用户名: 密码: 验证码:
颈椎后纵韧带骨化症发病机制的比较蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的颈椎后纵韧带骨化症(ossification of posterior Iongitudinal ligament,OPLL)是临床上常见的脊柱疾患,发病率可高达20%~34%。OPLL的致瘫几率显著高于其他颈椎退变性疾病,其原因包括缺乏有效的早期筛选和诊断方法、自然史不明无法确定手术时机、术后骨化物持续生长等。近年来对其发病机制的研究取得了一些成果,如COL6A1限制性片段多态性与OPLL相关、应力因素是骨化灶进展的重要局部因素等,但其发病机制仍不明确。本研究采用差异蛋白质组学方法,以荧光差异凝胶电泳(differential gel electrophoresis,DIGE)及质谱技术筛选并鉴定OPLL患者颈椎后纵韧带组织中差异表达蛋白质,以期寻找OPLL发生、发展过程中特异的蛋白标记物,为临床OPLL筛查和诊断、预后判断、寻找治疗药物靶点、了解OPLL发生发展的分子机制提供研究基础。
     方法以颈椎前路椎体次全切除术中获得的OPLL后纵韧带组织和外伤患者正常后纵韧带组织做为研究对象。液氮研磨、超声破碎抽提组织全息蛋白质样本,普通双向凝胶电泳(two-dimensional electrophoresis,2-DE)分离,银染显色鉴定蛋白质样本质量。以Cy3、Cy5及Cy2荧光素标记的OPLL颈椎后纵韧带组织及健康外伤患者韧带组织的蛋白质标本各50ug进行2-DE,以所有样本等量混合物50ug做为内参,获得其荧光差异表达图谱,DeCyder 6.5图谱分析软件(GE healthcare公司)进行胶内、生物学差异分析,确定表达存在差异的蛋白质点。加大上样量同法获得普通2-DE制备胶,手工切胶后酶解获得肽段样本。采用基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption ionization-time-of-flight mass spectrum,MALDI-TOF MS)或液相色谱串联质谱技术(Liquid chromatography-Mass spectrum,LC/MS)进行鉴定并分析差异表达的蛋白质点。文献回顾总结各差异蛋白的基本信息、分子功能、细胞分布及其参与的生命过程,推测其在OPLL发病机制中的可能作用。对有深入研究价值的差异表达蛋白质采用实时荧光定量聚合酶链式反应(Real-TimeQuantitive Polymerase Chain Reaction RT-PCR)技术从mRNA水平进一步验证DIGE及质谱结果准确性。
     结果超声破碎后行普通2-DE获得10张2-DE图谱,图谱重复性好,蛋白质抽提、分离情况及电泳条件满意。行荧光差异双向凝胶电泳获得4张荧光胶图及12张模拟胶图,每张胶图上共约1100个蛋白质点。胶间比较(Biological VariationAnalysis,BVA)共筛选出50个差异表达蛋白质点,其中8个蛋白质点在OPLL韧带组织中上调,42个蛋白质点下调;最大上调比例为2.74倍;最大下调比例为7.42倍。手工切胶获得45个蛋白质点的肽段样本,分别采用MALDI-TOF MS、MALDI-TOF-TOF MS和高效液相色谱联用质谱,鉴定为28个蛋白质或肽段。文献回顾后根据蛋白质功能的不同,将其分为7类:转运和结合蛋白、代谢酶类、血纤维蛋白、免疫球蛋白、细胞结构蛋白、信号蛋白和未知功能蛋白。其中Ⅵα1的编码基因COL6A1在近年对孪生子和OPLL家系的研究中已确定为OPLL发病的重要危险因素,本研究首次确认其在蛋白水平存在差异表达;与胶原蛋白代谢相关的酶PRELP在OPLL韧带组织中表达亦有减少,该酶的功能目前尚不完全明确;OGN与骨形态发生蛋白(bone morphogenetic protein,BMP)存在协同关系,后者目前已经发现的最重要的诱导成骨因子;N-RAP具有应力传导的作用,而应力已被证实是OPLL病情进展的重要局部因素,N-RAP有可能在力学信号转化为生物信号的过程中发挥一定作用。RT-PCR验证实验发现碳酸酐酶(carbonic anhydraseⅠ,CA1)、烟酰胺腺嘌呤二核苷酸依赖的激素脱氢酶(NAD(P)dependent steroid dehydrogenase-like,NDSHL),骨生成诱导因子(osteoglycin OG,OGN),Ⅵ型胶原α链(alpha-1 collagenⅥ,Ⅵα1)在OPLL韧带组织中mRNA拷贝数低于正常韧带组织,但CA1、OGN的结果差异无统计学意义。胆绿素还原酶B(biliverdin reductase B,BVRB),伴肌动蛋白相关锚定蛋白(nebulin-related anchoring protein,N-RAP)在OPLL韧带组织中mRNA拷贝数高于正常韧带组织,但BVRB的结果差异无统计学意义。另外,本研究发现一个假设蛋白和一个未命名蛋白在胃癌组织中表达上调,它们可能与OPLL的发生、发展有关。
     结论本研究探索了后纵韧带组织全蛋白质的抽提方法,成功制备了OPLL韧带组织和正常后纵韧带组织的双向凝胶,初步建立了颈椎后纵韧带组织的2-DE参考凝胶图谱。应用DIGE技术探索了OPLL的发病机制,建立了定量比较蛋白质组学的技术路线。以往OPLL发病机制研究停留在分子遗传学领域或针对个别蛋白质的局限性,本研究首次把定量比较蛋白质组学应用于OPLL发病机制的研究,为临床相关疾病的同类研究进行了技术探索。DIGE实验筛选出Ⅵα1表达存在差异,与既往研究吻合,在一定程度上验证了DIGE实验的准确性。在DIGE筛选出的差异表达蛋白质中可能存在与OPLL发生、发展相关的重要蛋白,为进一步深入研究OPLL发病机制提供了研究基础。初步的鉴定研究提示,胶原蛋白的表达和代谢异常在OPLL的发生发展过程中有重要作用。RT-PCR实验中,OGN、BVRB实验结果与DIGE和质谱实验结果不符合,考虑有可能是样本量、实验误差或RNA-蛋白之间的不一致性导致。下一步,我们将对质谱鉴定的差异蛋白进行免疫组化、ELISA等实验以及RNA干扰,进一步验证其表达变化,深入研究这些蛋白在OPLL的发生、发展过程中可能的作用,为发现诊断及预后判断的蛋白标志物,寻找治疗药物靶点,了解OPLL发生、发展过程提供了理论依据。
Objective Ossification of the posterior longitudinal ligament (OPLL) is considered as enthesopathy or as inflammation of the tendinous and ligamentous attachments to the bone. The incidence of OPLL in Aisa old people could be 20%-34%. Hormonal and metabolic factors or hereditary factors have been proposed to involved during pathologic ligamentous ossification of the OPLL. However, the mode of inheritance and the etiology for OPLL are still obscure. There are still no definitive biomarks of OPLL that might be used to achieve an early diagnosis. To find an easier and simpler diagnostic method, to find the pathogenic proteins of OPLL, and provide evidence for pharmacological research for OPLL, we analyzed cervial posterior longitudinal ligament for the alternation in their proteomes.
