用户名: 密码: 验证码:
粉煤灰纳米沸石复合颗粒功能化设计及其污水氮磷去除初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉煤灰是我国排放量最大的固体废弃物之一,其有效利用率低,大量的粉煤灰的堆放不仅污染环境而且对人体健康产生隐患,因此开展粉煤灰的综合利用是一项艰巨而重要的任务。粉煤灰合成沸石已经广泛应用于环境工程实例中解决环境污染等问题,是一种颇有前途的资源。而针对目前粉煤灰合成沸石的过程机理的不明确性以及合成沸石对高浓度氮磷废水处理能力有限的现状,本论文着重研究了粉煤灰纳米沸石复合颗粒的合成机理及其最优化的条件,尝试了掺杂法和阳离子置换法强化其同步去除沼液污水中氨氮和磷酸盐的技术途径,以期为粉煤灰的综合利用及粉煤灰纳米沸石复合材料的研究应用拓展新的领域。本研究所得结论总结如下:
     根据四种分别来源于浙江杭州、浙江北仑、浙江长兴和河南开封火电厂的粉煤灰其合成沸石的转化率、母液的Si和Al浓度、产物物相组成、产物的化学组成及其表面性状的动态变化的共性分析,可以将粉煤灰合成沸石的转化机理分为五个阶段:第一阶段,诱导期或初始期,即快速升温到设定温度的0.5h,粉煤灰微珠将均匀分散在氢氧化钠液相溶液中;第二阶段,加速期或溶解期,0.5~12h,粉煤灰中大量的Si和Al溶出,其表层活性SiO2及Al2O3与钠离子反应生成富硅的水化硅铝酸钠凝胶,并覆盖在粉煤灰微珠表面;第三阶段,伪平衡期或成核期,12~24h,随着硅铝酸盐凝胶中硅铝比的降低,其内部开始生成晶核,氢氧化钠的消耗速度降低,SiO2及Al2O3与氢氧化钠的反应平缓;第四阶段,快速生长期或结晶期,24~48h,24h后粉煤灰微珠表面呈现多通道的网络状结构,加快硅铝酸盐凝胶结晶,根据异相成核原理,纳米沸石生成物在粉煤灰微珠表面,晶粒快速生长;第五阶段,转化期或稳定期,48h以后粉煤灰表面的纳米沸石晶体粒子随着反应时间的延长,沸石内部的结构组成开始发生变化,由亚稳态的NaPl型沸石结构转化为相对稳态的羟基方钠石或方沸石等晶体结构。高温和延长反应时间能够促使沸石相转化为羟基方钠石,即二次结晶。
     粉煤灰合成沸石最优化条件为反应时间为48h,液固比为6ml/g、NaOH浓度为2mol/L以及反应温度为95℃,此时合成产物为粉煤灰纳米NaPl沸石复合颗粒,且阳离子交换容量(CEC)值最高为235.8cmol/kg。
     根据四种粉煤灰纳米沸石复合颗粒的理化性能比较分析,得出硅铝比比较高的北仑和长兴粉煤灰(硅铝比分别为1.82和1.52)较低硅铝比的杭州和开封粉煤灰(硅铝比分别为0.54和1.21)更适合作为合成沸石的原材料。浙江北仑和浙江长兴粉煤灰合成产物的CEC都分别比其原始粉煤灰提高了两个数量级,其比表面积(SBET)比其原始粉煤灰提高了1个数量级,因此具有较大的氨氮的离子交换与吸附潜能。
     针对合成的粉煤灰纳米沸石复合颗粒对磷吸附能力的不足,为了强化其对磷吸附容量,采用掺杂合成法和阳离子置换法这两种方法对粉煤灰纳米沸石复合颗粒进行功能强化设计。结果表明,钙镁盐掺杂合成法及钙镁阳离子置换法能够显著强化粉煤灰纳米沸石复合颗粒的磷素吸附容量与性能,其中钙镁阳离子置换所得产物的最大磷固定系数(PIC)比原始的合成粉煤灰纳米沸石复合产物增加了2.7~3.2倍。
     钙饱和置换产物能够增强粉煤灰合成沸石对氨的去除率;而镁饱和置换却有副作用;钙镁盐饱和以及钙掺杂强化处理能够显著提高粉煤灰纳米沸石复合颗粒对P的吸附去除率,且随着投加量的增加,其对P的吸附去除率显著增加,而镁掺杂强化处理对磷的去除率增加不明显。考虑氨氮的同步去除率,钙盐掺杂和饱和置换对粉煤灰纳米沸石复合产物的脱氮除磷强化效果显著,其中钙饱和置换后的合成产物最适合用于沼液废水的脱氮除磷,当投加量为0.25-8.00g/100ml时,其对氨氮和磷的去除率分别达到41.32%-95.00%和87.72%-98.59%。钙掺杂或阳离子置换处理的粉煤灰纳米沸石复合产物在投加量为8.00g/100ml时沼液的氨氮分别降为67.46mg/L和31.75mg/L、磷降为1.47mg/L和0.44mg/L,满足浙江省畜禽养殖业污染物排放标准对沼液废水的脱氮除磷的排放要求。
Fly ash (FA) is one of the largest emissions of solid waste in China, while its effective utilization rate is low and its disposal as landfill poses major challenges and serious economic and environmental problems. However, zeolite synthesis from FA (ZFA) has been receiving a lot of attention and the potential use of ZFAs in water decontamination has been evaluated by a number of research groups. Because the the transformation mechanism of ZFAs from FA is unclear and waste water with high concentrations of nitrogen and phosphorus can not be effectly treated by ZFAs. This paper focuses on the synthesis mechanism of fly ash/nano-zeolite composite material from fly ash and optimization of the synthesis program. Try the doping method and the cation exchange method to modify the synthesized product in order to simultaneous removal of ammonia nitrogen and phosphates in livestock waste water. Conclusions of this study were summarized as follows:
