用户名: 密码: 验证码:
马立克氏病病毒诱导的免疫应答基因表达谱及miRNA对肿瘤发生的调节作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马立克氏病(MD)是由高度细胞相关的免疫抑制性致癌α-疱疹病毒—马立克氏病病毒(MDV)引起鸡的一种淋巴组织增生性疾病,MDV在B细胞内限制性产生感染,感染后7天左右(7 dpi)在CD4+ T淋巴细胞中潜伏感染,持续两个星期之后病毒重新激活并诱导肿瘤的发生、发展。潜伏感染的T淋巴细胞病毒从皮肤和羽毛毛囊上皮细胞,释放含囊膜的病毒颗粒到周围环境中。感染转化的CD4+ T细胞含有马立克氏病病毒基因组,通过血液迁移并在皮肤、内脏器官和外周神经建立淋巴瘤。
     在本研究中,利用实时定量RT-PCR方法对rMd5和rMd5Δmeq在5 dpi的鸡脾脏组织中免疫和非免疫相关基因进行了研究。结果表明,rMd5和rMd5Δmeq均能够对感染鸡引起强烈的免疫反应,而meq基因对宿主基因表达没有显著影响。同时发现重组鸡痘病毒rFPV+meq感染的鸡胚胎成纤维细胞中Bcl-2的转录活性降低,表明单独的meq基因不能阻碍鸡痘病毒诱导的细胞凋亡,相反起着加速凋亡作用。
     基因芯片的数据也支持上述分析,并显示meq基因在21 dpi对于病毒的重激活和复制起着重要作用。另外,rMd5和rMd5Δmeq重组病毒感染都涉及宿主免疫应答诱导的IFN-α/β信号转导通路以及干扰素的抗病毒作用途径,这种免疫应答作用在病毒感染5dpi被激活,而在21 dpi迅速被抑制。此外,通过实时定量RT-PCR技术对感兴趣的基因,如MMP-13,MX,IFN-γ,VLIG-1,Bcl2l14和Bu-1a进行了测定,阐述了它们在马立克氏病病毒感染后的促/抗肿瘤或细胞凋亡过程中的作用。所有的结果表明,在MDV感染初期,鸡体免疫系统具有很强的抗病毒、抗肿瘤及促细胞凋亡作用,但随着MDV感染进程,经过潜伏期的逃逸至病毒的重新激活,宿主的抗病毒及抗肿瘤作用明显受到抑制,这便为MDV病毒的后期感染和肿瘤发生、发展创造了便利条件。
    
     为了阐述miRNA在MDV诱导肿瘤发生过程中所扮演的角色,对gga-miR-181a、gga-miR-21以及相关基因如Fas L、FIGN、HOXA11等也进行了一系列的测定,以确定它们在诱导MSB-1细胞凋亡、细胞增殖过程中相互关系。结果表明,gga-miR-181a和gga-miR-21都与细胞的程序性死亡成正相关关系。此外,FIGN和HOXA11具有很强的抗凋亡和促进肿瘤细胞增殖的能力,至少是在CD4+ T淋巴瘤细胞中,并且这种作用受gga-miR-21调节。
Marek’s disease (MD) is a lymphoproliferative disease of domestic chickens caused by a highly cell-associated immunosuppressive oncogenicα-herpes virus, MD virus (MDV). After a brief burst of productive/restrictive infection in B cells, a latent infection in CD4+ T lymphocytes occurs at about 7 days post infection (dpi) that lasts up to two weeks prior to virus reactivation and tumor development. The latently infected T lymphocytes are the means of virus dissemination to the skin and feather follicle epithelial cells, where fully infections enveloped cell-free virus particles are produced and released into the environment. The subsets of latently infected transformed CD4+ T cells that harbor MDV genome, migrate through the blood stream, and establish lymphomas in the skin, visceral organs, and peripheral nerves.
     In this study, the seletected immune- and nonimmune-related genes were tested in the spleen tissues of rMd5- and rMd5?meq-infected chickens at 5 dpi by the Real-Time RT-PCR methods. The results showed that both rMd5 and rMd5?meq can cause strong immune response in the infected chickens, and the meq gene had no significant impact on the gene expression profile. In addition, a reduction in the transcriptional activity of Bcl-2 in recombinant fowlpox virus (rFPV)+meq-infected chicken embryonic fibroblasts suggested that meq alone did not impede, but accelerated FPV-induced apoptosis.
     The microarray data also supported the profile analysis above, and showed the meq gene was important for the virus reactivation and replication at 21 dpi. While, Both rMd5- and rMd5?meq-infection involved in the host immune respose-IFNα/βsignaling pathway and antivirial action of interferons which were activated and suppressed, repectively at 5dpi and 21 dpi. Also, those interested genes, such as MMP-13, Mx, IFN-γ, VLIG-1, Bcl2l14 and Bu-1a, were tested by Real-Time RT-PCR to illuminate the roles in pro/anti– tumor or–apoptosis progress with the MDV infection. All the results indicated that the immune system of chicken possessed a strong antiviral, anti-tumor and pro-apoptosis effection at the initial MDV infection phase, but these kinds of host abilities were supressed immediately after the latence infection and reactivation of virus, which created a great condition for virus infection and tumor developing in the later period of MDV activity.
     In order to illuminate the miRNA roles in the MDV-induced tumor developing, gga-miR-181a, gga-miR-21, and also the related genes, such as Fas L, FIGN, HOXA11, and etc, were choosed to determine their relationship during the progress of MSB-1 cell induced to apoptosis or proliferation. The results indicated that both gga-miR-181a and -21 were involved in and correlated positively with the programmed cell death. In addition, FIGN and HOXA11 possessed great abilities of anti-apoptosis and promotion of tumor cell proliferation, which were regulated by gga-miR-21, at least, in the CD4+ T lymphoma.
引文
[1] Marek J. Multiple Nervenentzündung (Polyneuritis) bei Hühnern. Dtsch. Tierarztl. Wochenschr 1907; 15: 417–421.
    [2] Bacon LD, Witter RL, Silva RF. Characterization and experimental reproduction of peripheral neuropathy in White Leghorn chickens. Avian Pathol 2001; 30: 487–499.
    [3] Gimeno IM, Witter RL, Reed WM. Four distinct neurologic syndromes in Marek’s disease: effect of viral strain and pathotype. Avian Dis 1999; 43: 721–737.
