用户名: 密码: 验证码:
心理应激致肝铁蓄积的机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁是人体必需微量元素中含量最多的一种,参与机体许多重要的生理功能,铁过多或过少对机体都会造成损害。铁缺乏对人体影响被了解的同时,铁过负荷对人体的危害也越来越受到重视。有资料显示,肝铁过负荷可导致肝纤维化、肝硬化;迟发性皮肤卟啉症和肝细胞癌等疾病。
     肝脏是机体铁贮存的主要部位,在铁代谢中发挥着中心和枢纽的作用。为了维持铁平衡,肝细胞存在精细的铁调控机制,可以维持正常生命活动所需的铁量,同时又会避免铁过多蓄积而产生的毒性作用。然而课题组研究发现心理应激可以引起肝铁蓄积,肝细胞氧化应激损伤,但机制尚不明确。
     众所周知,应激情况下糖皮质激素大量分泌,文献报道,糖皮质激素能够调控大鼠肠道内铁蛋白轻链重链的表达,增加垂体切除鼠体内的转铁蛋白受体1的含量,有意义的是,课题组前期研究结果发现应激情况下,糖皮质激素受体和STAT5与铁调节蛋白1基因启动子位点上的相应DNA序列结合活性增强,综合国内外相关研究,提示心理应激情况下的肝铁蓄积可能与糖皮质激素的大量分泌导致铁调控蛋白的表达改变有关。应激在现代社会无处不在,阐明应激肝铁紊乱的机制对防治应激损伤具有积极的意义。
     研究目的
     了解心理应激糖皮质激素大量分泌与肝铁蓄积的关系,及心理应激导致肝铁蓄积的机制,为阐明心理应激情况下肝铁代谢紊乱、肝铁蓄积的机制提供实验基础,并为防治与肝铁蓄积相关的疾病提供线索。
     研究方法
     1.心理应激对大鼠肝铁浓度及铁调控蛋白的影响
     1.1实验动物分组
     雄性SD大鼠(购自上海西普尔-必凯公司),体重(120±10)g。按体重随机分为空白对照组、心理应激组和足底电击组,每组10只。动物饲养实验室环境温度24℃±1℃,湿度50%~60%;使用不锈钢笼具单笼饲养,自由饮食,自然昼夜节律变化光照。
     1.2大鼠心理应激模型的制作
     采用Communication Box System制作大鼠心理应激模型。Communication Box System由透明丙烯酸板组成,一半小室(A室)底部铺板绝缘,另一半小室(B室)通电。在B室的实验大鼠接受30min/d,足底电击(电压90V,电流0.80mA);电击组大鼠跳跃,尖叫,在A室的实验大鼠通过视觉听觉产生恐惧的心理反应,即为心理应激大鼠模型。
     1.3大鼠肝组织铁含量的测定
     采用原子吸收分光光度计(日本日立公司Z-2000型)火焰法测定。100μ/ml铁标准贮备液(GBW08616)由国家标准物质中心提供。
     1.4大鼠肝脏Fn, TfR1, IRP1, IRP2 mRNA表达量的测定
     采用实时定量荧光PCR法测定心理应激组和对照组大鼠肝脏内铁蛋白,转铁蛋白受体1,铁调节蛋白1及铁调节蛋白2 mRNA的表达水平。
     1.5大鼠肝脏Fn,TfR1,IRP1蛋白含量的测定
     Western blot测定实验组和对照组大鼠肝脏内铁蛋白,转铁蛋白受体1以及铁调节蛋白1的蛋白含量。
     2.注射糖皮质激素对肝铁浓度及铁调控蛋白的影响
     2.1实验动物分组
     雄性SD大鼠(购白上海西普尔-必凯公司),体重(200±10)g。按体重随机分为0.9%生理盐水组,10-9 mol/L皮质酮组,10-6mol/L皮质酮组和RU486组,每组10只。动物饲养实验室环境温度24℃±1℃,湿度50%~60%;使用不锈钢笼具单笼饲养,自由饮食,自然昼夜节律变化光照。
     2.2实验动物模型制作
     大鼠尾静脉注射0.9%生理盐水,10-7mol/L皮质酮,10-4 mol/L皮质酮或10-2mol/L RU486(1h后再注射104 mol/L皮质酮),按照0.1ml/100g bw注射试剂,连续7天注射后腹腔注射10%水合氯醛进行麻醉,暴露胸腔,剪开右心耳,然后迅速经心脏冷PBS冲洗,取出大鼠肝脏存-80℃冰箱备用。
     2.3大鼠肝组织铁含量的测定:同前。
     2.4大鼠肝脏Fn,TfR1,IRP1mRNA和蛋白含量的测定:同前。
     3.糖皮质激素调控肝细胞铁调节蛋白1表达的分子机制研究
     3.1细胞培养
     选用人正常肝细胞HL7702, RPMI1640培养液中加入10%胎牛血清、双抗,培养箱中生长。
