用户名: 密码: 验证码:
DNA荧光生物传感器的制备及水溶性量子点在DNA分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核酸是生命的遗传物质,人类许多遗传疾病与DNA碱基序列的变异有关,因此,建立高灵敏度、高选择性、简单、快速检测特定序列DNA的分析方法,对疾病诊断和预防具有重要的意义。量子点具有优异的光学性质,与传统的有机染料相比,量子点具有激发光谱宽,发射光谱可调、发射峰较窄,斯托克斯位移较大和不易光解等优点,己在生命分析中得到广泛的应用。本论文主要分为以下四个部分:
     (1)处理过的光纤为探针固载基质,以酶催化底物放大杂交信号为检测方法,制备了一种新型的DNA荧光生物传感器。在光纤端面,DNA探针与生物素修饰的靶DNA杂交形成双链DNA,再共价接入亲和素修饰的辣根过氧化物酶(streptavidin-HRP)。通过检测酶催化产物联二对羟基苯乙酸(DBDA)的荧光强度,进行定量检测靶DNA。实验结果表明,检测DNA的线性范围为1.69-169 pM,检测限为1 pM(S/N=3)。用尿素溶液处理有利于传感器的再生,三次循环之后,传感器仍能保持70%的信号。
     (2)直接合成水溶性CdSe和CdSe/ZnS量子点。针对有机相中合成量子点耗时、反应条件苛刻、非水溶性等问题,研究了以NaHSe为前躯体、巯基乙酸为稳定剂以及在无氧、搅拌等氛围下直接合成了水溶性量子点。同时研究了反应温度、时间、pH值、稳定剂及其用量等因素对量子点荧光的影响,使用透射电镜、荧光光谱法和紫外光谱法等对量子点进行了表征。实验结果表明,该方法能在简单的条件下快速合成稳定性好、荧光性能良好的CdSe和CdSe/ZnS量子点。以NaHTe为前躯体、巯基乙酸为稳定剂以及在无氧、搅拌等氛围下直接合成了水溶性CdTe量子点。用此法合成的量子点具有更窄的半峰宽,更加对称的发射峰和更高的量子产率。CdTe量子点放置三个月后量子产率达可达到45%,而且实验条件简便、成本低廉、可重复性强,因而是水相合成高质量量子点的一种较成功的方法。同时还具备制备具有近红外荧光量子点的可能性,为量子点在生化分析领域的应用提供了更多的机会。
     (3)基于切口酶和靶DNA循环,以CdTe量子点为荧光探针,磁珠为DNA探针固载和分离基质,发展了一种新型的、高灵敏度荧光检测DNA的方法。该方法具有很好的选择性,能够精确的区分单碱基错配DNA和靶DNA。在最佳实验条件下,该方法测定DNA的线性范围是5.0 fM到500 fM。除了具有很高的灵敏度和选择性,该方法还可以结合一些传统的检测方法及其外延技术,从而实现对核酸、核酸适体、RNA和金属离子的检测。该方法也可以用于核苷酸多态性(SNP)及混合分析,例如,选用不同粒径的量子点可同时检测一系列的DNA和蛋白质分子。
     (4)基于Hg2+可以嵌插到DNA的T-T错配碱基中形成T-Hg2+-T桥和单链DNA与SWNTs对靶DNA的竞争结合作用,建立了一种方便、快捷、灵敏的荧光检测Hg2+的方法。在最佳实验条件下,该体系测定Hg2+的线性范围是4.52×10-8 -7.21×10-7 M,检测限可达到0.1 nM,并具有良好的选择性。
Deoxyribonucleic acid is an important hereditary material, and the base variation of DNA is tightly related to genetic diseases. So it is important to detect DNA sequence for disease diagnosis and clinical applications. Compared with the traditional organic fluorescent dye, the quantum dots exhibit remarkably important advantages, including broad excitation spectrum, the tunable and narrow emission spectrum, large stokes displacement, high photobleaching threshold and excellent photostability. Quantum dots is becoming an increasingly promising method for biomedical analysis. This masteral dissertation constitutes by four parts besides the preface:
     (1) A novel DNA fluorescent biosensor based on enzyme-enhanced fluorescence detection on etched optical fibers was developed. The hybridization complex of DNA probe and biotinylated target was formed on the etched optical fiber, and was then bound with streptavidin labeled horseradish peroxidase (streptavidin-HRP). The target DNA was quantified through the fluorescent detection of bi-p,p'-4-hydroxyphenylacet- ic acid (DBDA) generated from the substrate 4-hydroxyphenylaceticacid (p-HPA) under the catalysis of HRP, with a detection limit of 1 pM and a linear range from 1.69 pM to 169 pM. It was discovered that the sensor can retain 70 % of its original activity after three detection-regeneration cycles.