     Methods Cervial posterior longitudinal ligaments were collected from 5 OPLL patinets and 5 normal subjects without OPLL. Proteins lysates were extracted after the ligaments were disrupted by abrading and ultrasonic. The internal standard is created by pooling an aliquot of all samples and labelling it with CyDye DIGE fiuors Cy2. Protein lysate of OPLL Samples and noraml samples were labeled randomly with CyDye DIGE Fiuors Cy3 or Cy5. The labeled samples together with internal standard were seperated using two-dimensional gel electrophoresis (2-DE). Gels were scanned and analyzed by Typhoon Variable Mode Imagers. The protein spots which had change in intensity were marked, and picked by hand in another gel. Digested peptides were identified by MALDI-TOF MS, MALDI-TOF-TOF MS or LC/MS. Literature review was performed to understand the function, localization of special protein or peptide. Real time-polymerase chain reaction (RT-PCR) had also been done to validate the results of differential gel electrophoresis.
     Results Fifty protein spots were detected that differentailly expressed between OPLL samples and normal samples. Forty-five of them were picked up, of which twenty-eight proteins or peptides were identified. Differential expression of 6 proteins, including carbonic anhydrase I, NAD(P) dependent steroid dehydrogenase-like, osteoglycin OG, alpha-1 collagen VI, biliverdin reductase B, and nebulin-related anchoring protein, was examined by RT-PCR tests, and 3 of them was validated.
     Conclusions Methods developed by our research for sample preparation, proteomic profiling, protein identification, and validation uncovered several differentially expressed proteins for OPLL. Baesd on the study result, we now conclude that 6 proteins, alone or in combination, were putative disease biomarkers. One of the imitations faced was the relatively small number of samples with sufficient protein contents to be investigated by 2-DE in combination with protein identification by MS.
引文
1.Hiraoka S.Ossification of the ligamentum flavum at intervertebral foramena[J].J Jpn Surg,1955,3(1):6-11.
    2.Maigne JY,Ayral X,Guerin—Surville H.Frequency and size of ossifications in the caudal attachments of the ligamentum flavum of the thoracic spine. Role of rotatory strains in their development: an anatomic study of 121 spines[J]. Surgical Radiologic Anatomy, 1992, 14(2): 119-124.
    3. Kudo S, Ono M, Russell WJ. Ossification of thoracic ligamenta flava[J]. AJR. 1983,141(1): 117-121
    4. Yonemori K, Imamura T, Ishidou Y, et al. Bone morphogenetic protein receptors and activin receptors are highly expressed in ossified ligament tissues of patients with ossification of the posterior longitudinal ligament. Am J Pathol. 1997; 150(4): 1335-1347.
    5. Nagasawa H, Takahashi S, Kobayashi A, et al. Effect of retinoic acid on murine preosteoblastic MC3T3-E1 cells. J Nutr Sci Vitaminol (Tokyo). 2005;51(5):311-8.
    6. Sakou T, Matsunaga S, Koga H. Recent progress in the study of pathogenesis of ossification of the posterior longitudinal ligament. J Orthop Sci. 2000;5(3):310-315.
    7. Sakou T, Taketomi E, Matsunaga S, et al. Genetic study of ossification of the posterior longitudinal ligament in the cervical spine with human leukocyte antigen haplotype. Spine 16:1249-1252, 1991.
    8. Taketomi E, Sakou T, Matsunaga S, et al. Family study of a twin with ossification of the posterior longitudinal ligament in the cervical spine. Spine 17:S55-S56,1992.
    9. Yamaguchi M: Genetic study on OPLL in the cervical spine with HLA haplotype [in Japanese]. Nippon Seikeigeka Gakkai Zasshi:1991; 65:527-535.
    10. Iwasaki K, Furukawa KI, Tanno M, et al. Uni-axial cyclic stretch induces Cbfal expression in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. Calcif Tissue Int. 2004;74(5):448457.
    11. Tanno M, Furukawa KI, Ueyama K, et al. Uniaxial cyclic stretch induces osteogenic differentiation and synthesis of bone morphogenetic proteins of spinal ligament cells derived from patients with ossification of the posterior longitudinal ligaments.Bone. 2003;33(4):475-484.
    12. Ohishi H, Furukawa K, Iwasaki K, et al. Role of prostaglandin 12 in the gene expression induced by mechanical stress in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. J Pharmacol Exp Ther. 2003;305(3):818-824.
    13. Goding JW, Grobben B, Siegers H. Biochim Biophys Acta. Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. 2003;1638(1):1-19.
