用户名: 密码: 验证码:
机械力对骶韧带成纤维细胞形态及合成功能的调节
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:女性盆腔器官脱垂( pelvic organ prolapse , POP)是盆底支持组织因退化、损伤等导致肌肉韧带松弛而引发的一类疾病。其病因学还不十分清楚,研究[1]多指向I型胶原、III型胶原、MMP、TIMP等细胞外基质成分的改变,认为细胞外基质重塑引起组织力学性能的下降是该病的关键因素。所以本研究旨在:
     1研究机械力对非POP患者骶韧带成纤维细胞形态及整合素β1(integrinβ1)、Talin、I、III型胶原、基质金属蛋白酶-1(matrix metalloproteinase-1,MMP-1)mRNA表达的调节。
     2研究机械力与细胞外基质重塑的关系。
     3探究机械力在女性盆腔器官脱垂( pelvic organ prolapse , POP)发病机制中的作用。
     方法:
     1研究对象:选取2009年10月-2010年9月在河北医大二院因非POP(恶性肿瘤除外)行子宫切除手术患者的骶韧带15例,平均年龄49.6±4.26岁,产次2.73±1.27次,体重指数24.75±2.44kg/m~2。所有入选者均无结缔组织疾病,术后病理证实为非子宫内膜异位症、非卵巢内分泌性肿瘤等雌激素相关疾病,剔除急慢性盆腔炎和盆腔炎后遗症的患者,剔除有该部位手术史者及近3个月内有雌激素应用史者。
     2取材:经河北医科大学第二医院伦理委员会同意,所有患者签署知情同意书。所取标本为骶韧带近宫颈部分,筋膜外子宫全切时留取约5mm左右的骶韧带组织,4℃冷盒送实验室,整个取材运输过程小于2小时。整个取材过程要求严格无菌。
     3成纤维细胞的原代培养和鉴定:采用胶原酶消化法和组织块法进行骶韧带成纤维细胞的原代培养,倒置相差显微镜进行细胞形态学观察,免疫细胞化学染色进行细胞鉴定。
     4细胞力学实验:采用Flexcercell4000柔性基底拉伸加载系统,选取15例3~4代指数生长期的骶韧带成纤维细胞通过flexcell-4000柔性基底加载系统加载、加力,加载过程在二氧化碳培养箱内进行。实验样本培养于特制的一次性六孔BioFlex培养板上,材质为可变形的硅胶柔性膜,其上包被有collagen I。加载程序由Flexcercell4000计算机软件自动控制。加载参数:幅度10%,正弦波,0.5Hz,加载时间分为0、4、15、24h,以不加力0小时为对照组,卸载后立即提取RNA,采用荧光实时定量PCR测量机械力对integrinβ1、talin、I、III型胶原、基质金属蛋白酶-1(matrix metalloproteinase-1,MMP-1)mRNA表达量的影响。
     结果:
     1所培养细胞为成纤维细胞,光镜下细胞以梭形为主,也可见到不规则三角形、多角形等各种形状的细胞,并彼此连接成网状。免疫组织化学染色中间丝波形蛋白(vimentin)阳性,细胞纯度90.4%,平滑肌肌动蛋白(α-SMA)染色约8.3%阳性率,角蛋白(cytokeratin)染色阴性。
     2应力作用后,细胞的形态和伸展方向发生改变;拉伸前细胞形态多样,梭形为主,也可见到不规则三角形、多角形等各种形状的细胞,并彼此连接成网状,向各个方向伸展;拉伸4h、15h、24h后细胞均为长梭形,并垂直于最大应变方向取向,以24小时最明显。
     3荧光实时定量PCR结果:应力作用下,integrinβ1 mRNA 4h、15h、24h表达量(18.822±0.500, 32.527±2.559, 40.357±2.140)较0h(1.008±0.059)显著升高,各组间差异均有统计学意义,p<0.01;talin mRNA 4h、15h、24h表达量(109.804±4.861, 106.574±35.477, 863.206±44.298)较0小时(1.009±0.468)显著升高,4h、15h差异无统计学意义,p>0.05,余各组间差异均有统计学意义,p<0.01;I型胶原mRNA 4h、15h表达量(0.753±0.075, 0.701±0.023)较0h(1.000±0.129)下降,差异有统计学意义,p<0.01,加载力24hmRNA表达量(1.113±0.049)回升,与0h差异无统计学意义,p>0.05;III型胶原mRNA 4h、15h、24h表达量(4.792±0.036, 6.146±0.594, 5.021±0.594)较0h(1.000±0.249)显著升高,24h与4h差异无统计学意义,余各组间差异有统计学意义,p<0.01;MMP-1mRNA 4h、15h、24h表达量(6.233±0.651, 23.700±0.900, 20.133±0.751)较0h(1.000±0.100)升高,各组间差异有统计学意义,p <0.01。
     结论:
     1一定范围的机械应力可以改变细胞的形态和伸展方向,并引起integrinβ1、talin mRNA合成的持续性增加,而I型胶原mRNA合成先下降,但在加载力24h后,恢复至原来水平,III型胶原、MMP-1 mRNA合成先增加,但在加载力24h后下降。
     2盆底组织细胞外基质重塑是对机械力的适应性反应。
     3机械力在POP的发病机制中有一定的作用。
Objective:
     1 To study regulation of mechanical stretch on the morphology and integrinβ1, talin and extracellular matrix mRNA expression of fibroblasts derived from human uterosacral ligament who are not suffering from pelvic organ prolapse.
     2 To investigate the relationship between the mechanical stretch and the extracellular matrix remodeling.