    [4] Pappenheimer AW, Dunn LC, Cone V. Studies onfowl paralysis (Neurolymphomatosis gallinarum). I.Clinical features and pathology. J. Exp. Med 1929; 46: 63–-86.
    [5] Pappenheimer AW, Dunn LC, Seidlin SM. Studies on fowl paralysis (Neurolymphomatosis gallinarum). II. Transmission experiments. J. Exp. Med 1929; 49: 87–102.
    [6] Churchill AE, Payne LN, Chubb RC. Immunization against Marek’s disease using a live attenuated virus. Nature 1969; 221: 744–747.
    [7] Churchill AE, Biggs PM. Herpes-type virus isolated in cell culture from tumors of chickens with Marek’s disease. II. Studies in vivo. J. Natl Cancer Inst 1968; 41: 951–956.
    [8] Cebrian J, Kaschka-Dierich C., Berthelot N, et al. Inverted repeat nucleotide sequences in the genomes of Marek disease virus and the herpesvirus of the turkey. Proc. Natl Acad. Sci. USA 1982; 79: 555–558.
    [9] Churchill AE. Herpes-type virus isolated in cell culture from tumors of chickens with Marek’s disease. I. Studies in cell culture. J. Natl Cancer Inst 1968; 41: 939–950.
    [10] Churchill AE, Biggs PM. Agent of Marek’s disease in tissue culture. Nature 1967; 215: 528–530.
    [11] Burgess SC & Davison TF. Identification of the neoplastically transformed cells in Marek’s disease herpesvirus-induced lymphomas: recognition by the monoclonal antibody AV37. J. Virol 2002; 76: 7276–7292.
    [12] Calnek BW. Pathogenesis of Marek’s disease virus infection. Curr Top Micro Immunol 2001; 255: 25–55.
    [13] Schumacher D, Tischer BK, Fuchs W, et al. Reconstitution of Marek’s disease virus serotype 1 (MDV-1) from DNA cloned as a bacterial artificial chromosome and characterization of aglycoprotein B-negative MDV-1 mutant. J. Virol 2000; 74: 11088–11098.
    [14] Petherbridge L, Howes K, Baigent SJ, et al. Replication-competent bacterial artificial chromosomes of Marek’s disease virus: novel tools for generation of molecularly defined herpesvirus vaccines. J. Viro 2003; 77: 8712–8718.
    [15] Reddy SM, Lupiani B, Gimeno IM, et al. Rescue of a pathogenic Marek’s disease virus with overlapping cosmid DNAs: use of a pp38 mutant to validate the technology for the study of gene function. Proc. Natl Acad. Sci. USA 2002; 99: 7054–7059.
    [16] Petherbridge L, Brown AC, Baigent SJ, et al. Oncogenicity of virulent Marek’s disease virus cloned as bacterial artificial chromosomes. J. Virol 2004; 78: 13376–13380.
    [17] Niikura M, Dodgson J & Cheng H. Direct evidence of host genome acquisition by theα-herpesvirus Marek's disease virus. Arch Virol 2006; 151(3): 537–549.
    [18] Dorange F, Tischer BK, Vautherot JF, et al. Characterization of Marek’s disease virus serotype 1 (MDV-1) deletion mutants that lack UL46 to UL49 genes: MDV-1 UL49, encoding VP22, is indispensable for virus growth. J. Virol 2002; 76: 1959–1970.
    [19] Osterrieder N, Schumacher D, Trapp S, et al. Generation and exploitation of infectious bacterial artificial chromosome (BAC) clones of animal herpesviruses. Berl. Munch. Tierarztl. Wochenschr 2003; 116: 373–380.
    [20] Schumacher D, Tischer BK, Reddy SM, et al. Glycoproteins E and I of Marek’s disease virus serotype 1 are essential for virus growth in cultured cells. J. Virol 2001; 75: 11307–11318.
    [21] Tischer BK, Schumacher D, Messerle M, et al. The products of the UL10 (gM) and the UL49.5 genes of Marek’s disease virus serotype 1 are essential for virus growth in cultured cells. J. Gen. Virol 2002; 83: 997–1003.
    [22] Schat KA, Schinazi RF & Calnek BW. Cellspecific antiviral activity of 1-(2-fluoro-2-deoxy-β-Darabinofuranosyl)-5-iodocytosine (FIAC) against Marek’s disease herpesvirus and turkey herpesvirus. Antiviral Res 1984; 4: 259–270.
    [23] Shek WR, Calnek BW, Schat KA, et al. Characterization of Marek’s disease virus-infected lymphocytes: discrimination between cytolytically and latently infected cells. J. Natl Cancer Inst 1983; 70: 485–491.
    [24] Baigent SJ & Davison TF. Development and composition of lymphoid lesions in the spleens of Marek’s disease virus-infected chickens: association with virus spread and the pathogenesis of Marek’s disease. Avian Pathol 1999; 28: 287–300.
    [25] Baigent SJ, Ross LJ & Davison TF. Differential susceptibility to Marek’s disease is associated with differences in number, but not phenotype or location, of pp38+ lymphocytes. J. Gen. Virol 1998; 79: 2795–2802.
    [26] Carrozza JH, Fredrickson TN, Prince RP, et al. Role of desquamated epithelial cells in transmission of Marek’s disease. Avian Dis 1973; 17: 767–781.
    [27] Johnson EA, Burke CN, Fredrickson TN, et al. Morphogenesis of Marek’s disease virus in feather follicle epithelium. J. Natl Cancer Inst 1975; 55: 89–99.
    [28] Niikura M, Witter RL, Jang HK, et al. MDV glycoprotein D is expressed in the feather follicle epithelium of infected chickens. Acta Virol 1999; 43: 159–163.
    [29] Hunt HD, Lupiani B, Miller MM, et al. Marek’s disease virus down-regulates surface expression of MHC (B complex) class 1 (BF) glycoproteins during active but not latent infection of chicken cells. Virology 2001; 282: 198–205.
    [30] Koppers-Lalic D, Reits EA, Ressing ME, et al. Varicelloviruses avoid T cell recognition by UL49.5-mediated inactivation of the transporter associated with antigen processing. Proc. Natl Acad. Sci 2005; USA 102: 5144–5149.