     3.2氢化可的松干预细胞
     用精密电子天平称取3.6247mg的氢化可的松,用无水乙醇稀释溶解至1ml,配成10-2mol/L,用1640培养液稀释成10-5,10-6,10-7,10-8,10-9mol/L后加入HL7702细胞。
     3.3 CCK-8法测定肝细胞活性
     弃去培养HL7702细胞96孔板中的上清,PBS漂洗3次加入CCK-8反应液,于37℃孵育2h,使用酶标仪450 nm波长处测定吸光度(A)值。以实验组吸光度值与对照组的吸光度值之百分比作为细胞相对活性。
     3.4阻断HL7702细胞内糖皮质激素受体或STAT5
     用精密电子天平称取4.2959mg的RU486,用无水乙醇稀释溶解至1ml,配成10-2mol/L的RU486,用1640培养液稀释为10-5mol/L后加入HL7702细胞,半小时后再加入10-6mol/L氢化可的松。
     用精密电子天平称取适量STAT5抑制剂溶于DMSO,使终浓度达到10mg/ml。
     3.5肝细胞IRP1和STAT5 mRNA及蛋白含量的测定
     实时定量荧光PCR法测定mRNA的表达水平,Western blot测定蛋白含量的变化。
     4.数据的统计与处理
     采用quantity one图像分析系统对Western条带进行灰度分析,实验数据用(X±S)表示。应用SPSS11.5统计软件进行实验数据分析,两组间差异采用成组设计资料的t检验,多组间差异采用单因素方差分析。各组方差齐时,对照组与各实验组间比较采用Dunnett法,各组间两两比较采用LSD-t检验和SNK-q检验;方差不齐时采用Dunnett's C检验,P<0.05为显著性水平,P<0.01为非常显著性水平。
     结果
     1.心理应激对大鼠肝铁浓度及铁调控蛋白的影响
     1.1心理应激对大鼠肝铁含量的影响
     7天心理应激组大鼠肝铁含量与对照组比较升高幅度达到52.7%(P<0.01);与1天和3天心理应激组比较分别升高了40.8%(P<0.01)和31.8%(P<0.05)而1天和3天心理应激组大鼠肝铁含量较对照组有升高趋势,但无统计学意义(P>0.05)。
     1.2心理应激对大鼠肝脏Fn, TfR1, IRP1, IRP2 mRNA表达的影响
     大鼠肝脏Fn mRNA表达在1天和3天心理应激后与对照组比较有降低趋势,在7天心理应激后较对照组明显降低(P<0.05);大鼠肝脏TfR1 mRNA表达在1天和3天心理应激后与对照组比较有升高趋势,7天心理应激后较对照组明显升高(P<0.05);而大鼠肝脏IRP1 mRNA表达在1,3,7天心理应激后较对照组均有显著升高,其中7天心理应激组升高幅度最大,达到36%(P<0.05);大鼠肝脏IRP2mRNA表达各组间均无明显变化(P>0.05)。
     1.3心理应激对大鼠肝脏Fn, TfR1, IRP1蛋白含量的影响
     心理应激1天和3天时,大鼠肝脏Fn, TfR1蛋白表达与对照组相比无显著性差异,7天心理应激时与对照组相比,大鼠肝脏Fn蛋白表达降低,而TfRl蛋白表达升高(P<0.05);1,3,7天心理应激组大鼠肝脏IRP1蛋白表达较对照组均有增加,分别增加1.5倍(P<0.05),1.8倍(P<0.05)和2.6倍(P<0.01)
     2.注射糖皮质激素对大鼠肝铁浓度及铁调控蛋白的影响
     2.1注射皮质酮对大鼠肝铁含量的影响
     10-9mol/L皮质酮组大鼠肝铁含量与0.9%生理盐水组相比无显著差异,但连续7天每天注射10-6mol/L皮质酮后,大鼠肝铁含量与0.9%生理盐水组比较有显著上升,升高39.5%(P<0.05),与连续7天注射10-9mol/L皮质酮组比较也升高了39.1%(P<0.05)2.2注射皮质酮对大鼠肝脏Fn, TfR1, IRP1 mRNA表达的影响
     10-9mol/L皮质酮组Fn, TfR1 mRNA的表达与0.9%生理盐水组相比无显著性差异,而10-6 mol/L皮质酮连续注射7天后Fn mRNA表达较0.9%生理盐水组降低,TfR1 mRNA表达较生理盐水组升高,大鼠肝脏IRP1 mRNA表达在注射10-9和10-6。mol/L皮质酮后较0.9%生理盐水组均有升高,分别较对照组增高1.2倍和1.5倍(P<0.05)。