     (2) CdSe and CdSe/ZnS quantum dots was directly synthesized in aqueous phase. In order to overcome the problems of time consuming, harsh reaction conditions and non water-solubility of quantum dots synthesis in organic solvent phase, we synthesize quantum dots directly under non-oxygen, stirring, and using the NaHSe as precursor and mercaptoacetic acid as stabilizer. We also study the effects of temperature, reaction time, pH, stabilizer and its usage to the quantum dots fluorescent. In addition, TEM, fluorescence and UV/Vis spectrum were used to characterize the prepared nanoparticles. These results clearly showed that this method could synthetize the good and stable fluorescence CdSe and CdSe/ZnS quantum dots quickly under the simple condition. We synthesize CdTe quantum dots directly under non-oxygen, stirring, and using the NaHSe as precursor and mercaptoacetic acid as stabilizer. As-prepared CdTe QDs were shown to have narrower full wave at half maximum(FWHM), higher photoluminescence quantum yields(PL QY),and symmetric fluorescent emission peak. The PLQY of CdTe QDs reaches 45% at room temperature after placing three months. To our best knowledge, the simple experimental conditions, low cost and good repeatability, make it become one of the most successful methods which can directly prepare CdTe QDs in aqueous solution with high quality. In addition, it showed feasibility to synthesize CdTe QDs with near infrared fluorescence that make it be able to apply widely to biochemical analysis in the near future.
     (3) A novel ultrasensitive fluorescence detection method for DNA based on NEase and target recycles assisted QDs and MBs has been developed. The novel method can discriminate complementary target from single mismatch target accurately. The linear relationship between the analytical signal and the concentration of target is in the range from to 5.0 fM to 500 fM. Aside from high sensitivity and selectivity, this method, can be readily coupled to convention analytical techniques and extended useful for various applications involving the nucleic acids, aptamer-binding small molecules, RNA, metal ions. This system can also be used for SNP of a large number of genes and multiplexed analysis, for example, using different QDs to detect a series of DNA and proteins at the same time.
     (4) Based on binding of Hg2+ to promote these T-T mismatches to form stable T-Hg2+-T base pairs and the binding rate of DNA and the nanotube was lower than DNA hybridization, we have developed a convenient, fast, sensitive method of fluorescence detection of Hg2+. Under the optimal assembling and detection conditions, a good linearity for simultaneous detection was obtained in the range from 4.52×10-8 to 7.21×10-7 M, and the detection limit was estimated to be 0.1 nM. The presence of other metal ions did not interfere the detection of Hg2+.
