用户名: 密码: 验证码:
干旱条件下玉米硫代谢相关基因的克隆及原核表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是农业可持续发展的主要限制因素,解决干旱问题的重要途径之一就是提高作物自身的抗旱性。硫作为作物所必需的营养元素,在作物的生长代谢过程中起着许多重要的作用,有利于植物对干旱逆境的适应。玉米在世界的粮食生产中一直占有很重要的地位。研究证明,硫营养可以减轻干旱对玉米造成的伤害,而且对玉米产量的提高具有促进作用。
     植物体硫代谢途径中,硫酸盐转运蛋白(sulfate transporter,ST)和ATP硫酸化酶(ATP sulfurylase,ATPS)是最初的两个基础调控位点,γ-谷氨酰半胱氨酸合成酶(γ-Glutamoyl cysteine synthetase,γ-EC)是硫营养代谢旁路中的重要酶,是谷胱甘肽合成中的关键限速酶,是作物中清除过氧化氢、有机毒物、降低重金属污染和提高作物抗性的重要酶类。对它们进行研究可以为进一步了解作物抗旱机制奠定基础。本试验以农大108玉米为供试材料,用Hoagland缺硫营养液培养玉米至3叶期,以PEG6000模拟干旱胁迫,采用分子生物学技术,取得主要试验结果如下:
     1.用RT-PCR方法从玉米根系总RNA中获得硫酸盐转运蛋白(ST)、ATP硫酸化酶(ATPS)及γ-EC合成酶的cDNA,分别命名为ST-ND108、ATPS-ND108和EC-ND108。并将玉米硫酸盐转运蛋白基因在GenBank上注册(登录号EF680841)。
     2.对得到3种基因进行序列分析,结果表明ST-ND108序列长度为2033bp,包含完整的ORF,与已报道的玉米硫酸盐转运蛋白(AF355602)同源性为99%,具有典型的植物高亲和性硫酸盐转运蛋白结构;ATPS-ND108序列长度为888bp,位于玉米ATP硫酸化酶的全长cDNA的第658到1545之间,包括完整的3`-端读码框,为典型的质体ATPS基因片段;EC-ND108序列长度为1224bp,与已报道的玉米γ?EC合成酶基因(EU969765.1和BT039328.1)相似性均为99%,仅在第623位与这两序列不同(G→T),并分析其为包括完整ORF的根系γ?EC合成酶cDNA。
     3.构建了玉米ST-ND108和ATPS-ND108的原核表达体系,并实现了玉米ATPS蛋白多肽片段在大肠杆菌中的表达。通过SDS-PAGE分析表明,重组菌BL21-pET28-ATPS主要以包涵体形式表达,经BandScan5.0分析,目的蛋白约占总菌体蛋白的52.4%。
     本研究在干旱胁迫、无硫处理下从玉米幼苗根系中克隆到了硫酸盐转运蛋白、ATPS和γ-EC合成酶基因,构建了原核表达体系,并原核表达了ATPS基因的3`-端序列,回收后拟制备抗体,为揭示硫营养和玉米抗旱之间的联系及研究玉米的耐旱生理机制提供试验基础。
Drought is the major limiting factor of agricultural, one of the important pathways to solve this problem is to increase the drought tolerance of crops. Sulfur is an essential element in crops nutrition, which plays a vital role in crop growth and metabolism, and is good for the plants to resist drought stress.
     Corn is an important crop in the world grain production. It has been reported that sulfur nutrition can alleviate the effects of drought on maize caused by membrane damage, and also can improve the production of maize.
     In the metabolic pathways of sulfur, the sulfate transporter and the ATP sulfurylase are two basic control sites, andγ- Glutamoyl cysteine synthetase is an important enzyme of sulfur nutrition metabolic pathway, it is the key rate-limiting enzyme in Glutathine synthesis. It is the hinge in synthesize a variety of compound to remove hydrogen peroxide and organic toxins and to reduce heavy metals pollution. It lays the foundation for further understanding the mechanism of crop drought resistance. In this study we cultivate zea mays Nongda108 in Hoagland solution that without sulfur nutrition till the 3 three leaf period, simulation of drought stress with PEG6000, using Molecular Biology Research Technique, the main results as follows:
     1. The sulfate transporter, ATPS andγ-EC synthetase genes were isolated from the total RNA of Nongda108 roots by RT-PCR, designated as ST-ND108, ATPs-ND108 and EC-ND108 respectively. The sulfate transporter gene was registered in Genbank (EF680841).