    14. Tahara M, Aiba A, Yamazaki M, et al. The extent of ossification of posterior longitudinal ligament of the spine associated with nucleotide pyrophosphatase gene and leptin receptor gene polymorphisms. Spine. 2005;30(8):877-880.
    15.Koga H,Sakou T,Taketomi E,et al.Genetic mapping of ossification of the posterior longitudinal ligament of the spine.Am J Hum Genet.1998;62(6):1460-7.
    16.Kong Q,Ma X,Li F,et al.COL6A1 polymorphisms associated with ossification of the ligamentum flavum and ossification of the posterior longitudinal ligament.Spine.2007;32(25):2834-8.
    17.Sato R,Uchida K,Kobayashi S,et al.Ossification of the posterior longitudinal ligament of the cervical spine:histopathological findings around the calcification and ossification front.J Neurosurg Spine.2007;7(2):174-83.
    18.Tsukahara S,Miyazawa N,Akagawa H,et al.COL6A1,the candidate gene for ossification of the posterior longitudinal ligament,is associated with diffuse idiopathic skeletal hyperostosis in Japanese.Spine.2005;30(20):2321-2324.
    19.Horikoshi T,Maeda K,Kawaguchi Y,et al.A large-scale genetic association study of ossification of the posterior longitudinal ligament of the spine.Hum Genet.2006;119(6):611-6.
    20.Yamamoto Y,Furukawa K,Ueyama K,et al.Possible roles of CTGF/Hcs24 in the initiation and development of ossification of the posterior longitudinal ligament.Spine.2002;27(17):1852-1857.
    21.Song J,Mizuno J,Hashizume Y,et al.Immunohistochemistry of symptomatic hypertrophy of the posterior longitudinal ligament with special reference to ligamentous ossification.Spinal Cord.2006;44(9):576-81.
    22.Kon T,Yamazaki M,Tagawa M,et al.Bone morphogenetic protein-2 stimμlates differentiation of cμtltured spinal ligament cells from patients with ossification of the posterior longitudinal ligament.Calcif Tissue Int.1997;60(3):291-296.
    23.Yonemori K,Imamura T,Ishidou Y,et al.Bone morphogenetic protein receptors and activin receptors are highly expressed in ossified ligament tissues of patients with ossification of the posterior longitudinal ligament.Am J Pathol.1997;150(4):1335-1347.
    24.Kawaguchi Y,Furushima K,Sμgimori K,et al.Association between polymorphism of the transforming growth factor-beta 1 gene with the radiologic characteristic and ossification of the posterior longitudinal ligament.Spine.2003;28(13):1424-6.
    1.Anderson NG,Anderson NL.The human protein index.JAMA.1981;246(22):2620-1.
    2.Abbott A.And now for the proteome.Nature.2001;409(6822):747.
    3.Service RF.Proteomics.High-speed biologists search for gold in proteins.Science.2001;294(5549):2074-7.
    4.Boguski MS,McIntosh MW.Biomedical informatics for proteomics.Nature.2003;422(6928):233-7.
    5.Hanash S.Disease proteomics.Nature.2003;422(6928):226-32.
    6.Sali A,Glaeser R,Earnest T,et al.From words to literature in structural proteomics.Nature.2003;422(6928):216-25.
    7.Phizicky E,Bastiaens PI,Zhu H,et al.Protein analysis on a proteomic scale.Nature.2003;422(6928):208-15.
    8.Aebersold R,Mann M.Mass spectrometry-based proteomics.Nature.2003;422(6928):198-207.
    9.Klose J,Kobalz U.Two-dimensional electrophoresis of proteins:an updated protocol and implications for a functional analysis of the genome.Electrophoresis.1995;16(6):1034-59.
    10.David JS,Gilbert SO,Thomas WB,et al.Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study.Nature Biotech.2006;24(3):333-338.
    11.Leonard JF,Caemen LH,Yanling Z,et al.A mammalian organelle map by protein correlation profiling.Cell.2006;125:187-199.
    12.Proteomics' new order.[Editorial.]Nature.2005;437(7056):169-170.
    13.Unlu M,Morgan ME,Minden JS.Difference gel electrophoresis:a single gel method for detecting changes in protein extracts.Electrophoresis.199;18(11):2071-7.
    14.Mayrhofer C,Krieger S,Allmaier G,et al.DIGE compatible labelling of surface proteins on vital cells in vitro and in vivo.Proteomics.2006;6(2):579-85.
    15.Yuan X,Desiderio DM.Proteomics analysis of prefractionated human lumbar cerebrospinal fluid.Proteomics.2005;5(2):541-50.
    1.Conrads KA,Yi M,Simpson KA,et al.A combined proteome and microarray investigation of inorganic phosphate-induced pre-osteoblast cells.Mol Cell Proteomics.2005;4(9):1284-96.
    2.Kubota K,Wakabayashi K,Matsuoka T.Proteome analysis of secreted proteins during osteoclast differentiation using two different methods:two-dimensional electrophoresis and isotope-coded affinity tags analysis with two-dimensional chromatography.Proteomics.2003;3(5):616-26.
    3.Ruiz-Romero C,Lopez-Armada MJ,Blanco FJ.Proteomic characterization of human normal articμlar chondrocytes:a novel tool for the study of osteoarthritis and other rheumatic diseases.Proteomics.2005;5(12):3048-59.
    4.Shimode K,Iwasaki N,Majima T,et al.Bone marrow stromal cells act as feeder cells for tendon fibroblasts throμgh soluble factors.Tissue Eng.2007;13(2):333-41.
    5.Giometti CS,Anderson NG Muscle protein analysis.Ⅲ.Analysis of solubilized frozen-tissue sections by two-dimensional electrophoresis.Clin Chem.1981 Nov;27(11):1918-21.
    6.Yan JX,Harry RA,Wait R,et al.Separation and identification of rat skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry.Proteomics.2001;1(3):424-34.