     3 To investigate the effects of mechanical stretch on the pelvic floor dysfunction.
     Methods :
     1 The subjects: 15 Patients without pelvic organ prolapse and malignant tumors who underwent hysterectomy surgery in the Obstetric and Gynecological Department of the Second Hospital of Hebei Medical University from October 2009 to September 2010 were recruited in this study. The average age of the patients is 49.6±4.26 years old, the average time of parity is 2.73±1.27,the average body mass index is 24.75±2.44kg/m~2. All the recruited women were not suffer from connective tissue diseases and Pathologically confirmed non-endometriosis, non-estrogen-related ovarian tumors. Excluding acute and chronic complications in patients with pelvic inflammatory disease .Excluding those patients who had the surgery in the uterosacral ligamental site and have a history of estrogen application within the past 3 months.
     2 specimen: After obtaining the agreement of the Ethics Committee of The Second Hospital of Hebei Medical University , all patients signed informed consent. The specimens were taken from part of the sacral ligament near the cervix, about 5mm or so sacral ligamental specimens were obtained in the hysterectomy of extra fascia, keep fresh in 4℃cold boxes and sent to the laboratory immediately, the whole process is less than 2 hours and requires strict sterile.
     3 Primary cultured and identification of the fibroblasts: Fibroblasts of sacral ligament derived from old wemen were cultured by collagenase digestion and tissue inoculation method, the cultured cells were identified by morphology with light microscope and the cells’certain antigens were detected with immunocytochemical method.
     4 Experimental methods for mechanically stimulating the cells in vitro: Using Flexcercell4000 tension system, fibroblasts of 3~5 generations of exponential phase of growth derived from15 cases were stretched for 0,4,15,24 hours, using 0 hours as the control group. The loading process is in the incubator-CO2 . Experimental samples were cultured in a special disposable BioFlex plates which is made of flexible silicone membrane that can be deformed and it is covered by collagen I. The Loading procedure is automatically controlled by the Flexcercell4000 software. Loading parameters: amplitude 10%, sine wave, 0.5Hz. Total RNA was extracted from the fibroblasts immediately after unloading and the expression of mRNA of integrinβ1, talin, CollagenⅠ, CollagenⅢand matrix metalloproteinase-1 were measured by Real-time fluorescence quantitative PCR.