     Different FAs were collected from four thermal power plans in China (Hangzhou, Beilun, Changxing and Kaifeng). To clarify the mechanism of zeolite synthesis from fly ash, the hydrothermal reaction was carried out. The changes in various physical and chemical properties, such as crystal structure, chemical composition, surface structure of the obtained zeolites and the dissolved amount of Si and Al in alkali solution were investigated during the hydrothermal reaction. The zeolitisation mechanism mainly consists of five successive steps. The first step is the induction period or initial period in the first 0.5h with the fly ash and alkali solution mixed together and the temperature of the slurry reaches to the setted value. The second step is called accelerated phase or dissolution phase in the reaction time of 0.5-12h, the dissolution of the FA leads rapidly to the reprecipitation of a rather Si-rich aluminosilicate gel intermediate. The third stage is the pseudo-equilibrium phase or the nucleation phase in the reaction time of 12-24h with formation of nuclei in aluminosilicate gel. During the fourth stage of the arpid growing or crystalline in the reaction time of 24-48h, the rapid crystallisation of nano zeolite-NaPl begin. The last stage is called stable or transformation phase after 48h with partial transformation of Na-Pl zeolite into the more stable hydroxysodalite or analcime.
     The optimal conditions for synthesis of fly ash/nano-zeolite composite material composite particles with the hightest cation exchange value (CEC) were with the reaction time of 48h, the liquid to solid ratio of 6ml/g, the NaOH concentration of 2mol/L and the reaction temperature of 95℃.
     According to comparative analysis of the physical and chemical properties the products synthesized from four different fly ash samples, it was found that the fly ash from Beilun and Changxing with higher Si/Al ratio (Si/Al ratio of 1.82 and 1.52, respectively) were more suitable for synthesis of zeolite materials than that from Hangzhou and Kaifeng with lower Si/Al ratio (Si-Al ratio of 0.54 and 1.21, respectively). Besides, the CEC and the SBET values of the synthetic products from the fly ash of Changxing and Beilun increased by two orders of magnitude and one order of magnitude, respectively, compared to that of their original fly ash.
