardin, N. Nerambourg, M. H. V. Werts, M. B. Desce. Synthesis and Characterization of Fluorescently Doped Mesoporous Nanoparticles for Two-Photon Excitation [J]. Chem. Mater.,2008, 20:2174-2183.
    [88]J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, T. Hyeon. Uniform Mesoporous Dye-Doped Silica Nanoparticles Decorated with Multiple Magnetite Nanocrystals for Simultaneous Enhanced Magnetic Resonance Imaging, Fluorescence Imaging, and Drug Delivery[J]. J. Am. Chem. Soc.,2010,132:552-557.
    [89]L. M. Rossi, L. Shi, F. H. Quina, Z. Rosenzweig. Stober Synthesis of Monodispersed Luminescent Silica Nanoparticles for Bioanalytical Assays[J]. Langmuir,2005,21:4277-4280.
    [90]K. Aslan, Meng Wu, J. R. Lakowicz, C. D. Geddes. Fluorescent Core-Shell Ag-SiO2 Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms [J]. J. Am. Chem. Soc.,2007,129:1524-1525.
    [91]Lin Wang, Weihong Tan. Multicolor FRET Silica Nanoparticles by Single Wavelength Excitation[J]. Nano Letters,2006,6:84-88.
    [92]Changfeng Wu, Yueli Zheng, C. Szymanski, J. McNeill. Energy Transfer in a Nanoscale Multichromophoric System:Fluorescent Dye-Doped Conjugated Polymer Nanoparticles[J]. Phys. Chem. C,2008,112:1772-1781.
    [93]R. Kumar, I. Roy, T. Y. Ohulchanskky, L. A. Vathy, E. J. Bergey, M. Sajjad, P. N Prasad. In Vivo Biodistribution and Clearance Studies Using Multimodal Organically Modified Silica Nanoparticles[J]. ACS NANO.,2010,4:699-708.
    [94]D. Tleugabulova, A. M. Duft, Zheng Zhang, Yang Chen, M. A. Brook, J. D. Brennan. Evaluating Formation and Growth Mechanisms of Silica Particles Using Fluorescence Anisotropy Decay Analysis[J]. Langmuir,2004,20:5924-5932.
    [95]Heng Zhang, Ye Xu, Wei Yang, Qingge Li. Dual-Lanthanide-Chelated Silica Nanoparticles as Labels for Highly Sensitive Time-Resolved Fluorometry[J]. Chem. Mater.,2007,19:5875-5881.
    [96]A. T. Chan, J. A. Lewis. Electrostatically Tuned Interactions in Silica Microsphere Polystyrene Nanoparticle Mixtures[J]. Langmuir,2005,21:8576-8579.
    [97]R. Zhang, Chuanliu Wu, Lili Tong, Bo Tang, Qing-Hua Xu. Multifunctional Core-Shell Nanoparticles as Highly Efficient Imaging and Photosensitizing Agents[J]. Langmuir,2009,25(17):10153-10158.
    [98]M. Nakamura, K. Ishimura. Synthesis and Characterization of Organosilica Nanoparticles Prepared from 3-Mercaptopropyltrimethoxysilane as the Single Silica Source[J]. Phys. Chem. C,2007,111:18892-18898.
    [99]Zhiqiang Ye, Mingqian Tan, Guilan Wang, Jingli Yuan. Preparation, Characterization, and Time-Resolved Fluorometric Application of Silica-Coated Terbium(Ⅲ) Fluorescent Nanoparticles [J]. Anal. Chem.,2004,76:513-518.
    [100]Chunyan Tan, Yonghua Xie, Xiaoxiao He, Kemin Wang, Yuyang Jiang. Hyper-Efficient Quenching of a Conjugated Polyelectrolyte by Dye-Doped Silica Nanoparticles:Better Quenching in the Nonaggregated State [J]. Langmuir,2010, 26(3):1528-1532.
    [101]M. G. Cerruti, M. Sauthier, D. Leonard, D. Liu, G. Duscher, D. L. Feldheim, S. Franzen. Gold and Silica-Coated Gold Nanoparticles as Thermographic Labels for DNA Detection[J]. Anal. Chem.,2006,78:3282-3288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700