引文
[1]汪尔康, 21世纪的分析化学[M],科学出版社, 1999
    [2] Turner P.F., Biosensors-sense and sensitivity [J], Science, 2000, 290:1315-1317
    [3]朱晴晖,张锦锋,核酸检测方法及进展[J],上海医学检验杂志, 2001, 6: 325-329
    [4] M Hoda. Spectrophotometric and fluorimetric determination of aztreonam in bulk and dosage forms [J], J. Pharm. Biomed. Anal, 2003, 31: 767-774
    [5] Yang X.F., Guo X.Q., Li H. Fluorimetric determination of hemoglobin using apiro form rhodamine B hydrazide in a micellar medium [J], Talanta, 2003, 61(4): 439-445
    [6] Ling L.S., He Z.K., Cheng F., et al., Single-mismatch detection using nucletic acid molecular“Light switch”[J], Talanta, 2003, 59: 269-275
    [7] Wang H.Y., Hui Q.S., Xu L.X., et al., Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent [J], Anal. Chim. Acta, 2003, 497: 93-99
    [8] Marcel Bruchez J., Morotme M., Gin P., et al., Semieonductor nanocrystals as fluorescent biological labels [J], Science, 1998, 281: 2013-2016
    [9] Chan W.C.W., Nie S.M., Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J], Science, 1998, 281: 2016-2018
    [10] Waston J.D., Criek F.H.C., A structure for deoxyribose nucleic acid [J], Nature, 1953, 171: 737- 738
    [11] Wang J.B., Qian X.H., Two regioisomeric and exclusively selective Hg (Ⅱ) sensor molecules composed of a naphthalimide fluorophore and an o-phenylenediamine derived triamide receptor [J], Chem. Commun, 2006, 1: 109-111
    [12] Downs M.E.A., Kobayashi S., Karube I., New DNA technology and the DNA biosensor [J], Anal. Lett, 1987, 20: 1897-1987
    [13] Pitmno P.A.E., Krull U.J., Hudson R.H.E., et al., Fiber-optic DNA sensor for fluorometric nucleic acid determination [J], Anal. Chem, 1995, 67: 2635-2643
    [14] Tyagi S., Kramer F.R., Molecular beacons: probes that fluoresce upon hybridization [J], Nat. Biotechnol, 1996, 14: 303-308
    [15] Zhang G., Zhou Y., Yuan J., et al., A chemiluminescence fiber-optic biosensor for detection of DNA hybridization [J], Anal. Lett, 1999, 32: 2725-2736
    [16] Moser I., Schalkhammer T., Pittner F., et al., Surface techniques for an electrochemical DNA biosensor [J], Biosens. Bioelectron, 1997, 12: 729-737
    [17] Liu X., Tan W., A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons[J], Anal. Chem.1999, 71: 5054-5059
    [18] Abel A.P., Weller M.G., Duveneck G.L., et al., Fiber-optic evanescent wave biosensor for the detection of oligonucleotides [J], Anal. Chem. 1996, 68: 2905-2912
    [19] Niu S.Y., Wang S.J., Shi C., et al., Studies on the fluorescence fiber-optic DNA biosensor using p-Hydroxyphenylimidazo [f]1,10-phenanthroline ferrum(III) as indicator [J], J. Fluoresc, 2008, 18: 227-235
    [20] Pang D.W., Zhang M., Wang Z.L., et al., Modification of glassy carbon and gold electrodes with DNA [J], J. Electroanal. Chem, 1996, 403: 183-188
    [21] Maeda M., Nakano K., Uchida S., Mg2+-selective electrode comprising double-helical DNA as receptive entity [J], Chem. Lett, 1994, 23: 1805-1808
    [22]庞代文,齐义鹏,王宗礼,中国博士后首届学术大会论文集(II).北京:国防工业出版社. 1993, 1654
    [23] Lassalle N., Roget A., Libache T., et al., Electropolymerisable pyrrole-oligonucleotide: synthesis and analysis of ODN hybridization by fluorescence and QCM [J], Talanta, 2001, 55: 993-1004
    [24] Kai E., Sawata S., Ikebukuro K., et al., Detection of PCR products in solution using surface plasmon resonance [J], Anal. Chem, 1999, 71: 796 -800
    [25] Marrazza G., Chianella L., Mascini M., Disposable DNA electrochemical biosensors for environmental monitoring [J], Anal. Chim. Acta, 1999, 387: 297-307