     2.3注射皮质酮对大鼠肝脏Fn,TfR1,IRP1蛋白含量的影响
     Western blot显示大鼠肝脏Fn,TfR1蛋白表达在连续7天给予10-9mol/L皮质酮后与0.9%生理盐水组相比无显著性差异,而连续注射10-6mol/L皮质酮7天后,与0.9%生理盐水组比较,Fn蛋白表达降低,TfR1蛋白表达升高(P<0.05),10-9mol/L和10-6mol/L皮质酮组的IRP1蛋白表达较0.9%生理盐水组均升高(P<0.05)
     3.糖皮质激素调控肝细胞铁调节蛋白1表达的分子机制研究
     3.1氢化可的松对HL7702细胞IRP1mRNA表达的影响
     细胞内加入10-6,10-7,10-8,10-9。mol/L氢化可的松24h后HL7702细胞IRP1mRNA表达较对照组均增高,分别增高1.65倍,1.38倍,1.37倍和1.38倍(P<0.05),10-6mol/L氢化可的松组的IRP1 mRNA表达较其他剂量氢化可的松组均增高(P<0.05),而10-5mol/L糖皮质激素组IRP1mRNA表达与对照组无显著差异。
     3.2氢化可的松对HL7702细胞IRP1蛋白含量的影响
     Western blot结果显示细胞内加入10-6,10-7,10-8,10-9mol/L氢化可的松24h后HL7702细胞IRP1蛋白含量较对照组均增高(P<0.05),其中10-6mol/L氢化可的松组IRP1蛋白含量与10-7mol/L组比差异不显著(P>0.05),与10-8,10-9mol/L组比较IRP1蛋白含量均增高(P<0.05),而10-Smol/L组IRP1含量与对照组无显著差异,CCK-8检测显示,10-5mol/L组的肝细胞活性与对照组相比显著降低(P<0.01)。
     3.3阻断糖皮质激素受体对大鼠肝脏IRP1含量的影响
     大鼠尾静脉注射10-4mol/L糖皮质激素受体阻断剂RU486 1小时后注射10-6mol/L皮质酮,发现IRP1 mRNA表达较10-6mol/L皮质酮组明显降低(P<0.05)。IRP1蛋白含量变化与mRNA一致,RU48+皮质酮组大鼠肝脏IRP1蛋白含量较单纯加皮质酮组明显降低(P<0.05)。
     3.4阻断糖皮质激素受体对HL7702细胞IRP1含量的影响
     RT-PCR结果显示HL7702细胞内加入10-5 mol/L RU486后可以降低氢化可的松诱导的IRP1的生成,与10-6mol/L氢化可的松组对比降低达3倍(P<0.05)。Western blot结果同样显示RU486可以降低氢化可的松诱导的IRP1蛋白生成。
     3.5氢化可的松对STAT5表达的影响
     HL7702细胞内加入10-6mol/L氢化可的松后,STAT5的mRNA及蛋白表达较对照组均无显著差异(P>0.05),Western blot结果显示,在给予10-6mol/L氢化可的松后,HL7702细胞内P-STAT5蛋白含量较对照组明显升高(P<0.05)。
     3.6抑制STAT5对HL7702细胞IRP1生成的影响
     抑制STAT5后,HL7702细胞IRP1蛋白表达较10-6mol/L氢化可的松组明显降低(P<0.05)。
     3.7同时阻断糖皮质激素受体和STAT5对HL7702细胞IRP1生成的影响
     当同时阻断糖皮质激素受体和STAT5后再给予氢化可的松,HL7702细胞中IRP1蛋白几乎不表达,与10-6mol/L糖皮质激素组比较差异非常显著(P<0.01)。
     结论
     1.连续7天心理应激可以引起大鼠肝脏铁蛋白表达减少,而转铁蛋白受体1表达增加,肝细胞摄入铁增加引起肝铁蓄积;肝脏铁调节蛋白1含量随着应激天数增加而增加,通过与IRE结合转录后调控铁蛋白,转铁蛋白受体1的表达可能是心理应激情况下肝铁蓄积的原因。
     2.连续7天每天注射10-6mol/L的皮质酮可以引起大鼠肝脏铁调节蛋白1表达上调、转铁蛋白受体1含量增加、铁蛋白减少、肝脏铁含量增加,与7天心理应激后大鼠肝脏铁代谢变化一致,结合以往研究结果提示心理应激时糖皮质激素的大量分泌可能是导致大鼠肝脏铁调节蛋白1表达增加的重要原因。