     2. DNA Sequencing showed that the length of ST-ND108 was 2033bp, and blast showed that it was 99% identical to the reported ST(AF355602), and it has the typical structure of high-affinity sulfate transporter; the length of ATPs-ND108 was 888bp, and sited in the 658bp to 1545bp of the full ATP sulfurylase cDNA, it the typical ATPS gene segment of plastid; the EC-ND108 was 1242bp, it was 99% identical to the reported genes(EU969765.1 and BT039328.1), it is only different with the two genes at point 623bp(G→T), analysis show that it is the fullγ-EC synthetase cDNA of root.
     3. The prokaryotic expression systems of ST and ATPS were constructed. The peptide of ATPs-ND108 had be expressed in prokaryotic cells. SDS-PAGE analysis showed that BL21-pET28-ATPs expressed the peptide in the form of inclusion body mainly, and target protein was about 52.4% of intracellular protein by BandScan5.0.
     In this study, the partial cDNAs of sulfate transporter, ATPS andγ-EC synthetase from maize Nongda108 were obtained and prokaryotic expression systems were constructed, and the 3`-terminal region of ATPS gene was expressed. These results provided basic test for revealing the link between drought-tolerant, and could provide some experimental and theoretical basis for drought-tolerant of maize.
引文
[1]刘遵春,包东娥.干旱胁迫对莲座期白菜生理生化特性的影响及其抗旱性综合评价[J].河北农业大学学报, 2008, 31(6): 16-20.
    [2]钱正安,吴统文,宋敏红等.干旱灾害和我国西北干旱气候的研究进展及问题[J].地球科学进展, 2001, 1(16): 28-38.
    [3] Marschner H. Mineral Nutrition of Higher Plants(2nd)[M]. London, Academic Press, 1995, 523-528.
    [4] Hall J D, Barr R, AI-Abbas A H, et a1. The ultrastructure of chloroplast in mineral-deficient maize leaves[J]. Plant Physiol, 1972, 50(3): 404-409.
    [5]张秋芳.作物硫素营养的生理作用及其胁迫研究[J].江西农业大学学报, 2001, 23(5): 136-139.
    [6] Singh M V. A review of the sulphur research activities of the ICAR-AICRP micro-and secondary nutrients project[J]. Sulphur in Agriculture, 1995, 19(3): 35-46.
    [7] Leustek T, Martin M N, Bick J A, et a1. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies[J]. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51(2): 141-165.
    [8]刘崇群.硫肥的重要性和我国对硫肥的需求趋势[J].硫酸工业, 1995, (5): 20-23.
    [9]杨若明,李玉田.玉米鲜食的功效和鲜食玉米的研究开发[J].北京农业科学, 1997, 5(15): 40-42.
    [10]胡广东.玉米在饲料工业中的应用趋势分析[J].中国饲料, 2002, (19): 5-7.
    [11] Saini H S, Westgate M E. Reproductive development in grain crops during drought[J]. Advances in Agronomy, 1999, 68(6): 59-96.
    [12]路贵和,戴景瑞,张书奎等.不同干旱胁迫条件下我国玉米骨干自交系的抗旱性比较研究[J].作物学报, 2005, 31(10): 1284-1288.
    [13]曲东,邵丽丽,王保莉等.干旱胁迫下硫对玉米叶绿素及MDA含量的影响[J].干旱地区农业研究, 2004, 2(22): 91-94.
    [14] Reneau R B, J Mlary. Corn response to sulfur application in coastal plain soil[J]. Agron, 1983, 75(6): 1036-1040.
    [15] Lappartient A G, J J Vidmar, T Leustek, et al. Inter-organ signaling in plants:regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound[J]. The Plant Journal, 1999, 18(1): 89-95.
    [16] Ceccotti S P, Messick D L. The growing need for Sulphur fertilizers in Asia[C]. Proceedings of the Int.Symp.on present and future raw masterial and fertilizer sulphur requirements for China Beijing, China, 1993, 25-40.