    7.Sanchez JC,Chiappe D,Converset V,et al.The mouse SWISS-2D PAGE database:a tool for proteomics study of diabetes and obesity.Proteomics.2001;1(1):136-63.
    8.Isfort RJ.Proteomic analysis of striated muscle.J Chromatogr B Analyt Technol Biomed Life Sci.2002;771(1-2):155-65.
    9.柏干苹,周丽娜,贺伟峰,等。人骨关节炎滑膜成纤维细胞差异蛋白质谱初步分析。第三军医大学学报。2006;28(11):1221-3.
    10.Gorg A,Weiss W.Two-dimensional electrophoresis with immobilized pH gradients.In:Rabilloud T.Proteome Research:Two-dimensional Gel Electrophoresis and Identification Methods.New York:Springer,2000.65-68.
    11.刘建仁,樊粤光,王海彬等。大鼠骨组织蛋白质样本提取方法的建立。厦门大学学 报:自然科学版. 2005,44(3):420-424.
    12. Rabilloud T. Use of thiourea to increase the solubility of membrane proteins in two-dimensional electrophoresis. Electrophoresis. 1998 ;19(5):758-60.
    13. Pastorelli R, Carpi D, Airoldi L, et al. Proteome analysis for the identification of in vivo estrogen-regulated proteins in bone. Proteomics. 2005;5(18):4936-45.
    14. Fan Y, Liu J, Wang S, et al. Functional proteome of bones in rats with osteoporosis following ovariectomy. Life Sci. 2005;76(25):2893-901.
    15. Rydziel S, Delany AM, Canalis E. AU-rich elements in the Collagenase 3 mRNA mediate stabilization of the transcript by cortisol in osteoblasts. J Biol Chem. 2004;279(7):5397-404.
    16. Olkku A, Bodine PV, Linnala-Kankkunen A, et al. Glucocorticoids induce glutamine synthetase expression in human osteoblastic cells: a novel observation in bone. Bone. 2004;34(2):320-9.
    17. Yamagiwa H, Sarkar G, Charlesworth MC, et al. Two-dimensional gel electrophoresis of synovial fluid: method for detecting candidate protein markers for osteoarthritis. J Orthop Sci. 2003;8(4):482-90.
    18. Sinz A, Bantscheff M, Mikkat S, et al. Mass spectrometric proteome analyses of synovial fluids and plasmas from patients suffering from rheumatoid arthritis and comparison to reactive arthritis or osteoarthritis. Electrophoresis. 2002;23(19):3445-56.
    19. Machner A, Baier A, Wille A, et al. Higher susceptibility to Fas ligand induced apoptosis and altered modulation of cell death by tumor necrosis factor-alpha in periarticμlar tenocytes from patients with knee joint osteoarthritis. Arthritis Res Ther. 2003;5(5):R253-61.
    20. Hermansson M, Sawaji Y, Bolton M, et al. Proteomic analysis of articμlar cartilage shows increased type II collagen synthesis in osteoarthritis and expression of inhibin betaA (activin A), a regulatory molecμle for chondrocytes. J Biol Chem. 2004;279(42):43514-21.
    21. Tilleman K, Van Beneden K, Dhondt A, et al. Chronically inflamed synovium from spondyloarthropathy and rheumatoid arthritis investigated by protein expression profiling followed by tandem mass spectrometry. Proteomics. 2005;5(8):2247-57.
    22. Tan X, Cai D, Wu Y, et al. Comparative analysis of serum proteomes: discovery of proteins associated with Osteonecrosis of the femoral head. Transl Res. 2006;148(3):114-9.
    23. Forlino A, Tani C, Rossi A, et al. Differential expression of both extracellular and intracellular proteins is involved in the lethal or nonlethal phenotypic variation of BrtlIV, a murine model for osteogenesis imperfecta. Proteomics. 2007;7(11):1877-91.
    24. Kim HM, Himeno T, Kawashita M, et al. The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite:an in vitro assessment.J R Soc Interface.2004;1(1):17-22.
    1.Key GA.On paraplegia depending on the ligament of the spine.Guy Hosp Rep.1838;3:17-34.
    2.Okamoto Y,Yasuma T.Ossification of the posterior longitudinal ligament of cervical spine with or without myelopathy.Nippon Seikeigeka Gakkai Zasshi.1967;40(10):1349-60.
    3.Lee T,Chacha PB,Khoo J.Ossification of posterior longitudinal ligament of the cervical spine in non-Japanese Asians.Surg Neurol.1991;35(1):40-4.
    4.Terada A,Sakou T,Matsunaga S,et al.3-dimensional computed tomography of ossification of the spinal ligament.Clin Orthop Relat Res.1997;(336):137-42.
    5.Eun JP,Ma TZ,Lee WJ,et al.Comparative analysis of serum proteomes to discover biomarkers for ossification of the posterior longitudinal ligament.Spine.2007;32(7):728-34.
    6.钱小红,贺福初主编。蛋白质组学:理论与方法。北京:科学出版社,2003,49-50
    7.Gorg A,Weiss W.Two-dimensional electrophoresis with immobilized pH gradients.In:Rabilloud T(eds).Proteome Research:Two-dimensional Gel Electrophoresis and Identification Methods.New York:Springer,2000.65-68.
    8.Rabilloud T.Use of thiourea to increase the solubility of membrane proteins in two-dimensional electrophoresis.Electrophoresis,1998,19(5):758-760.
    9.Reichenberg E,Redlich M,Cancemi P,et al.Proteomic analysis of protein components in periodontal ligament fibroblasts.J Periodontol.2005;76(10):1645-1653.
    1.Sanchez JC,Rouge V,Pisteur M,et al.Improved and simplified in-gel sample application using reswelling of dry immobilized pH gradients.Electrophoresis.1997r;18(3-4):324-7.