    [31] Ku CC, Zerboni L, Ito H, et al. Varicella-zoster virus transfer to skin by T cells and modulation of viral replication by epidermal cell interferon-α. J. Exp. Med 2004; 200: 917–925.
    [32] Peng QH & Shirazi Y. Characterization of the protein product encoded by a splicing variant of the Marek’s disease virus Eco-Q gene (meq). Virology 1996; 226: 77–82.
    [33] Parcells MS, Lin SF, Dienglewicz RL, et al. Marek’s disease virus (MDV) encodes an interleukin-8 homolog (vIL-8): characterization of the vIL-8 protein and a vIL-8 deletion mutant MDV. J. Virol 2001; 75: 5159–5173.
    [34] Cui X, Lee LF, Reed WM, et al. Marek’s disease virus-encoded vIL-8 gene is involved in early cytolytic infection but dispensable for establishment of latency. J. Virol 2004; 78: 4753–4760.
    [35] Kamil JP, Tischer BK, Trapp S, et al. vLIP, a viral lipase homologue, is a virulence factor of Marek’s disease virus. J. Virol 2005; 79: 6984–6996.
    [36] Isfort RJ, Kung HJ & Velicer LF. Identification of the gene encoding Marek’s disease herpesvirus A antigen. J. Virol 1987; 61: 2614–2620.
    [37] Ross LJ, Basarab O, Walker DJ, et al. Serological relationship between a pathogenic strain ofMarek’s disease virus, its attenuated derivative and herpes virus of turkeys. J. Gen. Virol 1975; 28: 37–47.
    [38] Isfort RJ, Stringer RA, Kung HJ, et al. Synthesis, processing, and secretion of the Marek’s disease herpesvirus A antigen glycoprotein. J. Virol 1986; 57: 464–474.
    [39] Tischer BK, Schumacher D, Chabanne-Vautherot D et al. High-level expression of Marek’s disease virus glycoprotein C is detrimental to virus growth in vitro. J. Virol 2005; 79: 5889–5899.
    [40] Calnek BW, Schat KA, Ross LJ, et al. Further characterization of Marek’s disease virusinfected lymphocytes. II. In vitro infection. Int. J. Cancer 1984; 33: 399–406.
    [41] Schat KA, Chen CL, Shek, WR, et al. Surface antigens on Marek’s disease lymphoblastoid tumor cell lines. J. Natl Cancer Inst 1982; 69: 715–720.
    [42] Schat KA, Chen CL, Calnek BW, et al. Transformation of T-lymphocyte subsets by Marek’s disease herpesvirus. J. Virol 1991; 65: 1408–1413.
    [43] Lee SI, Ohashi K, Morimura T, et al. Re-isolation of Marek’s disease virus from T cell subsets of vaccinated and non-vaccinated chickens. Arch. Virol 1999; 144: 45–54.
    [44] Takagi M, Ohashi K, Morimura T, et al. Analysis of tumor suppressor gene p53 in chicken lymphoblastoid tumor cell lines and field tumors. J. Vet Med. Sci 1998; 60: 923–929.
    [45] Morimura T, Ohashi K, Sugimoto C, et al. Pathogenesis of Marek’s disease (MD) and possible mechanisms of immunity induced by MD vaccine. J. Vet Med. Sci 1998; 60: 1–8.
    [46] Cantello JL, Anderson AS & Morgan RW. Identification of latency-associated transcripts that map antisense to the Icp4 homolog gene of Mareksdisease virus. J. Virol 1994; 68: 6280–6290.
    [47] Cantello JL, Parcells MS, Anderson AS, et al. Marek’s disease virus latencyassociated transcripts belong to a family of spliced RNAs that are antisense to the ICP4 homolog gene. J. Virol 1997; 71: 1353–1361.
    [48] Li DS, Pastorek J, Zelnik V, et al. Identification of novel transcripts complementary to the Mareks-disease virus homolog of the Icp4 gene of herpes-simplex virus. J. Gen. Virol 1994; 75: 1713–1722.
    [49] Morgan RW, Xie Q, Cantello JL, et al. Marek’s disease virus latency. Curr Top Microbiol Immunol 2001; 255:223–243.
    [50] Hayashi M, Kawamura T, Akaike H, et al. Antisense oligonucleotide complementary to theBamHI-H gene family of Marek’s disease virus induced growth arrest of MDCC-MSB1 cells in the S-phase. J. Vet Med. Sci 1999; 61: 389–394.
    [51] Kawamura M, Hayashi M, Furuichi T, et al. The inhibitory effects of oligonucleotides, complementary to Marek’s disease virus mRNA transcribed from the BamHI-H region, on the proliferation of transformed lymphoblastoid cells, MDCC-MSB1. J. Gen. Virol 1991; 72: 1105–1111.
    [52] Hong Y & Coussens PM. Identification of an immediate-early gene in the Mareks-disease virus long internal repeat region which encodes a unique 14-kilodalton polypeptide. J. Virol 1994; 68: 3593–3603.
    [53] Hong Y, Frame M & Coussens PM. A 14-kDa immediate-early phosphoprotein is specifically expressed in cells infected with oncogenic Mareksdisease virus-strains and their attenuated derivatives. Virology 1995; 206: 695–700.
    [54] Peng FY, Specter S, Tanaka A, et al. A 7-kDa protein encoded by the BamhI-H gene family of Mareks-disease virus is produced in lytically and latently infected-cells. Int. J. Oncol 1994; 4: 799–802.
    [55] Delecluse HJ & Hammerschmidt W. Status of Marek’s disease virus in established lymphoma cell lines: herpesvirus integration is common. J. Virol 1993; 67: 82–92.
    [56] Delecluse HJ, Schuller S & Hammerschmidt W. Latent Marek’s disease virus can be activated from its chromosomally integrated state in herpesvirustransformed lymphoma cells. EMBO J 1993; 12: 3277–3286.
    [57] Jones D, Lee L, Liu JL, et al. Marek disease virus encodes a basic-leucine zipper gene resembling the fos/jun oncogenes that is highly expressed in lymphoblastoid tumors. Proc. Natl Acad. Sci 1992; USA 89: 4042–4046.
    [58] Qian Z, Brunovskis P, Lee L, et al. Novel DNA binding specificities of a putative herpesvirus bZIP oncoprotein. J. Virol 1996; 70: 7161–7170.