    [26]冯霞光,张敏,赵虎,酶催化-荧光猝灭法测定药物中的万古霉素[J],高等学校化学学报, 2007, 28: 1270-1272
    [27]朱敏,黄雪梅,沈含熙,辣根过氧化酶在分析化学中的应用[J],分析科学学报, 1999, 15: 418-424
    [28]张书圣,焦奎,季宪峰,高香草酸-H2O2-HRP酶联免疫分析测定HRP的研究[J],青岛化工学院学报, 1997, 8: 343-346
    [29]慈云祥,陈列,魏珊,酪氨酸为底物的过化物酶催化荧光反应[J],高等学校化学学报, 1990, 11: 81-83
    [30] Li Z.H., Hayman, R.B., David R. Walt., et al., Detection of single-molecule DNA hybridization using enzymatic amplification in an array of femtoliter-sized reaction vessels [J], J. Am. Chem. Soc, 2008, 130: 12622-12623
    [31] Miranda-castro R., Patricia M., Hairpin-DNA probe for enzyme-amplified electrochemical detection of legionella pneumophila [J], Anal. Chem, 2007, 79: 4050-4055
    [32] Zhang H.B., Mitrovski S.M., Nuzzo R.G., Microfluidic device for the discrimination of single-nucleotide polymorphisms in DNA oligomers using electrochemically actuated alkaline dehybridization [J], Anal. Chem, 2007, 79: 9014-9021
    [33] Wang J., Liu G.D., Merkoci A., Electrochemical coding technology for simultaneous detection of multiple DNA targets [J], J. Am. Chem. Soc, 2003, 125: 3214-3215
    [34] Cui D.X., Pan B.F., Zhang H., et al., Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection [J], Anal. Chem, 2008, 80: 7996-8001
    [35] Kumar C.V., Asuncion E.H., DNA binding studies and site selective fluorescence sensitization of an anthryl proble [J], J. Am. Chem. Soc, 1993, 115: 8547-8553
    [36]扬周生,于俊生,陈洪渊,邻二氮菲-Cd2+与DNA的相互作用研究[J],无机化学学报, 2002, 18: 373-377
    [37] Peng D.W., Zhao Y.D., Zhang M., et al., DNA-modified electrodes electrochemical behavior of Co2+ at DNA-modified gold electrodes in the presence of 2, 2′-bipyridyl [J], Anal. Sci, 1999, 15: 471-475
    [38] Mattoussi H., Matthew J., Goldman E.R., et al., Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered reconmbinant protein [J], J. Am. Chem. Soc, 2000, 122: 12142-12150
    [39] Qu L., Peng X., Control of photoluminescence properties of CdSe nanocrystals in growth [J], J. Am. Chem. Soc, 2002, 124: 2049-2055
    [40] GaPonik N., Radtchenko I.L., Sukhorukov G.B., et al., Luminescent polymer microcapsules addressable by a magnetic field [J], Langmuir, 2004, 20: 1449-1452
    [41] Gerion D., Pinaud F., Williams S.C., et al., Synthesis and properties of biocompatible water- soluble silica-coated CdSe/ZnS semiconductor quantum dots [J], J. Phys. Chem. B, 2001, 105: 8861-8871
    [42] Shan G.Y., Li D., Feng L.Y., et al., Encapsulation of CdSe/ZnS quantum dots by liposome complexes [J], Chinese. J. Chem, 2005, 23: 1688-1692
    [43] Han M.Y., Gao X., Su J.Z., et al., Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J], Nat. Biotechnol, 2001, 19: 631-635
    [44] Cao Y.W., Banin U., Growth and properties of semiconductor core/shell nanocrystals with InAs Cores [J], J. Am. Chem. Soc, 2000, 122: 9692-9702
    [45] Dabbousi B.O., Rodriguez V.J., Mikulec F.V., et al., (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites [J], J. Phys. Chem. B, 1997, 101: 9463-9475
    [46] Brus L., Chemical approaches to semiconductor nanocrystals [J], J. Phys. Chem. Solids, 1998, 59: 459-465
    [47] Kwon K.W., Shim M.,γ-Fe2O3/II?VI sulfide nanocrystal heterojunctions [J], J. Am. Chem.Soc, 2005, 127: 10269-10275
    [48] Michalet X., Pinaud F.F., Bentolila L.A., et al., Quantum dots for live cells, in vivo imaging, and diagnostics [J], Science, 2005, 307: 538-544
    [49] Medintz I.L., Uyeda H.T., Goldman E.R., et al., Quantum dot bioconjugates for imaging, labelling and sensing [J], Nat. Mater, 2005, 4: 435-446