    2.Gharbi S,Gaffney P,Yang A,et al.Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system.Mol Cell Proteomics,2002,1(2):91-98.
    3.Zhou G,Li H,DeCamp D,et al.2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers.Mol Cell Proteomics,2002,1(2):117-124.
    4.http://www.expasy.org/swiss-2dpage/viewer
    5.http://proteomics.cancer.dk/cgi-bin/CelisWeb.exe?MsetList.htm
    6.丁士健,俞利荣。双向凝胶电泳。见:夏其昌,曾嵘 主编.蛋白质化学与蛋白质组学.第1版.北京:科学出版社,2004.286.
    1. Biemann K. Mass spectrometry of peptides and proteins. Annu Rev Biochem. 1992;61:977-1010.
    2. McLafferty FW, Fridriksson EK, Horn DM, et al. Techview: biochemistry. Biomolecule mass spectrometry. Science. 1999;284(5418): 1289-90.
    3. Fenn JB, Mann M, Meng CK,et al. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246(4926):64-71.
    1.Thompson,EJ.Proteins of the Cerebrospinal Fluid:Analysis & Interpretation in the Diagnosis and Treatment of Neurological Disease;Academic Press:New York,2005.
    2. Ogata, Y; Charlesworth, MC; Muddiman, DC. Evaluation of protein depletion methods for the analysis of total-, phosphoand glycoproteins in lumbar cerebrospinal fluid. J. Proteome Res. 2005,4(3), 837-845.
    3. Wittke, S; Mischak, H; Walden, M; et al. Discovery of biomarkers in human urine and cerebrospinal fluid by capillary electrophoresis coupled to mass spectrometry: towards new diagnostic and therapeutic approaches. Electrophoresis 2005,26(7-8), 1476-1487.
    4. Molloy MP, Herbert BR, Walsh BJ, et al. Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis. 1998;19(5):837-44.
    5. Klose J, Kobalz U. Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis. 1995; 16(6): 1034-59.
    6. Rozek W, Ricardo-Dukelow M, Holloway S, et al. Cerebrospinal fluid proteomic profiling of HIV-1-infected patients with cognitive impairment. J Proteome Res. 2007;6(11):4189-99.
    7. Poliard A, Ronziere MC, Freyria AM, et al. Lineage-dependent collagen expression and assembly during osteogenic or chondrogenic differentiation of a mesoblastic cell line. Exp Cell Res. 1999;253(2):385-95.
    8. Zeichen J, van Griensven M, Lobenhoffer P, et al. [Expression of type VI collagen in arthrofibrosis. An immunohistochemical study]. Unfallchirurg. 2000 Aug;103(8):640-4. German. Abstract.
    9. Tawara A, Okada Y, Kubota T, et al. Immunohistochemical localization of MYOC/TIGR protein in the trabecular tissue of normal and glaucomatous eyes. Curr Eye Res. 2000;21(6):934-43.
    10. Atkinson JC, Riihl M, Becker J, et al. Collagen VI regulates normal and transformed mesenchymal cell proliferation in vitro. Exp Cell Res. 1996;228(2):283-91.
    11. Riihl M, Johannsen M, Atkinson J, et al. Soluble collagen VI induces tyrosine phosphorylation of paxillin and focal adhesion kinase and activates the MAP kinase erk2 in fibroblasts. Exp Cell Res. 1999;250(2):548-57.
    12. Izu Y, Soeta S, Kamiya S, et al. Distribution of type VI collagen in the cartilaginous tissue of the proximal tibia in the domestic cat. J Vet Med Sci. 2005;67(9):927-33.
    13. Zamecnik J, Chanova M, Tichy M, et al. Distribution of the extracellular matrix glycoproteins in ependymomas-an immunohistochemical study with follow-up analysis. Neoplasma. 2004;51(3):214-22.
    14. Lampe AK, Zou Y, Sudano D, et al. Exon skipping mutations in collagen VI are common and are predictive for severity and inheritance. Hum Mutat. 2008 Mar 25 [Epub ahead of print]
    15. Xing L, Salas M, Lin CS, et al. Faithful tissue-specific expression of the human chromosome 21-linked COL6A1 gene in BAC-transgenic mice. Mamm Genome. 2007; 18(2): 113-22.
    16. Tanaka T, Ikari K, Furushima K, et al. Genomewide linkage and linkage disequilibrium analyses identify COL6A1, on chromosome 21, as the locus for ossification of the posterior longitudinal ligament of the spine. Am J Hum Genet. 2003 Oct;73(4):812-22.
    17. Kong Q, Ma X, Li F, et al. COL6A1 polymorphisms associated with ossification of the ligamentum flavum and ossification of the posterior longitudinal ligament. Spine. 2007;32(25):2834-8.
    18. Tsukahara S, Miyazawa N, Akagawa H, et al. COL6A1, the candidate gene for ossification of the posterior longitudinal ligament, is associated with diffuse idiopathic skeletal hyperostosis in Japanese. Spine. 2005;30(20):2321-4.
    19. Fitzgerald J, Morgelin M, Selan C, etal. The N-terminal N5 subdomain of the alpha 3(VI) chain is important for collagen VI microfibril formation. J Biol Chem. 2001 Jan 5;276(1): 187-93.
    20. Dasch JR, PaceDR, AvisPD et al. Characterization of monoc lonal antibodies recognizing bovine bone osteoglycin[J]. Connect TissueRes, 1993; 30(1): 11 -21
    21. Funderburgh JL, Corpuz LM, Roth MR et al Mimecan. the 25 - kda corneal keratan sulfate proteoglycan, is a product of the gene producing osteoglycin[J]. J Biol Chem, 1997: 272(44): 28089-28095.
    22. Ge G, Seo NS, Liang X, et al. Bone morphogenetic protein-1/tolloid-related metalloproteinases process osteoglycin and enhance its ability to regulate collagen fibrillogenesis. J Biol Chem. 2004;279(40):41626-33.