    [59] Levy AM, Izumiya Y, Brunovskis P, et al. Characterization of the chromosomal binding sites and dimerization partners of the viral oncoprotein meq in Marek’s disease virustransformed T cells. J. Virol 2003; 77: 12841–12851.
    [60] Burgess SC, Young JR, Baaten BJ, et al. Marek’s disease is a natural model for lymphomas overexpressing Hodgkin’s disease antigen (CD30). Proc. Natl Acad. Sci 2004; USA 101:
    [61] Cheson BD. What is new in lymphoma? CA Cancer J. Clin 2004; 54: 260–272.
    [62] Liu JL, Ye Y, Lee LF, et al. Transforming potential of the herpesvirus oncoprotein MEQ: Morphological transformation, serum-independent growth, and inhibition of apoptosis. J. Virol 1998; 72: 388–395.
    [63] Lupiani B, Lee LF, Cui X, et al. Marek’s disease virus-encoded meq gene is involved in transformation of lymphocytes but is dispensable for replication. Proc. Natl Acad. Sci 2004; USA 101: 11815–11820.
    [64] Anobile JM, Arumugaswami V, Downs D, et al. Nuclear localization and dynamic properties of the Marek’s disease virus oncogene products meq and meq/vIL8. J. Virol 2006; 80: 1160–1166.
    [65] Brown AC, Baigent SJ, Smith LP, et al. Interaction of MEQ and CtBP is critical for induction of lymphomas by Marek’s disease virus. Proc. Natl Acad. Sci 2006; USA 103: 1687–1692.
    [66] Hickabottom M, Parker GA, Freemont P, et al. Two nonconsensus sites in the Epstein–Barr virus oncoprotein EBNA3A cooperate to bind the co-repressor carboxyl-terminal-binding protein (CtBP). J. Biol. Chem 2002; 277: 47197–47204.
    [67] Maruo S, Johannsen E, Illanes D, et al. Epstein–Barr virus nuclear protein EBNA3A is critical for maintaining lymphoblastoid cell line growth. J. Virol 2003; 77: 10437–10447.
    [68] Tomkinson B, Robertson E & Kieff E. Epstein–Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J. Virol 1993; 67: 2014–2025.
    [69] Maruo S, Johannsen E, Illanes D, et al. Epstein–Barr virus nuclear protein 3A domains essential for growth of lymphoblasts: transcriptional regulation through RBP-Jκ/CBF1 is critical. J. Virol 2005; 79: 10171–10179.
    [70] Cayuela ML, Flores JM & Blasco MA. The telomerase RNA component Terc is required for the tumour-promoting effects of Tert overexpression. EMBO Rep 2005; 6: 268–274.
    [71] Pfeffer S, Sewer A, Lagos-Quintana M, et al. Identification of microRNAs of the herpesvirus family. Nature Methods 2005; 2: 269–276.
    [72] Pfeffer S, Zavolan M, Gr?sser FA, et al. Identification of virus-encoded microRNAs. Science 2004; 304: 734–736.
    [73] Sullivan CS, Grundhoff AT, Tevethia S, et al. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 2005; 435: 682–686.
    [74] Witter RL & Kreager KS. Serotype 1 viruses modified by backpassage or insertional mutagenesis: approaching the threshold of vaccine efficacy in Marek’s disease. Avian Dis 2004; 48: 768–782.
    [75] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–854.
    [76] Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403: 901–906.
    [77] Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75: 855–862.
    [78] Wightman B, Burglin TR, Gatto J, et al. Negative regulatory sequences in the lin-14 3-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev 1991; 5: 1813–1824.
    [79] Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 853–858.
    [80] Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse. Curr Biol 2002; 12: 735–739.
    [81] Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001; 294: 858–862.
    [82] Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001; 294: 862–864.
    [83] Garofalo M, Croce CM. microRNAs: Master regulators as potential therapeutics in cancer. Annu Rev Pharmacol Toxicol 2010; (in press).
    [84] Medina PP, Slack FJ. microRNAs and cancer: an overview. Cell Cycle 2008; 7: 2485–2492.
    [85] Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell 2009; 136: 586–591.
    [86] Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101: 2999–3004.
    [87] Calin GA, Liu CG, Sevignani C, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004; 101: 11755–11760.
    [88] Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature2005; 435: 834–838.
    [89] Aravin A, Tuschl T. Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 2005; 579:5830–5840.
    [90] Creighton CJ, Reid JG, Gunaratne PH. Expression profiling of microRNAs by deep sequencing. Brief Bioinform 2009; 10: 490–497.
    [91] Meyer SU, Pfaffl MW, Ulbrich SE. Normalization strategies for microRNA profiling experiments: a‘normal’way to a hidden layer of complexity? Biotechnol Lett 2010; (in press).
    [92] Lawrie CH, Soneji S, Marafioti T, et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer 2007; 121: 1156–1161.
    [93] Weng L, Wu X, Gao H, et al. MicroRNA profiling of clear cell renal cell carcinoma by whole-genome small RNA deep sequencing of paired frozen and formalin-fixed, paraffin-embedded tissue specimens. J Pathol 2010; 222: 41–51.
    [94] Xi Y, Nakajima G, Gavin E, et al. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 2007; 13: 1668–1674.
    [95] Barad O, Meiri E, Avniel A, et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 2004; 14: 2486–2494.
    [96] Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 2005; 11: 241–247.
    [97] Bissels U, Wild S, Tomiuk S, et al. Absolute quantification of microRNAs by using a universal reference. RNA 2009; 15: 2375–2384.
    [98] Nelson PT, Baldwin DA, Scearce LM, et al. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 2004; 1: 155–161.
    [99] Thomson JM, Parker JS, Hammond SM. Microarray analysis of miRNA gene expression. Methods Enzymol 2007; 427: 107–122.
    [100] Fiedler SD, Carletti MZ, Christenson LK. Quantitative RT–PCR methods for mature microRNA expression analysis. Methods Mol Biol 2010; 630: 49–64.
    [101] Berezikov E, Thuemmler F, van Laake LW, et al. Diversity of microRNAs in human andchimpanzee brain. Nat Genet 2006; 38: 1375–1377.
    [102] Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cellspecific MicroRNAs. Dev Cell 2003; 5: 351–358.
    [103] Landgraf P, Rusu M, Sheridan R, et al. A Mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129: 1401–1414.
    [104] Witten D, Tibshirani R, Gu SG, et al. Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC Biol 2010; 8: 58.