     Results:
     1 The fibroblasts show spindle shape mainly and can also show the irregular triangles, polygons and other shapes in Light microscope. The cells connected to each other and form a network structure. The vimentin is 90.4% positive in immunohistochemical staining , smooth muscle actin (α-SMA) is about 8.3% positive and keratin (cytokeratin) is negative.
     2 In response to mechanical stretch, the morphology and orientation of the uterosacral ligament fibroblasts were changed. The morphology of the fibroblasts is variety from spindle (mainly)to the irregular triangles, polygons and other shapes before stretching. The cells connected to each other and form a network structure, stretched in all directions. After stretched for 4h, 15h, 24h, the shape of the fibroblasts are all spindle and the direction of the fibroblasts perpendicular to the orientation of the maximum strain , the changes of 24 hours’stretching is the most obvious.
     3 In response to mechanical stretch, the synthetic function of the uterosacral ligament fibroblasts were changed . The integrinβ1 mRNA for 4,15,24 hours’stretch (18.822±0.500, 32.527±2.559,40.357±2.140) were up regulated compared with 0 hour(1.008±0.059), P<0.01. The expressions of talin mRNA for 4,15,24 hours’stretch (109.804±4.861, 106.574±35.477, 863.206±44.298) were up regulated compared with 0 hour(1.009±0.468), except 4h & 15h, the other groups werestatistically different ,p<0.01.collagen I mRNA for 4,15 hours’stretch(0.753±0.075, 0.701±0.023)were down regulated compared with 0 hour (1.000±0.129), P<0.01, but for 24 hour’stretch , the mRNA expression (1.113±0.049) of I-type collagen were restored to the level of 0 hours. The expressions of collagenⅢmRNA for 4,15,24 hours’stretch (4.792±0.036, 6.146±0.594, 5.021±0.594) were up regulated compared with 0 hour(1.008±0.249), except 4h & 24h ,the other groups were statistically different, P<0.01. MMP-1mRNA for 4,15,24 hours’stretch (6.233±0.651, 23.700±0.900, 20.133±0.751)were up regulated compared with 0 hour (1.000±0.100), P<0.01.
     Conclusions:
     1 The mechanical stress can change morphology and orientation of the fibroblasts, and promote the synthesis of mRNA of integirnβ1 and talin continuously. At the beginning of Loading, the expression of mRNA of I collagen decreased, then restored to its original level after 24 hours’stretch. The syntheses of CollagenⅢand MMP-1 were increased at first, but decreased after 24 hours’stretch.
     2 Extracellular matrix remodeling in pelvic floor is an adaptive response to mechanical force.
     3 Mechanical force maybe play some role in the pathogenic mechanism of POP.
引文
1 Kerkhof MH, Hendriks L, Br?lmann HA. Changes in connective tissue in patients with pelvic organ prolapse--a review of the current literature[J]. Int Urogynecol J Pelvic Floor Dysfunct. 2009,20(4):461-474
    2单淑芝,石彬.盆底功能障碍性疾病与相关生物力学研究进展[J].中国实用妇科与产科杂志,2010,26(4):304-306
    3 Mammoto T, Ingber DE. Mechanical control of tissue and organ development[J]. Development. 2010,137(9):1407-1420
    4 Ingber DE. Tensegrity-Based Mechanosensing from Macro to Micro [J]. Prog Biophys Mol Biol. 2008,97(2-3):163-79
    5 Roberts GC, Critchley DR. Structural and biophysical properties of the integrin-associated cytoskeletal protein talin[J]. Biophys Rev. 2009,1(2): 61-69