    23. Co rpuz LM, Dunlevy JR, Hassel JR, et al. Molecular cloning and relative tisue expression of keratocan and mimecan in embryonic quail cornea[J]. Matrix Biol, 2000; 19(7): 693-698.
    24. Hamajima S, Hiratsuka K, Kiyama-Kishikawa M,et al. Effect of low-level laser irradiation on osteoglycin gene expression in osteoblasts. Lasers Med Sci. 2003;18(2):78-82.
    25. Tasheva ES, Koester A, Paulsen AQ,et al. Mimecan/osteoglycin-deficient mice have collagen fibril abnormalities. Mol Vis. 2002;8:407-415.
    26. Xing W, Baylink D, Kesavan C,et al. Global gene expression analysis in the bones reveals involvement of several novel genes and pathways in mediating an anabolic response of mechanical loading in mice.J Cell Biochem.2005;96(5):1049-1060.
    27.Osawa A,Kato M,Matsumoto E,et al.Activation of genes for growth factor and cytokine pathways late in chondrogenic differentiation of ATDC5 cells.Genomics.2006;88(1):52-64.
    28.Ge G,Seo NS,Liang X,et al.Bone morphogenetic protein-1/tolloid-related metalloproteinases process osteoglycin and enhance its ability to regulate collagen fibrillogenesis.J Biol Chem.2004;279(40):41626-33.
    29.Balint E,Lapointe D,Drissi H,et al.Phenotype discovery by gene expression profiling:mapping of biological processes linked to BMP-2-mediated osteoblast differentiation.J Cell Biochem.2003;89(2):401-426.
    30.Baharvand H,Heidari M,Ebrahimi M,e tal.Proteomic analysis of epithelium-denuded human amniotic membrane as a limbal stem cell niche.Mol Vis.2007;13:1711-1721.
    31.Moall C,Font B,Rugiero F,et al.Substrate-specific modulation of a multisubstrate proteinase.C-terminal processing of fibrillar procollagens is the only BMP-dependent activity to be enhanced by PCPE-1.J Biol Chem.2005,280(25),24188.
    32.李圣青,简文,速新宇等.急性肺栓塞后osteoglycin的表达及对胶原代谢的影响.解放军医学杂志.2007,32(1):29-31.
    33.Carroll SL,Herrera AH,Horowits R.Targeting and functional role of N-RAP,a Nebulin-related LIM protein,during myofibril assembly in cultured chick cardiomyocytes.J Cell Sci,2001,114(Pt 23):4229-4238
    34.Zhang JQ,Elzey B,Williams G,et al.Ultrastructural and biochemical localization of N-RAP at the inteHace between myofibrils and intercalated disks in the nlouse heart.Biochemistry.2001,40(49):14898-14906
    35.Ehler E,Horowits R,Zuppinger C,et al.Alterations at the intercalated disk associated with the absence of muscle LIM protein.J Cell Biol,2001,153(4):763-772
    36.Carroll SL,Horowits R.Myofibrillogenesis and formation of cell contacts mediate the localization of N-RAP in cultured chick cardiomyocytes.Cell Motil Cytoskeleton,2000,47(1):63-76
    37.Herrera AH,Elzey B,Law DJ,et al.Terminal regions of mouse Nebulin:sequence analysis and complementary localization with N-RAP.Cell Motil Cytoskeleton.2000,45(3):211-222
    38.Luo G,Herrera AH,Homwits R.Molecular interactions of N-RAP,a Nebulin-related protein of striated muscle myotendon junctions and intercalated disks.Biochemistry,1999,38(19):6135-6143
    39.Luo G,Leroy E,Kozak CA,et al.Mapping of the gene(N-RAP) encoding N-RAP in the mouse and human genomes.Genomics,1997,45(1):229-232
    40.Luo G,ZhangJ Q,Nguyen TP,et al.Complete cDNA sequence and tissue localization of N-RAP,a novel Nebulin-related protein of striated muscle.Cell motil Cytoskeleton,1997,38(1):75-90
    41.Gokulrangan G,Zaidi A,Michaelis ML,et al.Proteomic analysis of protein nitration in rat cerebellum:effect of biological aging.J Neurochem.2007;100(6):1494-504.
    42.袁红丰,王冬梅,李海民等.人伴肌动蛋白相关锚定蛋白基因eDNA的克隆与功能分析.生物化学与生物物理进展.2003;30(2):257-31.
    43.Mohiddin SA,Lu S,Cardoso JP.Cell Motil Cytoskeleton.Genomic organization,alternative splicing,and expression of human and mouse N-RAP,a nebulin-related LIM protein of striated muscle.2003;55(3):200-12.
    44.Dhume A,Lu S,Horowits R.Targeted disruption of N-RAP gene function by RNA interference:a role for N-RAP in myofibril organization.Cell Motil Cytoskeleton.2006;63(8):493-511.
    45.Lu S,Borst DE,Horowits R.N-RAP expression during mouse heart development.Dev Dyn.2005;233(1):201-12.
    46.Furukawa K.Current topics in pharmacological research on bone metabolism:molecular basis of ectopic bone formation induced by mechanical stress.J Pharmacol Sci.2006;100(3):201-4.
    47.Iwasaki K,Furukawa KI,Tanno M,et al.Uni-axial cyclic stretch induces Cbfal expression in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament.Calcif Tissue Int.2004;74(5):448-457.
    48.Ohishi H,Furukawa K,Iwasaki K,et al.Role of prostaglandin I2 in the gene expression induced by mechanical stress in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament.J Pharmacol Exp Ther.2003;305(3):818-824.
    49.Mafra D,Cozzolino SM.Erythrocyte zinc and carbonic anhydrase levels in nondialyzed chronic kidney disease patients.Clin Biochem.2004;37:67-71.
    50.姚泰,吴博威,罗自强等.生理学[M].北京:人民卫生出版社。2004:157-225.