     In order to improve the adsorption capacity of P of the synthesized zeolite, doping method and the cation exchange method with CaCl2 and MgCl2were conducted. The results showed that the two methods effectively modified the synthesis products and significantly strengthen their phosphorus sorption property.
     Considering the simultaneous removal of ammonia and phosphate of, the products with cation exchange of Calcium salt treatment was the most suitable for the treatment of anaerobically digested livestock wastewater. The removal rates of ammonia nitrogen and phosphate reached 41.32%-95.00% and 87.72%-98.59% respectively with the dosage of aboved product of 0.25-8.OOg/100ml.
     When the dosage of fly ash/nano-zeolite composite products by calcium doping or cation exchange treatment reached 8.OOg/100ml, the concentration of ammonium and phosphate of livestock waste water after treatment decreased from 67.46 mg/L and 31.75mg/L to 1.47mg/L and 0.44mg/L respectively, reached the discharge standard of pollutants for livestock and poultry breeding of Zhejiang province.
引文
[1]Ahmaruzzaman M. A review on the utilization of fly ash [J]. Progress in Energy and Combustion Science,2010,36(3):327-363.
    [2]Amrhein C., Haghnia G., Kim T., et al. Synthesis and properties of zeolites from coal fly ash [J]. Environmental Science and Technology,1996,30 (3):735-742.
    [3]Barrer R., Denny P. J. Hydrothermal chemistry of the silicates [J]. Journal of the American Ceramic Society,1961:983.
    [4]Belviso C., Cavalcante F. and Fiore S. Synthesis of zeolite from Italian coal fly ash:differences in crystallization temperature using seawater instead of distilled water [J]. Waste Management,2010.30(5):839-847.
    [5]Belviso C., Cavalcante F., Lettino A., et al. Effects of ultrasonic treatment on zeolite synthesized from coal fly ash [J]. Ultrasonics Sonochemistry,2011,18(2):661-668.
    [6]Booker N. A., Cooney E. L. and Priestley A. J. Ammonia removal from sewage using natural australian zeolite [J]. Water Science and Technology,1996,34(9):17-24.
    [7]Caputo D. and Pepe F., Experiments and data processing of ion exchange equilibria involving Italian natural zeolites:a review [J]. Microporous and Mesoporous Materials,2007,105: 222-231.
    [8]Currie M., Graham N., Hall T. et al. The effect of bicarbonate on ozone-enhanced particle removal in water treatment [J]. Ozone Science and Engineering,2003,25:285-293.
    [9]Demirer U., Frear C. and Chen S. Anaerobic digestion of dairy manure with enhanced ammonia removal [J]. Journal of Environment Management,2008 (86):193-200.
    [10]Dennis G.G., Maria S.G. and Rodrigo V. Phosphate immobilization using an acidic type F fly ash [J]. Journal of Hazardous Materials,2000,76 (2-3):217-236.
    [11]Eleonora S. and Jan K. Investigations on Cr mobility from coal fly ash [J]. Fuel,2009,88(8): 1513-1519.
    [12]Medinaa A., Gameroa P., Querol X., et al. Fly ash from a Mexican mineral coal Ⅰ: mineralogical and chemical characterization [J]. Journal of Hazardous Materials,2010, 181(1-3):82-90.
    [13]Gross-Lorgouilloux M., Caullet P., Soulard M., et al. Conversion of coal fly ashes into faujasite under soft temperature and pressure conditions. Mechanisms of crystallisation [J]. Microporous and Mesoporous Materials,2010,131(1-3):407-417.
    [14]Gualtieri A., Norby P., Artioli G., et al. Kinetics of formation of zeolite Na-Y [LTA] from natural kaolinites [J]. Physics and Chemistry of Minerals,1997,24(3):191-199.