    [17] Noctor G, Foyer C H. Ascorbate And Glutathione:keeping active oxygen under control[J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 249-279.
    [18] Schmidt A, Jager K. Open questions about sulfur metabolism in plants[J]. Annual reviews in plant Physiology, 1992, 43: 325-349.
    [19]陈昕,王保莉,曲东.植物硫转运蛋白质研究进展[J].西北植物学报, 2004, 24(10): 1966-1971.
    [20]韩文炎,胡大伙,石元值等.茶树硫素营养研究现状与展望[J].茶叶科学, 2004, 24(4): 16-19.
    [21] Leustek T,Saito k. Sulfate transport and assimilation in plants[J]. Plant Physio1, 1999, 120(3):637-644.
    [22]刘崇群.我国南方土壤硫的状况和对硫肥的需求[J].中国农资, 2005, (11): 50-51.
    [23]王庆仁,林葆.作物缺硫诊断的研究与进展[J].土壤肥料, 1998, (3): 12-16.
    [24] Leustek T, Saitok. Sulfate transpot and assimilationinplants[J]. Plant Physio1, 1999, 120(3): 637-644.
    [25]谢瑞芝,董树亭,胡昌浩等.不同基因型玉米硫素吸收利用差异研究[J].作物学报, 2002, 28(3): 345-350.
    [26] Cowling D W, Jones L H P, Lockyer D R. Increased yield through correction of sulphour deficiency in ryegrass exposed to sulphur dioxide[J]. Nature, 1973, 243(5408): 479-480.
    [27]宾柯,周清明,杨虹琦等.烟草硫素营养研究现状与展望[J].作物研究, 2007, 5(21): 719-721.
    [28] Yoshimoto N, Inoue E, Saito K, et al. Phloem-localizing sulfate transporter, Sultr1;3,mediates redistribution of sulfur from source to sink organs in Arabidopsis[J]. Plant Physiol, 2003, 131(4): 1511-1517.
    [29] Marzluf G A. Molecular genetics of sulfur assimilation infilamentous fungi and yeast[J]. Annu Rev Microbiol, 1997, 51: 73-96.
    [30] Hatzfeld Y, Cathala N, Grignon C, et al. Effect of ATP sulfurylase overexpression in bright yellow-tobacco cells[J]. Plant Physiol, 1998, 116(1): 1307-1313.
    [31] Leustek T, Saito K. Sulfate transport and assimilation in plants[J]. Plant Physiology, 1999, 120(3): 637-643.
    [32] Renosto F, Patel H C, Martin R L, et al. ATP sulfrylase from higher plants: kinetic and structural characterization of the chloroplast and cytosol enzymes from spinach leaf[J]. Arch Biophys, 1993, 307(2): 272-285.
    [33] Leustek T, Saito K. Sulfate transport and assimilation in plants[J]. Plant Physiol, 1999, 120(3): 637-643.
    [34] Malcolm J, Hawkesford M J, Luit J, et al. Managing sulphur metabolism in plants[J]. Plant Cell and Environment, 2006, 29(3): 382-395.
    [35] Hawkesford M J. Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilisation efficiency[J]. Exp Bot, 2000, 51(342): 131-138.
    [36] Jost R, Altschmied L, Bloem E, et al. Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana[J]. Photosynth Res, 2005, 86(3): 491-508.
    [37] Crawford N M, Kahn M L, Leustek T, et al. Nitrogen and sulfur. In: Buchanan BB, Cruissem W, Jones R L. Biochemistry and Molecular Biology of Plants[J]. Maryland: American Society of Plant Physiologists, 2000, 31(3): 826.
    [38] Foyer C H, Theodoulou F L, Delrot S. The functions of inter-and intracellular glutathione transport systems in plants[J]. Trends Plant Sci, 2001, 6(10): 486-492.
    [39] Meister A. Glutathione metabolism[J]. Methods Enzymol, 1995, 251: 3-7.
    [40] Xiang C B, Oliver D J. Glutathione metabolic genes coordinately respond to heavy metal and jasmonic acid in Arabidopsis[J]. Plant Cell, 1998, 10(99): 1539-1550.
    [41] Xiang C, Werner B L, Christensen E M, et al. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels[J]. Plant Physiol, 2001, 126(2): 564-574.