     3.通过整体动物和细胞实验发现,糖皮质激素可以上调铁调节蛋白1的表达。分别采用特异性糖皮质激素受体抑制剂RU486或STAT5抑制剂后,铁调节蛋白1的表达有不同程度的降低,而在培养基中同时添加上述两种抑制剂几乎可完全抑制铁调节蛋白1的表达,表明糖皮质激素可通过增强GR和STAT5信号通路上调铁调节蛋白1的表达。
     综上所述,心理应激时糖皮质激素大量释放,通过GR和STAT5与铁调节蛋白1基因位点上的相应DNA结合位点结合,上调铁调节蛋白1基因的表达,随着铁调节蛋白1含量的逐渐增加,与IRE结合,通过转录后调控引起转铁蛋白受体1表达增加,铁蛋白表达减少,肝细胞摄入铁增加,导致肝铁蓄积肝脏损伤。
Iron is one of the essential metal elements for human. When the harm of iron deficiency is well-known today, more and more attention has been paid to iron overload. It was reported that chronic hepatic iron overload could cause fibrosis and cirrhosis, porphyria cutanea tarda and hepatocellular carcinoma.
     Liver is the center organ of iron metabolism and is particularly susceptible to injury from iron overload. In order to maintain optimal health, there must be a mechanism tightly controlling the concentration and distribution of iron to provide enough to meet cellular requirements while avoiding excessive levels that are toxic. But our previous study has found that psychological stress(PS) can cause iron accumulation in liver, but the mechanism remains unclear.
     It is well-known that glucocorticoid(GC) is largely secreted under stress. It was shown that GC could regulate the intestinal heavy and light ferritin(Fn) expression in rats. Steroid hormones have also been shown to increase transferrin receptorl(TfR1) expression in the testes of hypophysectomized rats. Our previous study also found that the binding activity of glucocorticoid receptor and STAT5 with related DNA sequences in IRP1 gene promoter was enhanced under psychological stress. Taken together, it appears that largely secreted glucocorticoid may bring changes to the expression of iron metabolism controlling protein, then cause iron mal-metabolism under stress. The burden of social life and work is so heavy recently, it is important to interpret the mechanism of iron accumulation in liver under stress, and it may prevent harm to human.