    [50] Cao Y.W., Banin U., Synthesis and characterization of InAs/InP and InAs/CdSe Core/Shell nanocrystals [J], Angew. Chem. Int. Ed, 1999, 38: 3692-3694
    [51] Gruber H.J., Hahn C.D., Kada G., et al., Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to lgG and noncovalent binding to avidin [J], Bioeonjugate Chem, 2000, 11: 696-704
    [52] Kale R., Mukundan H., Price D., et al., Detection of intact influenza viruses using biotinylated biantennary s-sialosides [J], J. Am. Chem. Soc, 2008, 130: 8169-8171
    [53] Anderson A.S., Dattelbanm A.M., Montano G.A., et al., Functional PEG-modified thin-films for biological detection [J], Langnluir, 2008, 24: 2240-2247
    [54] Li J.J., Wang Y.A., Guo W.Z., et al., Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction [J], J. Am. Chem. Soc, 2003, 125: 12567-12575
    [55] Mekis I., Talapin D.V., Kornowski A., et al., One-pot synthesis of highly luminescentCdSe/CdS core-shell nanocrystals via organometallic and“greener”chemical approache [J], J. Phys. Chem. B, 2003, 107: 7454-7462
    [56] Reiss P., Bleuse J., Pron A., Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion [J], Nano Lett, 2002, 2: 781-784
    [57] Kim S., Fisher B., Eisler H.J., et al., Type-II quantum dots: CdTe/CdSe (Core/Shell) and CdSe/ ZnTe (core/shell) heterostructures [J], J. Am. Chem. Soc, 2003,125: 11466-11467
    [58] Murray C.B., Norris D.J., Bawendi M.G., Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites [J], J. Am. Chem. Soc, 1993, 115: 8706-8715
    [59] Gao X.H., Yang L., Petros J.A., et al, In vivo molecular and cellular imaging with quantum dots [J], Curr. Opin. Biotechnol, 2005, 16: 63-72
    [60] Zheng R.B., Guo S.J., Dong S.J., Synthesis of CdTe nanocrystals using Te nanorods as the Te source and the formation of microtubes with red fluorescence [J], Inorg. Chem, 2007, 46: 6920-6923
    [61] Yang W.H., Li W.W., Dou H.J., et al., Hydrothermal synthesis for high-quality CdTe quantum dots capped by cysteamine [J], Mater. Lett, 2008, 62: 2564-2566
    [62] Gao M.Y, Kirstein S., Mohwald H., et al., Strongly photoluminescent CdTe nanocrystals by proper surface modification [J], J. Phys. Chem. B, 1998, 102: 8360-8363
    [63] Gaponik N., Talapin D.V., Rogach A.L., et al., Thiol-capping of CdTe nanocrystals: an alternativeto organometallic synthetic routes [J], J. Phys. Chem. B, 2002, 106: 7177-7185
    [64] Zhang H., Zhou Z., Yang B., et al., The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles [J], J. Phys. Chem. B, 2003, 107: 8-13
    [65] Mitchell G.P., Mirkin C.A., Letsinger R.L., Programmed assembly of DNA functionalized quantum dots [J], J. Am. Chem. Soc, 1999, 121: 8122-8123
    [66] Mahtab R., Rogers J.P., Singleton C.P., et al., Preferential adsorption of a "Kinked" DNA to a neutral curved surface: comparisons to and implications for nonspecific DNA-protein interactions [J], J. Am. Chem. Soc, 1996, 118: 7028-7032
    [67] Torimoto T., Yamashita M., Kuwabata S., et al., Fabrication of CdS nanoparticle chains along DNA double strands [J], J. Phys. Chem. B, 1999, 103: 8799-8803
    [68] Ergstrand A.B., Svanberg C., Langton M., et al., Aggregation behavior and size of lipopolysacch- aride from escherichia coli O55: B5 [J], Colloids Surf., B, 2006, 53: 9-14
    [69] Larsen N.E., Sullivan R., Interaction between endotoxin and human-monocytes characteristics of the binding of H-3-labeled lipopolysaccharide and Cr-51-labeled lipid-A before and after the induction of endotoxin tolerance [J], Proc. Natl. Acad. Sci. USA, 1984, 81: 3491-3495