    [42] Frendo P, Harrison J, Norman C, et al. Glutathione and homoglutathione play a critical role in thenodulation process of Medicago truncatula[J]. Mol Plant Microbe Interact, 2005, 18(3): 254-259.
    [43] Burstenbinder K, Rzewuski G, Wirtz M, et al. The role of methionine recycling for ethylene synthesis in Arabidopsis[J]. Plant J, 2007, 49(2): 238-249.
    [44] Brosnan J T, Brosnan M E. The sulfur-containing amino acids: an overview[J]. Nutr, 2006, 136(6): S1636-S1640.
    [45] Agrawal A A, Kurashige N S. A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae[J]. Chem Eco, 2003, 29(6): 1403-1415.
    [46] Stewart B A, Porter L K. Nitrogen-sulfur relationships in wheat, corn and beans[J]. Agron J, 1969, 61(2): 267-271.
    [47]刘勤,曹志洪.烟草硫素营养与烟叶品质研究进展[J].土壤, 1998, (6): 320-323.
    [48]王庆仁.硫肥对双低油菜产量与品质的影响[J].植物营养与肥料学报, 1996, 2(1): 57-66.
    [49]张锡洲,李廷轩.对四川土壤硫素资源及硫肥施用问题的浅析[J].四川农业大学学报, 2000, 18(20): 183-185.
    [50] Randall P J, wrigley C W. Effects of sulphur supply on the yield, composition and quality of grain from cereals, oilseeds, and legumes[J]. Advances in Cereal Science, 1986, 8(1): 171-206.
    [51]杨安中.硫肥对小麦产量及品质的影响[J].土壤通报, 2000, 31(5): 236-237.
    [52]朱云集,沈学善.硫吸收同化分配及其对小麦产量和品质影响的研究进展[J].作物学报, 2005, 25(6): 134-138.
    [53]迟凤琴.不同硫肥品种和用量对玉米产量和黑土有效硫的影响[J].土壤肥料, 2002, (4): 38-40.
    [54]刘培利,林琪.高产玉米施硫增产效应与机制研究[J].玉米科学, 1995, 3(2): 64-67.
    [55]刘开昌,胡昌浩,董树亭等.高油、高淀粉玉米吸硫特性及施硫对其产量、品质的影响[J].西北植物学报, 2002, 22(1): 97-103.
    [56]李玉影,刘双全.硫对春小麦产量和品质的影响[J].土壤肥料, 2004, (1): 14-15.
    [57]李玉颖.硫在作物营养平衡中的作用[J].黑龙江农业科学, 1996, (11): 37-39.
    [58]叶勇,吴洵,姚国坤.茶树的硫营养及其品质效应[J].茶叶科学, 1994, 14(2): 123-128.
    [59]周跃良,林蕴华,张德兵等.花生施硫效应研究[J].作物研究, 1999, 14(2): 27-29.
    [60] Smith I K. Regulation of sulfate assimilation in Tabasco cells[J]. Plant Physiol, 1980, 66(2): 877-883.
    [61] Saccomani M, Cacco G, Ferrari G. Efficiency of the first step of sulfate utilization by maize hybrids in relation to their productivity[J]. Physiol Plant, 1981, 53(2): 101-104.
    [62] Soliman M F, Kostandi S F, Van Beusichem M L. Influence of sulfur and nitrogen fertilizer on the uptake of iron, manganese, and Zinc by corn plants grown in Calcareous soil[J]. Commun Soil Sci Plant Anal, 1992, 23(11-12): 1289-1300.
    [63]曲东,尉庆丰.陕西几种代表性土壤硫形态与土壤性质的关系[J].土壤通报, 1996, 27(1): 16-18.
    [64] Bearchell S J, Fraaije B A, Shaw M W, et al. Wheat archive links long-term fungal pathogen population dynamics to air pollution[J]. Proc Natl Acad Sci USA, 2005, 102(15): 5438-5442.
    [65]苗雨晨,白玲,苗琛等.植物谷胱甘肽过氧化物酶研究进展[J].植物学通报, 2005, 22(3): 350-356.
    [66] Heiss S, Schafer H J, Haag-Kerwer A, et al. Cloning sulfur assimilation genes of Brassica juncea L: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase[J]. Plant Mol Biol, 1999, 39(4): 847-857.