    [15]Guo X., Zeng L.L., Li X., et al. Ammonium and potassium removal for anaerobically digested wastewater using natural clinoptilolite followed by membrane pretreatment [J]. Journal of Hazardous Materials,2008 (151):125-133.
    [16]Henmi T. Chemical conversion of coal ash into artificial zeolite and its recycling [J]. New Ceramics,1997,26 (7):54-62.
    [17]Henmi T., Development of recycling techniques for solid waste through zeolitization [M], Tokyo:New Technology Science,1994.
    [18]Tanaka H. and Fujii A. Effect of stirring on the dissolution of coal fly ash and synthesis of pure-form Na-A and X zeolites by two-step process [J]. Advanced Powder Technology,2009, 20(5):473-479.
    [19]Holler H. and Wirsching U. Zeolites Formation from Fly Ash [J]. Minerals Engineering,1985, 63(1):21-43.
    [20]Hollman G, Steenbruggen G. and Janssen M. A two-step process for the synthesis of zeolites from coal fly ash [J]. Fuel,1999,78(10):1225-1230.
    [21]Homer J., Howard M.J. and Gooda S.C. Effect of ultrasound on molecular mobility in certain crystalline compounds [J]. Ultrasonics Sonochemistry,1995,2(2):71-74.
    [22]Inada M., Eguchi Y., Enomoto, N., et al. Synthesis of zeolite from coal fly ashes with different silica-alumina composition [J]. Fuel,2005,84(2-3):299-304.
    [23]Inada M., Tsujimoto H., Eguchi Y., et al. Microwave-assisted zeolite synthesis from coal fly ash in hydrot hermal process [J]. Fuel,2005,84 (12-13):1482-1486.
    [24]Kazemian H., Naghdali Z., Ghaffari K., et al. Conversion of high silicon fly ash to Na-Pl zeolite:Alkaline fusion followed by hydrothermal crystallization[J]. Advanced Powder Technology,2010,21(3):279-283.
    [25]Kim J.K. and Lee H.D. Effects of step change of heating source on synthesis of zeolite 4A from coal fly ash [J]. Journal of Industrial and Engineering Chemistry,2009,15(5):736-742.
    [26]Kim K.R., Lee M.S., Paek S., et al. Adsorption tests of water vapor on synthetic zeolites for an atmospheric detritiation dryer [J]. Radiation Physics and Chemistry,2007,76(8-9):493-1496.
    [27]LaRosa J.L., Kwan S., Grutzeck M.W., et al. Zeolite formation in class F fly ash blended cement pastes [J]. Journal of American Ceramic Society,1992,75(6):1574-1580.
    [28]Lee K.T., Tan K.C., Irvan D., et al. Development of kinetic model for the reaction between SO2/NO and coal fly ash/CaO/CaSO4 sorbent [J]. Fuel,2008,87(10-11):2223-2228.
    [29]Lin C. and His H. Resource recovery of waste fly ash:synthesis of zeolite-like materials [J]. Environmental Science and Technology,1995,29 (4):1109-1117.
    [30]Li X., Remias J.E., Neathery J.K., et al. NF/RO faujasite zeolite membrane-ammonia absorption solvent hybrid system for potential post-combustion CO2 capture application [J]. Journal of Membrane Science,2011,366(1-2):220-228.
    [31]Mark E.D. and Raul F. Zeolite and molecular sieve synthesis [J]. Chemistry of Materials,1992, 4(4):756-768.
    [32]Majchrzak-Kuceba I., Nowak W. Application of model free kinetics to the study of dehydration of fly ash based zeolite [J]. Thermochimica Acta,2004,413(1-2):23-29.
    [33]Matias B., Ariel A., Patrick G, et al. Development of environmentally superior treatment system to reeplace anaerobic swine lagoons in the USA[J]. Bioresource Technology,2007, 98(17):3184-3194.