     Objective
     To study the characteristic effects of largely secreted GC under psychological stress on liver iron metabolism and to establish a useful experimental basis for interpreting iron mal-metabolism and accumulation in liver under PS, providing medical clues for iron accumulation related hepatic disease.
     Method
     1. Effects of psychological stress on iron concentrations and iron metabolism controlling protein in the rat liver
     To divide experimental animals into groups
     All experimental procedures involving animals received the approval from the Animal Care and Use Committee of the Second Military Medicine University. Guidelines and Policy on using and caring of the laboratory animals were followed at all time. Male SD rats (120±10 g body weight) fed with a standard diet were purchased from the Shanghai-BK Ltd. Co, and were housed individually in a cage in a temperature-controlled room (24±1℃,55±5% humidity) with a 12-hour light and 12-hour dark cycle. After adaptation for 7 days, the rats were divided into the foot-shock group (FSG), psychological stress group (PSG) and the control group (CG). Each rat was exposed to stress for 30 minutes every day.
     To build psychological stress model of SD rats
     Using a communication box system, footshock stress (FS) and psychological stress (PS) were administered to the rats. The communication box was divided into two parts with a transparent acrylic board, i.e., Part A including ten rooms with a plastic board-covered floor for electric insulation and part B including ten rooms with a metal grid-exposed floor. Rats in part B were administered an electrical shock through the floor (90 V,0.8 mA for 1 second) randomly for 30 min,90 times in total, and then exhibited a nociceptive stimulation-evoked response such as jumping up, defecation and crying. Thus they were exposed to systemic (physical) stress. Rats in part A were not directly administered the electrical shock, but were exposed to psychological stress in response to the actions of the rats in Room B.
     Measurement of liver iron concentrations in rats
     Iron concentrations were determined using a Varian SpectrAA-220G graphite furnace atomic absorption spectrometer equipped with a GTA 110 atomizer, programmable sample dispenser, and deuterium background correction. Standard addition method was used for calibration. Standards and control samples were prepared in an identical manner to the experimental samples.
     Determination of Fn, TfRl, IRP1 and IRP2 mRNA levels
     Real time PCR was performed using IQ5 Real-Time PCR Detection System. Two step RT-PCR method was performed using Real Time PCR Master Mix. Primers used to analyze all the transcripts have been reported else where. The RT-PCR data were analyzed by 2-ΔΔCT method as described.
     Determination of Fn, TfR1 and IRP1 protein levels
     The concentrations of Fn, TfR1 and IRP1 in the liver, samples were assessed by Western blot.
     2. Effects of injected glucocorticoid on iron concentrations and iron metabolism controlling protein in the rat liver
     To divide experimental animals into groups
     Forty male Sprague-Dawley(SD) rats, weighting 200±10g (Shanghai-BK Co., Ltd. Shanghai, China), were housed individually in cages under standard laboratory conditions(24±1℃; humidity of 55±5%; 12:12-h light-dark cycle) and were given normal chow and free access to water. After 7 days'adaptation, the rats were evenly divided into four groups randomly:0.9% saline group,10-9 mol/L corticosterone group,10-6 mol/L corticosterone group (sigma,USA) and GR blocking group (RU486, sigma, USA).
     The agents were administrated through the rat caudal vein. After 7 days exposure, all rats were deeply anesthetized by i.p. injection of 10% chloral hydrate, and then perfused through the left cardiac ventricle with ice-cold phosphate buffered saline (PBS; pH7.4) to flush out the blood. The whole liver were quickly removed and snap frozen in liquid nitrogen, and kept in a-80℃freezer till use.