    [67]陈少裕.植物谷胱甘肽的生理作用及其意义[J].植物生理学通讯, 1993, 29(3): 210-214.
    [68] Pomponi M, Censi V, di Girolamo V, de Paolis A. Over expression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot[J]. Planta, 2006, 223(2): 180-190.
    [69] Zhu YL, Pilon-Smits E A, Tarun A S, et al. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gammaglutamylcysteine synthetase[J]. Plant Physiol, 1999, 121(4): 1169-1178.
    [70] Nocito F F, Lancilli C, Crema B, et al. Heavy metal stress and sulfate uptake in maize roots[J]. Plant Physiol, 2006, 141(3): 1138-1148.
    [71] Marrs K A, Alfenito M R, Lloyd A M, et al. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2[J]. Nature, 1995, 375(6530): 397-400.
    [72] Schnug E. Glucosinolater-fundanmental, environmental and agricultural aspects In: Sulphur nutition and sulphur assimilation in higher plants[J]. SPB Academic publishing bv. The Hague The Netherlands, 1990, 21(3): 97-106.
    [73]邓纯章,龙碧云.我国南方部分地区农业中硫的状况及硫肥的效果[J].土壤肥料, 1994, (3): 25-28.
    [74] Kazuki Saito. Sulfur Assimilatory Metabolism, The Long and Smelling Road[J]. Plant Physiol, 2004, 136(1): 2443-2450.
    [75] Vauclare P, Kopriva S, Fell D, et al. Flux control of sulphate assimilation in Arabidopsis thaliana:adenosine 5'-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols[J]. Plant, 2002, 31(6): 729-740.
    [76] Smith F W, Ealing P M, Hawkesford M J, et al. Plant members of a family of sulfate transporters reveal functional subtypes[J]. Proc Nat Acad Sci USA, 1995, 92(20): 9373-9377.
    [77] Bolchi A, Petrucco S, Tenca P L, et al. Coordinate modulation of maize sulfate permease and ATP sulfurylase mRNAs in response to variations in sulfur nutritional status:stereospecific down regulation by L-cysteine[J]. Plant molecular Biology, 1999, 39(3): 527-537.
    [78] Hawkesford M J. Molecular genetics of sulfate assimilation[J]. Adv Bot Res, 2000, 33(9): 159-223.
    [79] Takahashi H, Watanabe-Takahashi A, Smith F W, et al. The role of three functional sulfate transporters involved in uptake and translocation of sulphatein Arabidopsis thaliana[J]. Plant, 2000, 23(2): 171-182.
    [80] Kataoka T A, Watanabe-Takahashi N, Hayashi M, et al. Vacuolar Sulfate Transporters are Essential Determinants Controlling Internal Distribution of Sulfate in Arabidopsis[J]. Plant Cell, 2004, 16(10): 2693-2704.
    [81] Hawdesford M J. Transporter gene families in plants:the sulphate transporter gene family redundancy or specialization?[J]. Physiol Plant, 2003, 117(2): 155-163.
    [82] Yoshimoto N, Takahashi H, Smith F W, et al. Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots[J]. Plant, 2002, 29(4): 465-473.
    [83] Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, et al. Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effect on sulfur nutrition on multiple metabolic pathways[J]. Plant Physiol, 2003, 132(2): 597-605.
    [84] Rouached H, Berthomieu P, El Kassis E, et al. Structural and function alanalysis of the C-terminal STAS domain of the Arabidopsis thaliana sulfate transporter SULTR1;2[J]. Biol Chem, 2005, 280(16):15976-15983.
    [85] Kataoka T, Hayashi N, Yamaya T, et al. Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SUL TR3;5 as a component of low-affinity sulfate transport system in the root vasculature[J]. Plant Physiol, 2004, 136(1): 4198-4204.
    [86] Bell C I, Clarkson D T, Cram W J. Sulphate supply and its regulation of transport in roots of a tropical legume Macroptilium atropurpureum cv. Siratro[J]. Journal of Experimental Botan, 1995, 46(282): 65-71.
    [87] Leyh T S, Vogt T F, Suo Y. The DNA sequence of the sulfate activation locus from Escherichia coli K-12[J]. Biol Chem, 1992, 267(15): 10405-10410.