    [105] Vigneault F, Sismour AM, Church GM. Efficient microRNA capture and bar-coding via enzymatic oligonucleotide adenylation. Nat Methods 2008; 5: 777–779.
    [106] Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.
    [107] Berninger P, Gaidatzis D, van Nimwegen E, et al. Computational analysis of small RNA cloning data. Methods 2008; 44: 13–21.
    [108] Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26: 139–140.
    [109] Nelson PT, Baldwin DA, Kloosterman WP, et al. RAKE and LNA–ISH reveal microRNA expression and localization in archival human brain. RNA 2006; 12: 187–191.
    [110] Pena JT, Sohn-Lee C, Rouhanifard SH, et al. miRNA in situ hybridization in formaldehyde and EDC-fixed tissues. Nat Methods 2009; 6: 139–141.
    [111] Sempere LF, Christensen M, Silahtaroglu A, et al. Altered microRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 2007; 67: 11612–11620.
    [112] Johnston RJ, Hobert O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 2003; 426: 845–849.
    [113] Griffiths-Jones S, Saini HK, van Dongen S, et al. miRBase: tools for microRNA genomics. Nucleic Acids Res 2008; 36: D154–158.
    [114] Chiang HR, Schoenfeld LW, Ruby JG, et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev 2010; 24: 992–1009.
    [115] Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.
    [116] Tagawa H, Seto M. A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia 2005; 19: 2013–2016.
    [117] Mavrakis KJ, Wolfe AL, Oricchio E, et al. Genome-wide RNAmediated interference screen identifies miR-19 targets in Notchinduced T-cell acute lymphoblastic leukaemia. Nat Cell Biol 2010; 12: 372–379.
    [118] Huse JT, Brennan C, Hambardzumyan D, et al. The PTENregulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 2009; 23: 1327–1337.
    [119] Gauwerky CE, Huebner K, Isobe M, et al. Activation of MYC in a masked t(8;17) translocation results in an aggressive B-cell leukemia. Proc Natl Acad Sci USA 1989; 86: 8867–8871.
    [120] Etiemble J, Moroy T, Jacquemin E, et al. Fused transcripts of c-myc and a new cellular locus, hcr, in a primary liver tumor. Oncogene 1989; 4: 51–57.
    [121] Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11: 597–610.
    [122] Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26: 745–752.
    [123] He L, He X, Lowe SW, et al. microRNAs join the p53 network-another piece in the tumour-suppression puzzle. Nat Rev Cancer 2007; 7: 819–822.
    [124] Hatley ME, Patrick DM, Garcia MR, et al. Modulation of KRas-dependent lung tumorigenesis by microRNA-21. Cancer Cell 2010; 18: 282–293.
    [125] Huang TH, Wu F, Loeb GB, et al. Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. J Biol Chem 2009; 284: 18515–18524.
    [126] O’Donnell KA, Wentzel EA, Zeller KI, et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435: 839–843.
    [127] He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833.
    [128] Han L, Witmer PD, Casey E, et al. DNA methylation regulates microRNA expression. Cancer Biol Ther 2007; 6: 1284–1288.
    [129] Saito Y, Jones PA. Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle 2006; 5: 2220–2222.
    [130] Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006; 9: 435–443.
    [131] Kwak PB, Iwasaki S, Tomari Y. Review Article: The microRNA pathway and cancer. Cancer Sci 2010; (in press).
    [132] Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 2010; 10: 389–402.
    [133] Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 2010; 79: 321–349.
    [134] Yi R, Pasolli HA, Landthaler M, et al. DGCR8-dependent microRNA biogenesis is essential for skin development. Proc Natl Acad Sci USA 2009; 106: 498–502.
    [135] Cheloufi S, Dos Santos CO, Chong MM, et al. A dicerindependent miRNA biogenesis pathway that requires Ago catalysis. Nature 2010; 465: 584–589.
    [136] Yang JS, Maurin T, Robine N, et al. Conserved microRNA biogenesis. Proc Natl Acad Sci USA 2010; 107: 15163–15168.
    [137] Babiarz JE, Ruby JG, Wang Y, et al. Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessorindependent, Dicer-dependent small RNAs. Genes Dev 2008; 22: 2773–2785.
    [138] Berezikov E, Chung WJ, Willis J, et al. Mammalian mirtron genes. Mol Cell 2007; 28: 328–336.
    [139] Hagan JP, Piskounova E, Gregory RI. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 2009; 16: 1021–1025.
    [140] Kawahara Y, Zinshteyn B, Sethupathy P, et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 2007; 315: 1137–1140.
    [141] Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 2008; 9: 219–230.
    [142] Kumar MS, Lu J, Mercer KL, et al. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007; 39: 673–677.
    [143] Kumar MS, Pester RE, Chen CY, et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 2009; 23: 2700–2704.
    [144] Lambertz I, Nittner D, Mestdagh P, et al. Monoallelic but not biallelic loss of Dicer1promotes tumorigenesis in vivo. Cell Death Differ 2010; 17: 633–641.
    [145] Paroo Z, Ye X, Chen S, et al. Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell 2009; 139: 112–122.
    [146] Melo SA, Ropero S, Moutinho C, et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 2009; 41: 365–370.
    [147] Newman MA, Thomson JM, Hammond SM. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 2008; 14: 1539–1549.
    [148] Piskounova E, Viswanathan SR, Janas M, et al. Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J Biol Chem 2008; 283: 21310–21314.
    [149] Rybak A, Fuchs H, Smirnova L, et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 2008; 10: 987–993.
    [150] Viswanathan SR, Daley GQ, Gregory RI. Selective blockade of microRNA processing by Lin28. Science 2008; 320: 97–100.
    [151] Viswanathan SR, Powers JT, Einhorn W, et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 2009; 41: 843–848.
    [152] Viswanathan SR, Daley GQ. Lin28: A microRNA regulator with a macro role. Cell 2010; 140: 445–449.
    [153] Fukuda T, Yamagata K, Fujiyama S, et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 2007; 9: 604–611.
    [154] Suzuki HI, Yamagata K, Sugimoto K, et al. Modulation of microRNA processing by p53. Nature 2009; 460: 529–533.
    [155] Davis BN, Hilyard AC, Lagna G, et al. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008; 454:56–61.
    [156] Trabucchi M, Briata P, Garcia-Mayoral M, et al. The RNAbinding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 2009; 459: 1010–1014.