    [34]Molina A. and Poole C. A comparative study using two methods to produce zeolites from fly ash [J]. Minerals Engineering,2004,17 (2):167-173.
    [35]Moreno N., Querol X. and Ayora C. Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters [J]. Environmental Science and Technology,2001, 35(17):3526-3534.
    [36]Moriyama R., Takeda S., Onozaki M., et al. Large-scale synthesis of artificial zeolite from coal fly ash with a small charge of alkaline solution[J]. Fuel,2005,84(12-13):1455-1461.
    [37]Motsi T., RowsonN. A., Simmons M. Adsorption of heavy metals from acid mine drainage by natural zeolite [J]. International Journal of Mineral Processing,2009,92(1-2):42-48.
    [38]Murayama N., Yamamoto H. and Shibata J. Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction [J]. International Journal of Mineral Processing,2002,64(1): 1-17.
    [39]Murayama N., Yoshida S., Takami Y., et al. Simultaneous removal of NH4+and PO43- in aqueous solution and its mechanism by using zeolite synthesized from coal fly ash [J]. Separation Science and Technology,2003,38(1):113-129.
    [40]Nicolas B. and Fabrice B. Challenges and innovations on biological treatment of livestock effluents [J]. Bioresource Technology,2009,100(22):5431-5436.
    [41]Nikolaos K., Charalampos V., Grigorios I., et al. Removal of heavy metals from wastewater using CFB-coal fly ash zeolitic materials [J]. Journal of Hazardous Materials,2010,173(1-3): 581-588.
    [42]Noike I.S., Matsumoto H. and Miyahara T. Development of a new type of anaerobic digestion equipped with the function of nitrogen removal [J]. Water Science and Technology,2004, 49(5-6):173-179.
    [43]Obaja D., Mace S., Costa J., et al. Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor [J]. Bioreseurce Technology, 2003,87(1):103-111.
    [44]Ohaja D., Mace S. and Mata-Alvarcz J. Biological nutrient removal by an equencing batch reactor (SBR) using an internal organic carbon source in digested pigery wastewater [J]. Bioreseurce Technology,2005,96(1):7-14.
    [45]Oguz E. Sorption of phosphate from solid/liquid interface by fly ash [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,262(1-3):113-117.
    [46]Park J., Kim B. C., Park S. S., et al. Conventional versus ultrasonic synthesis of zeolite 4A from kaolin [J]. Journal of Materials Science Letters,2001,20(6):531-533.
    [47]Park J., Jin H., Lim B., et al. Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp [J]. Bioresource Technology,2010,101(22): 8649-8657.
    [48]Park M., Choi C., Lee D.H., et al. Salt thermal Zeolitzation of Fly Ash [J]. Environment Science and Technol,2001,35(13):2812-2816.
    [49]Pengthamkeerati P., Satapanajaru T. and Chularuengoaksorn P. Chemical modification of coal fly ash for the removal of phosphate from aqueous solution [J]. Fuel,2008,87(12): 2469-2476.
    [50]Querol X., Alastuey A., Lopez-Soler A., et al. A fast method for recycling fly ash: microwave-assisted zeolite-like materials [J]. Environmental Science and Technology,1997, 31(9):2527-2533.
    [51]Querol X., Plana F., Alastuey A., et al. Synthesis of Na-zeolites from fly ash [J]. Fuel,1997, 76(8):793-799.
    [52]Quan X., Ye C., Xiong Y., et al. Simultaneous removal of ammonia, P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping [J]. Journal of Hazardous Materials,2010,178 (1-3):326-332.
    [53]Rios A.C., Williams C.D., Fullen M.A. Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods [J]. Applied Science,2009,42(3-4): 446-454.
    [54]Salil U., Yang R.T. and Buzanowski M.A. Sorbents for air prepurification in air separation [J]. Chemical Engineering Science,2000,55(21):4827-4838.