     3. Effects of molecular mechanisms of glucocorticoid on IRP1 expression in HL7702 cells
     Cell Culture
     The human hepatic cell line HL7702 was obtained from Chinese academy of sciences shanghai branch. Cells were grown in RPMI1640 medium supplemented with 10% heat-inactivated fetal calf serum (FCS),2mM glutamine, 100U/mL penicillin and 0.1mg/mL streptomycin at 37℃in humidified air containing 5% CO2. The cells were plated into six-well plate at a density of about 1×106 cells/mL and were treated with hydrocortisone (sigma,USA) at 0,10-5,10-6,10-7,10-8,10-9 mol/L respectively. RU486(sigma,USA) was added into cells at 10-5 mol/L and 1 hour later, cells were treated with hydrocortisone at 10-6mol/L. Cells were also treated with STAT5 inhibitor (calbiochem,Germany), then with hydrocortisone. After each treatment, cells were collected and kept in a-80℃freezer till use.
     4. Statistical analysis
     All results were expressed as mean±S.E. Statistical analysis was carried out by using SPSS 11.5. All values below the detection limits were set to zero and absolute values without correction for recovery rate were used in analyses. A P value less than 0.05 was considered statistically significant.
     Results
     1. PS exposure increased the iron concentrations in rat liver
     1.1 Effects of psychological stress on iron concentrations
     We found that the iron levels in rat liver were significantly higher in 7 days PS exposure group than in the control group (P<0.05); however, no significant differences were observed in 1 day and 3 days PS exposure group compared with the control group.
     1.2 PS exposure caused changes in Fn, TfR1, IRP1 and IRP2 mRNA expression
     Real time-PCR analysis showed that 7 days PS exposure increased TfR1 mRNA levels and decreased Fn mRNA levels in rat liver than that in the control group (P<0.05), but no significant changes were seen in 1day and 3 days PS exposure, while IRP1 mRNA levels were increased in 1 day,3 days and 7 days PS exposure compared with the control group, but 7 days PS exposure group showed the most significant changes(P<0.05), IRP2 mRNA showed no significant differences in all groups.
     1.3 PS exposure caused changes in Fn, TfR1 and IRP1 protein levels
     TfR1 protein levels in rat liver after 7 days PS exposure were significantly higher than those in the control group (P<0.05); Fn concentrations in rat liver were significantly lower in 7 days PS exposure group than in the control group (P<0.05); but no significant changes were seen in 1 day and 3 days PS exposure; IRP1 levels were increased in 1 day,3 days and 7 days PS exposure compared with the control group, but 7 days PS exposure group showed the most significant changes(P<0.05).
     2. GC increased the iron concentrations in rat liver
     2.1 Effects of GC on iron concentrations
     Hepatic iron levels were increased obviously by 7 days injection of 10-6 mol/L GC in rats compared with that in the other 2 groups. No significant difference was detected between control group and 7 days injection of 10-9 mol/L GC group.
     2.2 GC caused changes in Fn, TfRl and IRP1 mRNA expression
     We found that administration of corticosterone at 10-6 mol/L for 7 days could lead to decrease of Fn mRNA expression and increase of TfRl mRNA expression in rat liver (P<0.05), while IRP1 mRNA levels were both increased in 10-9mol/L and 10-6 mol/L GC group compared with the control group, but the changes in latter group were more significant(P<0.05).
     2.3 GC caused changes in Fn, TfRl and IRP1 protein levels
     The protein levels paralleled the change in mRNA levels,10-6mol/L GC decreased the expression of Fn protein and increase the expression of TfR1(P<0.05), while the expression of IRP1 protein was both increased in 10-9mol/L and 10-6mol/L GC group compared with the control group (P<0.05).
     3. Molecular mechanisms of GC regulates the expression of IRP1
     3.1 Induction of IRP1 protein and mRNA in HL7702 cells by GC
     Hydrocortisone readily induced IRP1 protein in HL7702 cells. The promotion of IRP1 protein was detected at 10-6,10-7,10-8,10-9mol/L after treatment for 24h, the promoted effect at 10-6mol/L was most significant comparing with other groups (P<0.05). When analyzing the mRNA expression, we found that hydrocortisone treatment with HL7702 cells at 10-6mol/L led to a 1.65-fold induction of IRP1 mRNA, while 10'-,10-8 and 10-9 mol/L led to 1.38-fold,1.37-fold and 1.38-fold respectively, and the highest induction was at 10-6mol/L(P<0.05).