    6冯元帧.生物力学[M]。北京:科学出版社,1983:129-130
    7 Chiquet M, Renedo AS, Huber F, et al.How do fibroblasts translate mechanical signals into changes in extracellular matrix production? [J] . Matrix Biol. 2003,22(1):73-80
    8 Mammoto A, Ingber DE. Cytoskeletal control of growth and cell fate switching[J]. Curr Opin Cell Biol. 2009,21(6):864-870
    9 Fuseler JW, Millette CF, Davis JM, et al. Fractal and Image Analysis of Morphological Changes in the Actin Cytoskeleton of Neonatal Cardiac Fibroblasts in Response to Mechanical Stretch[J] . Microsc Microanal. 2007,13(2):133-143
    10 Kaneko D, Sasazaki Y, Kikuchi T,et al. Temporal effects of cyclic stretching on distribution and gene expression of integrin and cytoskeleton by ligament fibroblasts in vitro[J]. Connect Tissue Res. 2009,50(4):263 -269
    11 Tetsunaga T, Furumatsu T, Abe N, et al. Mechanical stretch stimulates integrin alphaVbeta3-mediated collagen expression in human anterior cruciate ligament cells[J]. J Biomech. 2009,42(13):2097-2103
    12 Kaneko D, Sasazaki Y, Kikuchi T,et al. Temporal effects of cyclic stretching on distribution and gene expression of integrin and cytoskeleton by ligament fibroblasts in vitro[J]. Connect Tissue Res. 2009,50(4): 263 -269
    13 Zhang L, Kahn CJ, Chen HQ, et al. Effect of uniaxial stretching on rat bone mesenchymal stem cell: Orientation and expressions of collagen types I and III and tenascin-C [J]. Cell Biol Int. 2008,32(3):344-352
    14 Johnson RB, The bearable lightness of being: bones, muscles, and space flight[J]. Anat. Rec. 1998,253 (1): 24-27
    15 Ewies AA, Elshafie M, Li J,et al. Changes in transcription profile and cytoskeleton morphology in pelvic ligament fibroblasts in response to stretch: the effects of estradiol and levormeloxifene[J]. Mol Hum Reprod. 2008,14(2):127-135
    16 Katsumi A, Naoe T, Matsushita T, et al. Integrin activation and matrix binding mediate cellular responses to mechanical stretch[J]. J Biol Chem. 2005 ,280(17):16546-16549
    17孙智晶,郎景和,朱兰,等.胶原状态与压力性尿失禁的病因学研究[ J ].中国妇产科临床杂志, 2004,5(1):6 - 9
    18 Goepel C, Johanna Kantelhardt E, Karbe I, et al. Changes of glycoprotein and collagen immunolocalization in the uterine artery wall ofpostmenopausal women with and without pelvic organ prolapse. Acta Histochem. 2010 Feb 26. [Epub ahead of print]
    19周柔丽.医学细胞生物学(第二版)[M].北京,北京大学出版社,2006, 526
    1 Mammoto T, Ingber DE. Mechanical control of tissue and organ development[J]. Development. 2010 ,137(9):1407-1420
    2单淑芝,石彬.盆底功能障碍性疾病与相关生物力学研究进展[J].中国实用妇科与产科杂志,2010,26(4):304-306
    3 Kerkhof MH, Hendriks L, Br?lmann HA. Changes in connective tissue in patients with pelvic organ prolapse--a review of the current literature[J]. Int Urogynecol J Pelvic Floor Dysfunct. 2009,20(4):461-474
    4 Ingber DE. The architecture of life [J].Scientific American, 1998, 278(1):30-39
    5 Ingber DE.Tensegrity-Based Mechanosensing from Macro to Micro[J]. Prog Biophys Mol Biol. 2008,97(2-3): 163-179
    6 Liedl T, H?gberg B, Tytell J,et al. Self-assembly of three-dimensional prestressed tensegrity structures from DNA[J]. Nat Nanotechnol. 2010,5 (7):520-524
    7周柔丽.医学细胞生物学(第二版) [M].北京,北京大学医学出版社. 2006,514
    8 Dike LE, Chen CS, Mrksich M et al. Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates[J]. In Vitro Cell Dev Biol Anim. 1999,35(8):441-448