    [55]Sanchez E., Travieso L., Borja R., et al. Piggery waste treatment by using down-flow anaerobic fixed bed reactors [J]. Journal of Engineering Science,2007,42:727-734
    [56]Stanislav V. and Christina G. A new approach for the classification of coal fly ashes based on their origin, composition, properties and behaviour [J]. Fuel,2007,86(10-11):1490-1512.
    [57]Su J.J., Cheng M.K., Jing L., et at. Utilization of sequencing batch reactor in situ piggery wastewater treatment [J]. Journal of Environmental Science,1997,32 (2):391-405.
    [58]Tanaka H., Yamasaki N. and Muratani M. Structure and formation process of (K, Na)-clinoptilolite [J]. Materials Research Bulletin,2003,38(4):713-722.
    [59]Uludag-Demirer S. and Othman M. Removal of ammonium and phosphate from the supernatant of anaerobically digested waste activated sludge by chemical precipitation [J]. Bioresource Technology,2009,100(13):3236-3244.
    [60]Uludag-Demirer S., Demirer G.N. and Chen S. Ammonia removal from anaerobically digested dairy manure by struvite precipitation [J]. Process Biochemistry.2005,40(12):3667-3674.
    [61]Watek T.T. and Saito F. The effect of low solid/liquid ratio on hydrothermal synthesis of zeolites from fly ash [J]. Fuel,2008.87(15-16):3194-3199.
    [62]Wang S. and Peng Y. Natural zeolites as effective adsorbents in water and wastewater treatment [J]. Chemical Engineering Journal,2010,56(1):11-24.
    [63]Wu D., Zhang B., Li C., et al. Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment [J]. Journal of Colloid Interface Science,2006,304(2):300-306.
    [64]Yao Z.T., Xia M.S. and Zhang Y.Y. Synthesis of zeolite Li-ABW from fly ash by fusion method [J]. Journal of Hazardous Materials,2009,170(2-3):639-644.
    [65]Zhang B, Wu D., Wang C., He S., et al. Simultaneous removal of ammonium and phosphate by zeolite synthesized from coal fly ash as influenced by acid treatment [J]. Journal of Environmental Science,2007,19:540-545.
    [66]Zhang Z.J., Zhu J., King J., et al. A two step fed SBR for treating swine manure [J]. Process Biochemistry,2006,41(4):892-900.
    [67]Zhao X.S., Lu G.Q. and Zhu H.Y. Effects of ageing and seeding on the formation of zeolite Y from coal fly ash [J]. Journal of Porous Materials,1997,4:245-251.
    [68]陈婷婷.流化床粉煤灰合成沸石及处理含酚废水的研究[D].太原:太原理工大学,2008.
    [69璀理华.国内外规模化猪场废水处理组合工艺进展[J].农业环境保护,2000,19(3):188-191.
    [70]邓良伟,操卫平,孙欣,等.原水添加比例对猪场废水厌氧消化液后处理的影响[J].环境科学,2007,28(3):588-593.
    [71]盖国胜.微纳米颗粒复合与功能化设计[M].北京:清华大学出版社,2008.
    [72]李方文.粉煤灰改性处理SO2、含铅废水有害物的研究[D].长沙:湖南大学,2002.
    [73]李方文,魏先勋,李彩亭,等.煅烧一碱熔法制粉煤灰沸石吸附剂及其在处理含铅废水中的应用[J].环境污染治理技术与设备,2002,3(10):61-63,67.
    [74]李方文,魏先勋,马淞江,等.煅烧对粉煤灰合成4A沸石的作用[J].环境科学与技术,2003,26(4):13-14,17.
    [75]李飒英.沸石分子筛的合成及合成机理[J].化学工程与装备,2010,6:151-152.
    [76]李亚峰.粉煤灰处理废水的机理和应用[J].矿业安全与环保,2002,2:30-32.
    [77]李增新,李相任.天然沸石在环境污染治理中应用的进展[J].环境污染治理技术与设备,2004,5(3):18-22.