    51.Chiang WL,Chu SC,Lai JC,et al.Alternations in quantities and activities of erythrocyte cytosolic Carbonic anhydrase isoenzymes in glucose-6-phosphate dehydrogenase—deficient individuals[J].Clin Chim Acta,2001,314:195-201.
    52.Kuo W H,Yang SF,Hsieh YS,et al.Diferential expression Of carbonic anhydrase isoenzymes in various types of anemia.Clin Chim Acta,2005,351:79-86.
    53. Koury MJ, Sawyer ST, Bondurant MC. Splenic erythroblasts in anemia-inducing Friend disease: a source of cells for studies of erythropoietin-mediated differentiation. J Cell Physiol. 1984;121(3):526-32.
    54. Magid E. Erythrocyte carbonic anhydrase B levels in thyroid disorders. Lancet. 1970, 760:1342.
    55. Anker N, Mondrup M, Christensen F. Carbonic anhydrase isoenzyme B in erythrocytes of hyperthyroid, pregnant and oestrogen-treated subjects. Dan Med Bull. 1980 ;27(2): 109-12.
    56. Gambhir KK, Ornasir J, Headings V, et al. Decreased total carbonic anhydrase esterase activity and decreased levels of carbonic anhydrase 1 isozyme in erythrocytes of type II diabetic patients. Biochem Genet. 2007;45(5-6):431-9.
    57. Gao BB, Clermont A, Rook S, et al. Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation. Nat Med. 2007;13(2):181-8.
    58. Konig A, Happle R, Bornholdt D, et al. Mutations in the NSDHL gene, encoding a 3beta-hydroxysteroid dehydrogenase, cause CHILD syndrome. Am J Med Genet. 2000;90(4):339-46.
    59. Ohashi M, Mizushima N, Kabeya Y, et al. Localization of mammalian NAD(P)H steroid dehydrogenase-like protein on lipid droplets. J Biol Chem. 2003;278(38):36819-29.
    60. Kravets A, Hu Z, Miralem T, et al. Biliverdin reductase, a novel regulator for induction of activating transcription factor-2 and heme oxygenase-1. J Biol Chem. 2004;279(19): 19916-23.
    61. Pereira PJ, Macedo-Ribeiro S, Parraga A, et al. Structure of human biliverdin IXbeta reductase, an early fetal bilirubin IXbeta producing enzyme. Nat Struct Biol. 2001;8(3):215-20.
    62. Smith LJ, Browne S, Mulholland AJ, Biochem J. Computational and experimental studies on the catalytic mechanism of biliverdin IXbeta reductase. 2008 Feb 1
    63. Ryter SW, Morse D, Choi AM. Carbon monoxide: to boldly go where NO has gone before. Sci STKE. 2004;2004(230):RE6.
    64. Otterbein LE, Zuckerbraun BS, Haga M, et al. Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med. 2003;9(2): 183-90.
    65. Kim HP, Wang X, Nakao A, et al. Caveolin-1 expression by means of p38beta mitogen-activated protein kinase mediates the antiproliferative effect of carbon monoxide. Proc Natl Acad Sci U S A. 2005; 102(32): 11319-24.
    66. Dore S, Takahashi M, Ferris CD, et al. Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc Natl Acad Sci U S A. 1999;96(5):2445-50.
    67. Baranano DE, Rao M, Ferris CD, et al. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci U S A. 2002;99(25): 16093-8.
    1.Matsunaga S,Yamaguchi M,Hayashi K,et al.Genetic analysis of ossification of the posterior longitudinal ligament.Spine,1999,24:937-939.
    2.Sakou T,Taketomi E,Matsunaga S,et al.Genetic study of ossification of the posterior longitudinal ligament in the cervical spine with human leukocyte antigen haplotype.Spine,1991,16:1249-1252.
    3.Koga H,Hayashi K,Taketomi E,et al.Restriction fragment length polymorphism of genes of the-2(Ⅺ) collagen,bone morphogenetic protein-2,alkaline phosphatase,and tumor necrosis factor-α among patients with ossification of posterior longitudinal ligament and controls from the Japanese population.Spine,1996,21:469-473.
    4.Koga H,Sakou T,Taketomi E,et al.Genetic mapping of ossification of the posterior longitudinal ligament of the spine.Am J Hum Genet,1998,62:1460-1467.
    5.Maeda S,Ishidou Y,Koga H,et al.Functional impact of human collagen-2(Ⅺ) gene polymorphism in pathogenesis of ossification of the posterior longitudinal ligament of the spine.J Bone Miner Res,2001,16:948-957.
    6.Maeda S,Koga H,Matsunaga S,et al.Gender-specific haplotype association of collagen-2(Ⅺ) gene in ossification of the posterior longitudinal ligament of the spine.J Hum Genet,2001,46:1
    7. Hirakawa H, Kusumi T, Nitobe T. Immunohistochemical evaluation of extracellular matrix components in the spinal posterior longitudinal ligament and intervertebral disc of the tiptoe walking mouse .An J Orthop Sci,2004,9(6):591-597.
    8. Tanaka T, Ikari K, Furushima K, et al. Genomewide linkage and linkage disequili- brium analyses identify COL6A1, on chromosome 21, as the locus for ossification of the posterior longitudinal ligament of the spine. Am J Hum Genet,2003,73:812-822.
    9. Nakamura I, Ikegawa S, Okawa A, et al. Association of the human NPPS gene with ossification of the posterior longitudinal ligament of the spine(OPLL). Hum Genet, 1999,104:492-497.
    10. Okawa A, Ikegawa S, Nakamura I, et al. Mapping of a gene responsible for twy (tip-toe walking Yoshimura), a mouse model of ossification of the posterior longitu-dinal ligament of the spine (OPLL). Mamm Genome,1998,9:155-156.