    [88] Phartiyal P, Kim W S, Cahoon R E, et al. Soybean ATP sulfurylase, a homodimeric enzyme involved in sulfur assimilation, is abundantly expressed in roots and induced by cold treatment[J]. Arch Biochem Biophys, 2006, 450(1): 20-29.
    [89] Hatzfeld Y, Lee S, Lee M, et al. Functional characterization of a gene encoding a fourth ATP sulfurylase isoform from Arabidopsis thaliana[J]. Gene, 2000, 248(1-2): 51-58.
    [90] MacRae I J, Segel I H, Fisher A J. Crystal structure of ATP sulfurylase from Penicillium chrysogenum: insights into the allosteric regulation of sulfate assimilation[J]. Biochemistry, 2001, 40(23): 6795-6804.
    [91] Joseph D, Mougous, Dong H, et al. Molecular Basis for G Protein Control of the Prokaryotic ATP Sulfurylase[J]. Molecular Cell, 2006, 21(1): 109-122.
    [92] Li H, Deyrup A, Mensch J R, et al. The isolation and characterization of cDNA encoding the mouse bifunctional ATP sulfurylase-adenosine 5'-phosphosulfate kinase[J]. Biol Chem, 1995, 270(49): 29453-29459.
    [93] Renosto F, Patel H C, Martin R L, et al. ATP sulfurylase from higher plants: kinetic and structural characterization of the chloroplast and cytosol enzymes from spinach leaf[J]. Arch Biochem Biophys, 1993, 307(2): 272-285.
    [94] Ragland J B. The role of ATP-sulfurylase in the biosynthesis of cysteine and methionine by Neurospora[J]. Arch Biochem Biophys, 1959, 84(3): 541-542.
    [95] Malcolm J, Hawkesford M J, Luit J, et al. Managing sulphur metabolism in plants[J]. Plant Cell and Environment, 2006, 29(3): 382-395.
    [96] Kylin A, Hylrno B. Uptake and transport of sulfate in wheat: active and passive components[J]. Physiol Plant, 1957, 10(1): 467-484.
    [97] Rotte C, Leustek T. Differential subcellular localization and expression of ATP sulfurylase and 5'-adenylylsulfate reductase during ontogenesis of Arabidopsis leaves indicates that cytosolic and plastid forms of ATP sulfurylase may have specialized functions[J]. Plant Physiol, 2000, 124(2): 715-724.
    [98] Leduc D L, Abdelsamie M, Montes-Bayon M, et al. Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard[J]. Environ Pollut, 2006, 144(1): 70-76.
    [99] Zhang J, Shu W S. Mechanisms of heavy metal cadmium tolerance in plants[J]. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao, 2006, 32(1): 1-8.
    [100]朱超,王保莉,曲东.玉米ST和ATPS部分cDNA序列克隆及分析[J].西北植物学报, 2007,27(9): 1742-1746.
    [101] Ulla H. Dormer, John Westwater, Duncan W S, et al. Oxidant regulation of the Saccharomyces cerevisiae GSH1 gene[J]. Biochimica et Biophydica Acta(BBA), 2002, 1579 (1-2): 23-29.
    [102] Mutoh N, Nakagawa C W, Hayashi Y. Molecular cloning and nucleotide sequencing of the gamma-glutamylcysteine synthetase gene of the fission yeast Schizosaccharomyces pombe[J]. Biochem, 1995, 117(2): 283-288.
    [103] McConnachie L A, Mohar I, Hudson F N, et al. Glutamate cysteine ligase modifier subunit deficiency and gender as determinants of acetaminophen-induced hepatotoxicity in mice[J]. Toxicological Sciences, 2007, 99(2): 628-36.
    [104] Ruegsegger A, Schmutz D, Brunold C. Regulation of glutathione synthesis by cadmium in Pisum sativum L[J]. Plant Physiol, 1990, 93(4): 1957-1584.
    [105] Chen J, Goldsbrough P B. Increased activity ofγ-glutamylcysteine synthetase in tomato cells seleted for cadmium tolerance[J]. Plant Physiol, 1994, 106(1): 233-239.
    [106] Richman P G, Meister A. Regulation ofγ-glutamylcysteine synthetase by non-allosteric feedback inhibition by glutathione[J]. Biol Chem, 1975, 250(5): 1422-1426.