    9 Banerjee SD, Cohn RH, Bernfield MR. Basal lamina of embryonic salivary epithelia. Production by the epithelium and role in maintaining lobular morphology[J]. J Cell Biol. 1977,73(2):445-463
    10 Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis[J]. Microvasc Res. 1977,14(1):53-65
    11周柔丽.医学细胞生物学(第二版)[M].北京,北京大学出版社,2006,231
    12 Nelson CM. Geometric control of tissue morphogenesis[J]. BiochimBiophys Acta. 2009 ,1793(5):903-910
    13 Singh K, Reid WM, Berger LA. Magnetic resonance imaging of normal levator anianatomy and function[J]. Obstet Gynecol. 2002,99(3):433-438
    14 Hjartardóttir S, Nilsson J, Petersen C, et al. The female pelvic floor: a dome--not a basin[J]. Acta Obstet Gynecol Scand. 1997,76(6):567-571
    15 Petros PP撰著,罗来敏主译.女性骨盆底[M].上海,上海交通大学出版社. 2007,1-11
    16 Harvey MA, Johnston SL, Davies GA. Mid-trimester serum relaxin concentrations and post-partum pelvic floor dysfunction[J]. Acta Obstet Gynecol Scand. 2008,87(12):1315 -1321
    17 Ashton-Miller JA, Delancey JO. On the Biomechanics of Vaginal Birth and Common Sequelae[J]. Annu Rev Biomed Eng. 2009, 11: 163–176
    18 House M, Kaplan DL, Socrate S. Relationships between Mechanical Properties and Extracellular Matrix Constituents of the Cervical Stroma during Pregnancy[J]. Semin Perinatol. 2009,33(5): 300–307
    19 Mammoto A, Ingber DE. Cytoskeletal control of growth and cell fate switching[J]. Curr Opin Cell Biol. 2009,21(6):864-870
    20冯元帧.生物力学[M].北京:科学出版社,1983:103
    21 Lowder JL, Debes KM, Moon DK, HowdenN, Abramowitch SD, Moalli PA. Biomechanical adaptations of the rat vagina and supportive tissues in pregnancy to accommodate delivery[J].Obstet Gynecol 2007,109(1):136 -143
    22 Rahn DD; Ruff MD; Brown SA; et al. Biomechanical properties of the vaginal wall: effect of pregnancy, elastic fiber deficiency, and pelvic organ prolapse[J]. Am J Obstet Gynecol. 2008,198(5):590.e1-590.e6
    23 Feola A, Moalli P, Alperin M, et al. Impact of Pregnancy and Vaginal Delivery on the Passive and Active Mechanics of the Rat Vagina. Ann Biomed Eng. 2010 Sep 8. [Epub ahead of print]
    24 Alperin M, Feola A, Duerr R, et al. Pregnancy- and delivery-induced biomechanical changes in rat vagina persist postpartum[J]. Int Urogynecol J Pelvic Floor Dysfunct. 2010 ,21(9):1169-1174
    25柯桂珠,宋岩峰,陈自谦等.盆底器官脱垂患者肛提肌的动态MR I研究[J].现代妇产科进展2008, 17(7): 525-529
    26 Mens J, Hoek van Dijke G, Pool-Goudzwaard A, et al. Possible harmful effects of high intra-abdominal pressure on the pelvic girdle[J] .Journal of Biomechanics, 2006, 39( 4):627-635
    27李晓娟,石彬,单淑芝.盆底功能障碍性疾病阴道壁成纤维细胞受力后的生物学变化[J].现代妇产科进展.2011,7(待发)
    28 Goepel C, Johanna Kantelhardt E, Karbe I, et al. Changes of glycoprotein and collagen immunolocalization in the uterine artery wall of postmenopausal women with and without pelvic organ prolapse. Acta Histochem. 2010 Feb 26. [Epub ahead of print]
    29 Ewies AA, Elshafie M, Li J,et al. Changes in transcription profile and cytoskeleton morphology in pelvic ligament fibroblasts in response to stretch: the effects of estradiol and levormeloxifene[J]. Mol Hum Reprod. 2008,14(2):127-135
    30单淑芝,石彬,吴燕菁,等.盆底功能障碍性疾病骶韧带成纤维细胞粘弹性研究[J].中国实用妇科与产科杂志.2011,7 (待发)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700