    [78]刘艳辉,薛向欣,宋海.油页岩渣水热法合成沸石及其性能表征[J].材料导报,2009,23(6):97-101.
    [79]刘艳,李艳,张振宇,等.水热条件对粉煤灰沸石离子交换性能的影响[J].环境科学与技术,2009,32(10):35-37.
    [80]刘艳,马毅,李艳,等,粉煤灰合成沸石的研究[J].煤炭转化,2007,30(2):91-95.
    [81]刘永梅,李德宝,王晓钟,等.以煤基工业废料为原料固相法合成小粒径圆形A型沸石分子筛[J].日用化学工业,2002,32(2):53-56.
    [82]彭武厚.厌氧消化法处理畜禽粪的研究[J].工业微生物,1997,4:1-4.
    [83]裴向军.水泥土环境中粉煤灰的水化及活化激发研究[D].长春:吉林大学,2003.
    [84]邢冬强,曹吉林,刘秀伍,等.超声波条件下合成小粒度4A沸石[J].河北师范大学学报(自然科学版),2007,31(4):484-499.
    [85]徐国想,范丽花,李学字,等.粉煤灰沸石合成及应用研究[J].化工矿物与加工,2006,35(9):32-34.
    [86]徐如人,庞文琴.沸石分子筛结构与合成[M].长春:吉林大学出版社,1987.
    [87]邵靖邦,邵绪新,王祖讷,等.煤中矿物成分对粉煤灰性质的影响[J].煤炭加工与综合利用,1996,6:37-41.
    [88]尚继武,周惟公.粉煤灰综合利用新技术[J].科技创新导报.2008,23:13-14
    [89]王福元,吴正严.粉煤灰利用手册(M).北京:中国电力出版社,2004,63-64.
    [90]王建新,饶本强,赵统刚,等.粉煤灰合成沸石粉煤灰沸石颗粒滤柱去除氮和磷的动态运行[J].信阳师范学院学报,2008,21(3):442-445.
    [91]王武名.粉煤灰处理造纸废水及微生态复混肥的制备[D].哈尔滨:东北大学,2003.
    [92]王志芹.粉煤灰在陶瓷制品上的应用[J].中国陶瓷,2002,23(4):28-3I.
    [93]吴德意,孔海南,赵统刚,等.合成条件对粉煤灰合成沸石过程中沸石生成和品质的影响[J].无机材料学报,2005,20(5):1153-1158.
    [94]吴幼权.粉煤灰改性及其吸附性能研究[J].重庆:重庆大学,2006.
    [95]杨虹,李道棠,朱章玉,等.集约化养猪场冲栏水的达标处理[J].上海交通大学学报,2000,34(4):558-560.
    [96]杨剑虹,车福才,王定勇,等.粉煤灰的理化性质与农业化学行为的研究[J].植物营养与肥料学报,1997,3(4):341-348.
    [97]杨志华.粉煤灰合成沸石及应用其去除废水中重金属的实验研究[D].北京:中国地质大学.
    [98]张晖,沸石改性和去除水中氮磷的研究[D].长沙:中南大学,2004.
    [99]张曦,吴为中,温东辉,等.氨氮在天然沸石上的吸附及解吸[J].环境化学,2003,22(2):166-171.
    [100]赵丹,王曙光,栾兆坤.改性斜发沸石吸附水中氨氮的研究[J].环境化学,2003,22(1):59-63.
    [101]赵统刚,吴德意,孔海南,等.粉煤灰合成沸石除磷机理的初步研究[J].水处理技术,2006,32(7):23-26.
    [102]赵统刚,吴德意,陈建刚,等.粉煤灰合成沸石同步脱氨除磷特性的研究[J].环境科学,2006,27(4):97-101.
    [104]朱保安,郭新峰,黎燕,等.超声波条件下膨润土合成4A沸石[J].化工矿物与加工,2009,7:9-11.
    [105]朱杰.高浓度养殖废水处理新工艺[J].学术动态,2008,2:24-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700