    11. Okawa A, Nakamura I, Goto S, et al. Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet,1998,19:271-273.
    12. Goding JW, Grobben B, Siegers H. Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta,2003,1638:l-19.
    13. Koshizuka Y, Ikegawa S, Sano M, et al. Isolation of novel mouse genes associated with ectopic ossification by differential display method using ttw, a mouse model for ectopic ossification. Cytogenet Cell Genet, 2001,94:163-168.
    14. Tahara M, Aiba A, Yamazaki M, et al. The extent of ossification of posterior longitudinal ligament of the spine associated with nucleotide pyrophosphatase gene and leptin receptor gene polymorphisms. Spine,2005,30:877-881.
    15. Okano T, Ishidou Y, Kato M, et al. Orthotopic ossification of the spinal ligaments of Zucker fatty rats: A possible animal model for ossification of the human posterior longitudinal ligament. J Orthop Res, 1997,15:820-829.
    16. Furushima K, Shimo-Onoda K, Maeda S, et al. Large-scale screening for candidate genes of ossification of the posterior longitudinal ligament of the spine. J Bone Miner Res,2002,17:128-137.
    17. Hayashi K, Ishidou Y, Yonemori K, et al. Expression and localization of bone morphogenetic proteins (BMPs) and BMP receptors in ossification of the ligamentum flavum. Bone, 1997,21:23-30.
    18. Hoshi K, Amizuka N, Sakou T, et al. Fibroblasts of spinal ligaments pathologically differentiate into chondrocytes induced by recombinant human bone morphogenetic protein-2: Morphological examinations for ossification of spinal ligaments.Bone, 1997,21:155-162.
    19. Kawaguchi H, Kurokawa T, Hoshino Y, et al. Immunohistochemical demonstration of bone morphogenetic protein-2 and transforming growth factor-p in the ossifica-tion of the posterior longitudinal ligament of the cervical spine. Spine,1992,17:S33-S36.
    20. Tanno M, Furukawa KI, Ueyama K, et al. Uniaxial cyclic stretch induces osteogen-ic differentiation and synthesis of bone morphogenetic proteins of spinal ligament cells derived from patients with ossification of the posterior longitudinal ligaments. Bone,2003,33:475-484.
    21. Inaba K, Matsunaga S, Ishidou Y, et al. Effect of transforming growth factor-Pon fibroblasts in ossification of the posterior longitudinal ligament. In Vivo, 1996,10:445-449.
    22. Kamiya M, Harada A, Mizuno M, et al. Association between a polymorphism of the transforming growth factor-pi gene and genetic susceptibility to ossification of the posterior longitudinal ligament in Japanese patients. Spine,2001,26:1264-1267.
    23. Kawaguchi Y, Furushima K, Sugimori K, et al. Association between polymorphism of the transforming growth factor-p gene with the radiologic characteristic and ossification of the posterior longitudinal ligament. Spine,2003,28:1424-1426.
    24. M.Tanno, K.-I.Furukawa, K.Ueyama. Uniaxial cyclic stretch induces osteogenic differentiation and synthesis of bone morphogenetic proteins of spinal ligament cells derived from patients with ossification of the posterior longitudinal ligaments. Bone,2003,33: 475-484.
    25. K.Iwasaki, K.-I.Furukawa, M.Tanno. Uni-axial cyclic stretch induces Cbfal exp-ression in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. Calcified Tissue International, 2004,74(5):448-457.
    26. Ikeda R, Yoshida K, Tsukahara S, et al. The promyelotic leukemia zinc finger promotes osteoblastic differentiation of human mesenchymal stem cells as an upstream regulator of Cbfal. J Biol Chem,2005,280:8523-8530.
    27. Yoshizawa T, Takizawa F, Iizawa F, et al. Homeobox protein MSX2 acts as a molecular defense mechanism for preventing ossification in ligament fibroblasts. Mol A Cell Biol,2001,24:3460-3472.
    28. Iwasaki K, Furukawa KI, Tanno M, et al. Uni-axial cyclic stretch induces Cbfal expression in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. Calcif Tissue Int,2004,74:448-457.
    29. Ohishi H, Furukawa K, Iwasaki K, et al. Role of prostaglandin I2 in the gene expression induced by mechanical stress in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. J Pharmacol Exp Ther,2003,305:818-824.
    30. Washio M, Kobashi G, Okamoto K, et al. Japan collaborative epidemiological study group for evaluation of ossification of the posterior longitudinal ligament of the spine risk: sleeping habit and other life styles in the prime of life and risk for ossification of the posterior longitudinal ligament of the spine (OPLL):Acase-control study in Japan. J Epidemiol,2004,14:168-173.
    31. Shingyouchi Y, Nagahama A, Nida M. Ligamentous ossification of the cervical spine in the late middle aged Japanese men. Its relation to body mass index and glucose metabolism. Spine, 1996,21 (21 ):2474-2478
    32. Matsui H, Yudoh K, Tsuji H. Significance of senxin levels of type I procollagen peptide and intact osteocalcin and bone mineral density in patients with ossification of the posterior longitudinal ligaments. Calcif Tissue Int,1996,59(5):397-400.
    33. Kawa A, Goto S, Moriya H. Calcitonin simultaneously regulates both periosteal hyperosteosis and trabecular osteopenia in the spinal hyperosteotic mouse (twy/twy) in vivo. Calcif Tissue Int,1999,64(3):239-247.
    34. Ishida Y, Kawai S. Characterization of cultured cells derived from ossification of the posterior longitudinal ligament of the spine. Bone, 1993,14(2):85-91.
    35. Kobashi G, Washio M, Okamoto K, et al. Japan collaborative epidemiological study group for evaluation of ossification of the posterior longitudinal ligament of the spine risk: High body mass index after age 20 and diabetes mellitus are independent risk factors for ossification of the posterior longitudinal ligament of the spine in Japanese subjects: A case-control study in multiple hospitals.Spine,2004,29:1006-1010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700