    [157] Ender C, Meister G. Argonaute proteins at a glance. J Cell Sci 2010; 123: 1819–1823.
    [158] Parker JS. How to slice: snapshots of Argonaute in action. Silence 2010; 1: 3.
    [159] Bagga S, Bracht J, Hunter S, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005; 122: 553–563.
    [160] Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433: 769–773.
    [161] Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output. Nature 2008; 455: 64–71.
    [162] Grimson A, Farh KK, Johnston WK, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007; 27: 91–105.
    [163] Hausser J, Landthaler M, Jaskiewicz L, et al. Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C-miRNA complexes and the degradation of miRNA targets. Genome Res 2009; 19: 2009–2020.
    [164] Karginov FV, Conaco C, Xuan Z, et al. A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci USA 2007; 104: 19291–19296.
    [165] Kr¨utzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with‘antagomirs’. Nature 2005; 438: 685–689.
    [166] Landthaler M, Gaidatzis D, Rothballer A, et al. Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 2008; 14: 2580–2596.
    [167] Linsley PS, Schelter J, Burchard J, et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 2007; 27: 2240–2252.
    [168] Selbach M, Schwanhausser B, Thierfelder N, et al. Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58–63.
    [169] Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1–2. Cell 2007; 129: 303–317.
    [170] Guo H, Ingolia NT, Weissman JS, et al. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010; 466: 835–840.
    [171] Mu P, Han YC, Betel D, et al. Genetic dissection of the miR-17-92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev 2009; 23: 2806–2811.
    [172] Wu S, Huang S, Ding J, et al. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3’untranslated region. Oncogene 2010; 29: 2302–2308.
    [173] Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37: 495–500.
    [174] Bartel DP, Chen CZ. Micromanagers of gene expression: the potentially widespreadinfluence of metazoan microRNAs. Nat Rev Genet 2004; 5: 396–400.
    [175] Chin LJ, Ratner E, Leng S, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3’untranslated region increases non-small cell lung cancer risk. Cancer Res 2008; 68: 8535–8540.
    [176] Jiang S, Zhang HW, Lu MH, et al. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res 2010; 70: 3119–3127.
    [177] Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64: 3753–3756.
    [178] Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 2007; 315: 1576–1579.
    [179] Mayr C, Bartel DP. Widespread shortening of 3_ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 2009; 138: 673–684.
    [180] Poliseno L, Salmena L, Zhang J, et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465: 1033–1038.
    [181] Bhattacharyya SN, Habermacher R, Martine U, et al. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 2006; 125: 1111–1124.
    [182] Kim HH, Kuwano Y, Srikantan S, et al. HuR recruits let-7 /RISC to repress c-Myc expression. Genes Dev 2009; 23: 1743–1748.
    [183] Kedde M, Strasser MJ, Boldajipour B, et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 2007; 131: 1273–1286.
    [184] Kedde M, van Kouwenhove M, Zwart W, et al. A Pumilioinduced RNA structure switch in p27–3_ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol 2010; 12: 1014–1020.
    [185] Calin GA, Cimmino A, Fabbri M, et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 2008; 105: 5166–5171.
    [186] Roush S, Slack FJ. The let-7 family of microRNAs. Trends Cell Biol 2008; 18: 505–516.
    [187] Peter ME. Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 2009; 8: 843–852.
    [188] Osada H, Takahashi T. Review article: let-7 and miR-17-92 : small-sized major players in lung cancer development. Cancer Sci 2010; (in press).
    [189] O’Day E, Lal A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res 2010; 12: 201.
    [190] Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 2010; 17: 215–220.
    [191] Finnerty JR, Wang WX, Hebert SS, et al. The miR-15 /107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol 2010; 402: 491–509.
    [192] Mendell JT. miRiad roles for the miR-17-92 cluster in development and disease. Cell 2008; 133: 217–222.
    [193] Uziel T, Karginov FV, Xie S, et al. The miR-17-92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci USA 2009; 106: 2812–2817.
    [194] Poliseno L, Salmena L, Riccardi L, et al. Identification of the miR-106b-25 microRNA cluster as a proto-oncogenic PTENtargeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 2010; 3: ra29.
    [195] Jazbutyte V, Thum T. MicroRNA-21: from cancer to cardiovascular disease. Curr Drug Targets 2010; 11: 926–935.
    [196] Sander S, Bullinger L, Klapproth K, et al. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 2008; 112: 4202–4212.
    [197] Kota J, Chivukula RR, O’Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137: 1005–1017.
    [198] Visone R, Pallante P, Vecchione A, et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 2007; 26: 7590–7595.
    [199] Kim H, Huang W, Jiang X, et al. Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci USA 2010; 107: 2183–2188.
    [200] Cole KA, Attiyeh EF, Mosse YP, et al. A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 2008; 6: 735–742.
    [201] Li N, Fu H, Tie Y, et al. miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett 2009; 275: 44–53.
    [202] Gregory PA, Bracken CP, Bert AG, et al. MicroRNAs as regulators of epithelial–mesenchymal transition. Cell Cycle 2008; 7: 3112–3118.
    [203] Nakada C, Matsuura K, Tsukamoto Y, et al. Genome-wide microRNA expression profiling inrenal cell carcinoma: significant down-regulation of miR-141 and miR-200c. J Pathol 2008; 216: 418–427.
    [204] Du Y, Xu Y, Ding L, et al. Down-regulation of miR-141 in gastric cancer and its involvement in cell growth. J Gastroenterol 2009; 44: 556–561.
    [205] Adam L, Zhong M, Choi W, et al. miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res 2009; 15: 5060–5072.
    [206] Bendoraite A, Knouf EC, Garg KS, et al. Regulation of miR-200 family microRNAs and ZEB transcription factors in ovariancancer: evidence supporting a mesothelial-to-epithelial transition. Gynecol Oncol 2009; 116: 117–125.
    [207] Park SM, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22: 894–907.
    [208] Hu X, Macdonald DM, Huettner PC, et al. A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol Oncol 2009; 114: 457–464.
    [209] Gandellini P, Folini M, Longoni N, et al. miR-205 Exerts tumorsuppressive functions in human prostate through down-regulation of protein kinase Cε. Cancer Res 2009; 69: 2287–2295.
    [210] Schaefer A, Jung M, Mollenkopf HJ, et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 2010; 126: 1166–1176.