     3.2 Inhibition of IRP1 protein and mRNA by RU486
     When RU486 was administrated in advance, the induction of IRP1 protein and mRNA by GC was dropped. The expression of both IRP1 protein and mRNA in liver tissue and the cells decreased significantly(P<0.05). The results showed that 10-5mol/L RU486 could lead to 3-fold decrease of IRP1 mRNA induced by 10-6mol/LGC.
     3.3 The role of STATS in induction of IRP1
     When 10-6mol/L hydrocortisone was added in the HL7702cells, the expression of STAT5 protein and mRNA showed no obvious changes compared with control group, but P-STAT5 protein was expressed considerably(P<0.05). STAT5 inhibitor could make the expression of IRP1 by hydrocortisone decrease.
     3.4 The effect of RU486 and STAT5 inhibitor administrated at the same time on the expression IRP1
     when RU486 and STAT5 inhibitor were added at the same time, hydrocortisone could hardly induce the expression of IRP1 in HL7702 cells(P<0.01).
     Conclusions
     1.7 days PS could cause the expression of Fn decreased and the expression of TfRl increased in rat liver, the increased expression of TfRl might be the reason of iron accumulation in liver under PS. Meanwhile, the expression of IRP1 in rat liver also increased under PS, which might bring post-transcriptional regulation to the expression of Fn and TfR1.
     2.7 days injection of 10-6mol/L glucocorticoid could cause decreased expression of Fn, increased expression of TfRl and IRP1, paralled the changes in the expression under PS, suggesting that the large secreted GC under PS might be the main reason of iron accumulation in rat liver.
     3. Animal and cell experiments both showed that GC could increase the expression of IRP1 considerably. The expression of IRP1 could decrease when RU486 and STAT5 inhibitor were administrated separately, but the expression could be almost completely blocked when the two inhibitors were added at the same time, suggesting that GR and STAT5 were both involved in the up-regulation of IRP1 by GC.
     Taken together, we found in our experiment that PS could cause large secretion of glucocorticoid, which could up-regulate the expression of IRP1 through GR and STAT5 by binding with the related DNA sequences in the promoter of IRP1 gene. The increased expression of TfRl and decreased expression of Fn caused by the post-transcriptional regulation of IRP1 then made iron accumulation in liver and even damage to liver.
引文
[1]M.W. Hentze, M.U. Muckenthaler, N.C Andrews. Balancing acts:molecular control of mammalian iron metabolism. Cell,2004,117:285-297.
    [2]Min Zhao, Jianbo Chen, Min Li. Psychological stress induces hypoferremia through the IL-6-hepcidin axis in rats. BBRC,2008,373:90-93.
    [3]Bonkovsky HL. Iron and the liver. Am J Med Sci,1991,301:32-43.
    [4]Eisenstein, R.S. Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu. Rev. Nutr,2000,20:627-662.
    [5]Michelle L. Wallander, Elizabeth A. Leibold, Richard S. Eisenstein. Molecular control of vertebrate iron homeostasis by iron regulatory proteins. BBA,2006,1763:668-689.
    [6]Cairo G, Castrusini E, Minotti G. Superoxide and hydrogen peroxide-dependent inhibition of iron regulatory protein activity:a protective stratagem against oxidative injury. FASEB J,1996, 10:1326-1335.
    [7]Gray NK, Hentze MW. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J,1994,13:3882-3891.
    [8]Long Ma, Wanyin Wang, Min Zhao, Min Li. Foot-shock stress-induced regional iron accumulation and altered iron homeostatic mechanisms in rat brain. Biol Trace Elem Res,2008, 126:204-213.
    [9]Lei Wang, Wanyin Wang, Min Zhao, Long Ma, Min Li. Psychological stress induces dysregulation in iron metabolism in rat brain. Neuroscience,2008,155:24-30.