    [70] Goldman E.R., Clapp A.R., Anderson G.P., et al., Multiplexed toxin analysis using four colors of quantum dot fluororeagents [J], Anal. Chem, 2004, 76: 684-655
    [71] Levy M., Cater S.F., Ellington A.D., Quantum-dot aptamer beacons for the detection of proteins [J], Chembiochem, 2005, 6: 1-4
    [72] Crut A., Geron-Landre B., Bonnet I., Detection of single DNA molecules by multicolor quantum-dot end-labeling [J], Nucleic Acids Res, 2005, 33: e98
    [73] Chen Y., Rosenzweig Z., Luminescent CdS quantum dots as selective ion probes [J], Anal. Chem, 2002, 74: 5132-5138
    [74] Wu X.Y., Liu H.J., Liu J.Q. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots [J], Nat. Biotechnol, 2003, 21: 41-46
    [75] Tanke H.J., Dirks R.W., RaapT., Fish and immunocytochemistry: towards visualising single target molecules in living cells [J], Curr. Opin. Biotechnol, 2005, 16: 49-54
    [76] Dahan M., Levis L., et al., Diffusion dynamics of glycine receptors revealed by single quantum dot tracking [J], Science, 2003, 302: 442-451
    [77] Mahaian S., Swami A., Kumar D.S.P., et al., Oligonucleotide microarrays with stem-loop probes: enhancing the hybridization of nucleic acids for sensitive analysis [J], Bioorg. Med. Chem. Lett, 2008, 18: 3585-3588
    [78] Mao X., Jiang J.H., Xu X.M., et al. Enzymatic amplification detection of DNA based on“molecular beacon”biosensors [J], Biosens. Bioelectron, 2008, 23: 1555-1561
    [79] Bo T., Wang Y., Liang H.L., et al., Studies on the oxidation reaction of tyrosine (Tyr) with H2O2 catalyzed by horseradish peroxidase (HRP) in alcohol-water medium by spectrofluorimetry and differential spectrophotometry [J], Spectrochim. Acta, Part A, 2006, 63: 609-613
    [80] Meng L., Song Z.X., Application of quantum dots in biomedicine [J], Prog. Biochem. Biophys, 2004, 31: 185-187
    [81] Mahtab R., Rogers J. P., Murphy C. J., Protein-sized quantum dot luminescence can distinguish between "straight", "bent", and "kinked" oligonucleotides [J], J. Am. Chem. Soc, 1995, 117: 9099-9100
    [82] Sun B.Q., Xie W.Z., Yi G.S., et al., Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection [J], J. Immunol. Methods, 2001, 24: 85-89
    [83]葛颖新,徐淑坤, CdTe量子点的制备、表征及在荧光探针中的应用[D],沈阳,东北大学, 2006
    [84]孙聆东,付雪峰,钱程等,水热法合成核壳结构纳米微粒[J],高等学校化学学报, 2001, 22: 879-882
    [85]杨洗,潘祖亭,马勇,用罗丹明B作标准物测定二氯荧光素的荧光量子产率[J],分析科学学报, 2003, 19: 588-589
    [86] Xu W., Xue X.J., Li T.H., et al., Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification [J], Angew. Chem. Int. Ed, 2009, 48: 1-5
    [87] Ono A., Togashi H., Highly selective oligonucleotide-based sensor for mercury (II) in aqueous solutions [J], Angew. Chem. Int. Ed, 2004, 43: 4300-4302
    [88] Xue X., Wang F., Liu X., One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/Nanoparticle conjugates [J], J. Am. Chem. Soc, 2008, 130: 3244-3245
    [89] Gao X.Y., Xing G.M., Yang Y.L., et al., Detection of trace Hg2+ via induced circular dichroism of DNA wrapped around single-walled carbon nanotubes [J], J. Am. Chem. Soc, 2008, 130: 9190-9191
    [90] Wang H., Wang Y.X., Jin J.Y., et al., Gold Nanoparticle-based colorimetric and“turn-on”fluorescent probe for mercury(II) ions in aqueous solution [J], Anal. Chem, 2008. 80: 9021-9033
    [91] Yang R.H., Jin J.U., Chen Y., et al., Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization [J], J. Am. Chem. Soc, 2008, 130: 8351-8358
    [92] Li H.P., Zhou B., Lin Y., et al., Selective interactions of porphyrins with semi-conducting single-walled carbon nanotubes [J]. J. Am. Chem. Soc, 2004, 126: 1014-1015

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700