    [211] Wiklund ED, Bramsen JB, Hulf T, et al. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer 2010.
    [212] Iorio MV, Casalini P, Piovan C, et al. microRNA-205 regulates HER3 in human breast cancer. Cancer Res 2009; 69: 2195–2200.
    [213] Wu H, Zhu S, Mo YY. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res 2009; 19: 439–448.
    [214] Feber A, Xi L, Luketich JD, et al. MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg 2008; 135: 255–260; discussion, 260.
    [215] Iorio MV, Visone R, Di Leva G, et al. MicroRNA signatures in human ovarian cancer. Cancer Res 2007; 67: 8699–8707.
    [216] Taulli R, Bersani F, Foglizzo V, et al. The muscle-specific microRNA miR-206 blockshuman rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation. J Clin Invest 2009; 119: 2366–2378.
    [217] Negrini M, Calin GA. Breast cancer metastasis: a microRNA story. Breast Cancer Res 2008; 10: 203.
    [218] Ferretti E, De Smaele E, Po A, et al. MicroRNA profiling in human medulloblastoma. Int J Cancer 2009; 124: 568–577.
    [219] Laios A, O’Toole S, Flavin R, et al. Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer 2008; 7: 35.
    [220] Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCNactivated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010; 12: 247–256.
    [221] Sun Y, Wu J, Wu SH, et al. Expression profile of microRNAs in c-Myc induced mouse mammary tumors. Breast Cancer Res Treat 2009; 118: 185–196.
    [222] Kumar MS, Erkeland SJ, Pester RE, et al. Suppression of nonsmall cell lung tumor development by the let-7 microRNA family.Proc Natl Acad Sci USA 2008; 105: 3903–3908.
    [223] Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 2008; 9: 405–414.
    [224] Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 2010; 467: 86–90.
    [225] Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice. Proc Natl Acad Sci USA 2006; 103: 7024–7029.
    [226] O’Connell RM, Rao DS, Chaudhuri AA, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 2008; 205: 585–594.
    [227] Hurst DR, Edmonds MD, Welch DR. Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res 2009; 69: 7495–7498.
    [228] Camps C, Buffa FM, Colella S, et al. hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 2008; 14: 1340–1348.
    [229] Foekens JA, Sieuwerts AM, Smid M, et al. Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci USA 2008; 105: 13021–13026.
    [230] Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92–105.
    [231] Valastyan S, Benaich N, Chang A, et al. Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes Dev 2009; 23: 2592–2597.
    [232] Cano A, Nieto MA. Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition. Trends Cell Biol 2008; 18: 357–359.
    [233] Johnson CD, Esquela-Kerscher A, Stefani G, et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007; 67: 7713–7722.
    [234] Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9: 189–198.
    [235] Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3: 87–98.
    [236] Krutzfeldt J, Kuwajima S, Braich R, et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res 2007; 35: 2885–2892.
    [237] Elmen J, Lindow M, Silahtaroglu A, et al. Antagonism of microRNA-122 in mice by systemically administered LNAantimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 2008; 36: 1153–1162.
    [238] Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004; 279: 52361–52365.
    [239] Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities. RNA 2010.
    [240] Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010; 327: 198–201.
    [241] Meister G, Tuschl T. Mechanisms of gene silencing by doublestranded RNA. Nature 2004; 431: 343-349.
    [242] Yanagida N, Ogawa R, Li Y, et al. Recombinant fowlpox viruses expressing the glycoprotein B homolog and the pp38 gene of Marek’s disease virus. J. Virol 1992; 66:1402–1408.
    [243] Ogawa R, Yanagida N, Saeki S, et al. Recombinant fowlpox viruses inducing protective immunity against Newcastle disease and fowlpox viruses. Vaccine 1990; 8:486–490.
    [244] Livak KJ and Schmittgen TD. Analysis of relative gene expression data using real time quantitative PCR and the 2-ddCT method. Methods 2001; 25:402–408.
    [245] Lupiani B, Lee FL, Cui X, et al. Marek’s disease virus-encoded meq gene is involved intransformation of lymphocytes but is dispensable for replication. Proc. Natl. Acad. Sci. USA 2004; 101:11815–11820.
    [246] Heinrich PC, Behrmann I, Haan S, et al. Principal of interleukin (IL)-6-type cytokine signaling and its regulation. Biochem J 2003; 374:1–20.
    [247] Djeraba AE, Musset JW, Lowenthal DB, et al. Protective effect of avian mylomonocytic growth factor in infection with Marek’s disease virus. J. Virol 2002; 76:1062–1070.
    [248] Ju D. Cao WX, and Acres B. Intratumoral injection of GM-CSF gene encoded recombinant vaccinia virus elicits potent antitumor response in a mixture melanoma model. Cancer Gene Ther 1997; 4:139–149.
    [249] O’Garra A and Murphy KM. From IL-10 to IL-12: how pathogens and their products stimulate APCs to induce T(H)1 development.Nat. Immunol 2009; 10:929–932.
    [250] MacMicking J, Xie QW, and Nathan C. Nitric oxide and macrophage function. Annu. Rev. Immunol 1997; 15:417–421.
    [251] Sunyer T, Rothe L, Jiang XS, et al. Proinflammatory agents, IL-8 and IL-10, upregulate inducible nitric oxide synthase expression and nitric oxide production in avian osteoclast-like cells. J. Biochem 1996; 60:469–483.
    [252] Schat KA and Nair V. Marek’s disease. In Diseases of poultry 2008, 452–514.
    [253] Goodbourn S, Didcock L, and Randall RE. Interferons: cell signaling, immune modulation, antiviral response and virus countermeasures. J. Gen. Virol 2000; 81:2341–2364.
    [254] Wigley P and Kaiser P. Avian cytokine in health and disease. Braz. J. Poult. Sci 2002; 5:1–14.
    [255] Schwarz H, Harlin O, Ohnemus A, et al. Synthesis of IFN-beta by virus-infected chicken embryo cells demonstrated with specific antisera and a new bioassay. J. Interferon Cytokine Res 2004; 24:179–184.
    [256] Xia C, Liu J, Wu ZG, et al. The interferonalpha genes from three chicken lines and its effects on H9N2 influenza viruses. Anim. Biotechnol 2004; 15:77–88.
    [257] Burgess SC, Young JR, Baaten BJG, et al. Marek’s disease is a natural model for lymphomas overexpressing Hodgkin’s disease antigen (CD30). Proc. Natl. Acad. Sci. USA 2004; 101:13879–13884.