    [107] Nj?lsson R, Norgren S. Physiological and pathological aspects of GSH metabolism[J]. Acta Paediatr, 2005, 94(2): 132-137.
    [108]柳展基,邵凤霞,唐桂英等.一个新的玉米NAC类基因(ZmNAC1)的克隆与分析[J].遗传研究报告, 2009, 31(2): 199-205.
    [109]李得孝,崔黎艳,陈耀锋.渗透胁迫对玉米幼苗叶片叶绿素含量及POD的影响[J].干旱地区农业研究, 2007, 25(1): 140-144.
    [110]万毅成.玉米抗旱机制研究进展[J].国外农学—杂粮作物, 1998, 18(4): 39-42.
    [111] L Eustek T, Saito K. Sulfate transport and assimilation in plants[J]. Plant Physiology, 1999, 120(3): 637-643.
    [112] Hawkesford M J, Dekok L J. Managing sulphur metabolism in plants[J]. Plant Cell and Environment, 2006, 29(3): 382-395.
    [113] Leustek T, Murillo M, Cervantes M. Cloning of a cDNA encoding ATP sulfurylase from Arabidopsis t haliana by functional expression in Saccharomyces cerevisiae[J]. Plant Physiol, 1994, 105(3): 897-902.
    [114] Klonus D, Hofgen R, Willmitzer L, et al. Isolation and characterization of two cDNA clones encoding ATP-sulfurylases from potato by complementation of a yeast mutant[J]. Plant J, 1994, 6(1): 105-112.
    [115] Heiss S, Schafer H J, Haag-Kerwer A, et al. Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase[J]. Plant Mol Biol, 1999, 39(4): 845-57.
    [116] Osslund T, Chandler C, Segel I H. Atp sulfurylase from higher plants:purification and preliminary kinetics studies on cabbage leaf enzyme[J]. Plant Physiol, 1982, 70(1): 39-45.
    [117] Leyh T S, Suo Y. GTPase-mediated activation of ATP sulfurylase[J]. J Biol Chem, 1992, 267(1): 542-545.
    [118] Foster B A, Thomas S M, Mahr J A, et al. Cloning and sequencing of ATP sulfurylase from Penicllium chrysogenum.Identification of a likely allosteric domain[J]. J Biol Chem, 1994, 269(31):19777-19786.
    [119] Li H, Deyrup A, Mensch J R, et al. The isolation and characterization of cDNA encoding the mouse bifunctionalATPsulfurylase-adenosine 5’-phosphosulfate kinase[J]. J BiolChem, 1995, 270(49): 29453-29459.
    [120] Klonus D, Riesmeier J W, Willmitzer L. A cDNA clone for an ATP-sulfurylase from Arabidopsis thaliana[J]. Plant Physiol, 1995, 107(2): 653-654.
    [121] Osslund T, Chandler C, Segel IH. Atp sulfurylase from higher plants:purification and preliminary kinetics studies on cabbage leaf enzyme[J]. Plant Physiol, 1982, 70(1): 39-45.
    [122] Phartiyal P, Kim W S, Cahoon R E, et al. Soybean ATP sulfurylase, a homodimeric enzyme involved in sulfur assimilation, is abundantly expressed in roots and induced by cold treatment[J]. Arch Biochem Biophys, 2006, 450(1): 20-29.
    [123] Zhao H L, Feng R J, Su W, et al. Bioinformatical analysis of Maasr1 gene from banana[J]. Letters in Biotechnology, 2006, 17(3): 336-340.
    [124] Lan J G, Luo B D, Cao W. A Simple and Cheap Method for Rapid Determination of Reduced Glutathione[J]. Chemistry & Bioengineering, 2004, 21(4): 55-56(in Chinese).
    [125] Qian X, Hua XM, Huang XX, et al. Molecular cloning of full-length c-type lysozyme from carassius auratus gibelio and its tissue-specific expression and bioinformatic analysis [J]. Chinese Journal of Biochemistry and Molecular Biology, 2008, 4(4): 337-347.
    [126] Malcolm J, Hawkesford M J, Luit J, et al. Managing sulphur metabolism in plants[J]. Plant, Cell and Environment, 2006, 29(3): 382-395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700