    [258] Chiarle R, Podda A, Prolla G, Podack ER, et al. CD30 overexpression enhances negative selection in the thymus and mediates programmed cell death via a Bcl-2-sensitive pathway. J.Immunol 1999; 163:194–205.
    [259] Liu JL, Ye Y, Lee LF, et al. Transformation potential of the herpesvirus oncoprotein meq: morphological transformation, serumindependent growth, and inhibition of apoptosis. J. Virol 1998; 72:388–395.
    [260] Heidari M, Huebner M, Kireev D, et al. Transcriptional profiling of Marek’s disease virus genes during cytolytic and latent infection. Virus Genes 2008; 36: 383–392.
    [261] Karaca G, Anobile J, Downs D, et al. Herpesvirus of turkeys: microarray analysis of host gene responses to infection. Virology 2004; 318: 102–111.
    [262] Liu HC, Cheng HH, Tirunagaru V, et al. A strategy to identify positional candidate genes conferring Marek’s disease resistance by integrating DNA microarrays and genetic mapping. Anim. Genet 2001; 32: 351–359.
    [263] Morgan RW, Sofer L, Anderson AS, et al. Induction of host gene expression following infection of chicken embryo fibroblasts with oncogenic Marek's disease virus. J. Virol 2001; 75: 533–539.
    [264] Sarson AJ, Abdul-Careem MF, Zhou H, et al. Transcriptional analysis of host responses to Marek’s disease viral infection. Viral Immunol 2006; 19: 747–758.
    [265] Sarson AJ, Parvizi P, Lepp D, et al. Transcriptional analysis of host responses to Marek’s disease virus infection in genetically resistant and susceptible chickens. Anim. Genet. 2008; 39: 232–240.
    [266] Doi K, Kojima A, Akiyama Y, et al. Pathogenicity for chicks of line cells from lymphoma of Marek’s disease. Nat. Inst. Anim Health Q. 1976; 16:16–24.
    [267] Hirai K, Yamada M, Arao Y, et al. Replicating Marek’s disease virus (MDV) serotype 2 DNA with inserted MDV serotype I DNA sequences in a Marek’s disease lymphoblastoid cell line MSB1-41C. Arch. Virol. 1990; 114: 153–165.
    [268] Timm T, Li XY, Biernat J, et al. MARKK, a ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. EMBO J 2003; 22(19): 5090–5101.
    [269] Bandyopadhyay S, Chiang CY, Srivastava J, et al. A human MAP Kinase interactome. Nat methods 2010; 7(10): 501–508.
    [270] Dornan D, Eckert M, Wallace M, et al. Interferon regulatory factor 1 binding to p300 stimulates DNA-dependent acetylation of p53. Mol. Cell. Biol 2004; 24 (22): 10083–10098.
    [271] Michael GK, Yupeng H, Michael G, et al. Virus and interferon: a fight for supremacy. Nature Review Immunology 2002; 2(9): 675–687.
    [272] Keeneth JR, Chang SH, Keun IL, et al. Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nature Medicine 2004; 10: 1374–1378.
    [273] Schoenborn J R, Wilson C B. Regulation of interferon-gamma during innate and adaptive immune responses. Adv. Immunol 2007; 96: 41–101.
    [274] Klamp T, Boehm U, Schenk D, et al. A giant GTPase, very large inducible GTPase-1, is inducible by IFNs. J Immunol 2003; 171(3): 1255-1265.
    [275] Bots M, Medema JP. Granzymes at a glance. J. Cell. Sci 2006; 119(24): 5011-5014.
    [276] Guo B, Godzik A, Reed JC. Bcl-G, a novel pro-apoptotic member of the Bcl-2 family. J Biol Chem 2001; 276 (4): 2780–2785.
    [277] Huang MY, Chang HJ, Chung FY, et al. MMP13 is a potential prognostic marker for colorectal cancer. Oncol Rep 2010; 24(5): 1241–1247.
    [278] Inoue A, Takahashi H, Harada H, et al. Cancer Stem-like cells of glioblastoma characteristically express MMP-13 and diplay highly invasive activity. Int J Oncol 2010; 37(5): 1121–1131.
    [279] Lee HS, Lee DC, Park MH, et al. STMN2 is a novel target of beta-catenin/TCF-mediated transcription in human hepatoma cells. Biochem Biophys Res Commun 2006; 345(3): 1059–1067.
    [280] Witter RL, Schat K. In: Diseases of Poultry. 11. Saif YM, editor. Ames, Iowa: Iowa State Press; 2003. Marek's Disease; pp. 407–464.
    [281] Kung H, Xia L, Brunovskis P, et al. Meq: an MDV-specific bZIP transactivator with transforming properties. Curr Top Microbiol Immunol 2001; 255: 245–260.
    [282] Li Q, Chau J, Peter JR, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007; 129(1): 147–161.
    [283] Rask L, Balslev E, Jorgensen S, et al. High expression of miR-21 in tumor stroma correlates with increased cancer cell proliferation in human breast cancer.APMIS 2011; 119(10): 663–673.
    [284] Kranenburg O. The KRAS oncogene: past, present, and future". Biochim. Biophys. Acta 2005; 1756 (2): 81–82.
    [285] Igney FH, Krammer PH. Tumor counterattack: fact or fiction?. Cancer Immunol. Immunother 2005; 54 (11): 1127–1136.
    [286] Gregory AC, Connie LM, Arne N, et al. The mouse fidgetin gene defines a new role for AAAfamily proteins in mammalian development. Nature genetics 2000; 26: 198-202.
    [287] Shu Y, Wang B, Wang J, et al. Identification of methylation profile of HOX genes in extrahepatic cholangiocarcinoma. World J Gastroenterol 2011;17(29): 3407-3419.
    [288] Selamat SA, Galler JS, Joshi AD, et al. DNA methylation changes in atypical adenomatous hyperplasia, adenocarcinoma in situ, and lung adenocarcinoma. PLoS One 2011; 6(6): e21443.
    [289] R?nneberg JA, Fleischer T, Solvang HK, et al. Methylation profiling with a panel of cancer related genes: association with estrogen receptor, TP53 mutation status and expression subtypes in sporadic breast cancer. Mol Oncol 2011; 5(1):61-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700