    [10]Kwo-Yih Yeh, Mary Yeh, Jonathan Glass. Glucocorticoids and dietary iron regulate postnatal intestinal heavy and light ferritin expression in rats. Am J Physiol Gastrointest Liver Physiol.,2000,278:217-226.
    [11]Roberts, K. P., M. D. Griswold. Characterization of rat transferrin receptor mRNA in testes and in Sertoli cells in culture. Mol. Endocr.,1990,4:531-542.
    [12]Marc A. Kerenyi, Florian Grebien, Helmuth Gehart, Manfred Schifrer, Matthias Artaker, Boris Kovacic. STAT5 regulates cellular iron uptake of erythroid cells via IRP-2 and TfR-1. Blood,2008,112:3878-3888.
    [13]Rafal Radoslaw STARZYNSKI, Ana Sofia GONC,ALVES(?), Franc,oise MUZEAU(?), Zofia TYROLCZYK, Ewa SMUDA, Jean-Claude DRAPIER(?), Carole BEAUMONT(?), Pawel LIPINSKI. STAT5 proteins are involved in down-regulation of iron regulatory protein 1 gene expression by nitric oxide. Biochem. J,2006,400:367-375.
    [1]Hoffman R, Benz Jr, Shattil S J, et al. Haematology-basic principles and practice.3rd ed. Beijing:Science Press,2001:397.
    [2]Andrews NC. Iron homeostasis:insights from genetics and animal models. Nat Rev Genet, 2000,1:208-217.
    [3]CORRADINI E, FERRARA F, PIETRANGELO A. Iron and the liver. Pediatr Endocrinol Rev,2004,2 (Suppl2):245-248.
    [4]ASARE G A, MOSSANDA K S, KEW M C, et al. Hepatocellular carcinoma caused by iron overload:a possible mechanism of direct hepatocarcinogenicity. Toxicol,2006,219(123):41-52.
    [5]姜乾金.医学心理学,第3版.北京:人民卫生出版社,2002.75.
    [6]Wennlund A, Wahrenberg H, Hagstrom-Toft E, et al. Lipolytic and cardiac responses to various forms of stress in humans. Int J Sports Med,1994,15(7):408-413.
    [7]Ishihara S, Makita S, Imai M, et al. Relationship between natural killer activity and anger expression in patients with coronary heart disease. Heart Vessels,2003,18:85-92.
    [8]Dhabhar FS. Stress, leukocyte trafficking, and the augmentation of skin immune function. Ann N Y Acad Sci,2003,992:205-217.
    [9]Ogawa N, Kuwahara K. Psychophysiology of emotioncommunication of emotion. Jpn J Psychosom Med,1966,6:352-357.
    [10]Harrison-Findik DD, Schafer D, Klein E, etc.Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J Biol Chem,2006,281(32):22974-22982.
    [11]Pietrangelo A. Physiology of iron transport and the hemochromatosis gene. Am J Physiol Gastrointest Liver Physiol,2002,282:G403-414.
    [12]Furutani T, Hino K, Okuda M, et al. Hepatic iron overload induces hepatocellular carcinoma in transgenic mice expressing the hepatitis C virus polyprotein. Gastroenterology,2006,130: 2087-2098.
    [13]罗东林,周继红,刘宝华,黄显凯,许民辉,刘大维,邱俊,熊仁平.糖皮质激素受体与严重创伤后早期肝脏损害.中华创伤杂志,2002,18(8):467-469.
    [14]C.L. Wei, J. Zhou, X.Q. Huang, M. Li. Effect of psychological stress on serum iron and erythropoiesis. Int. J. Hematol,2008,88:52-56.
    [15]Testa U, Pelosi E,Peschle C.The transferrin receptor. Crit Rev Oncogenet,1993,4:241.
    [16]Hentze MW, Muckenthaler MU, AndrewS NC. Balancing acts:molecular control of mammalian iron metabolism. Cell,2004,117:285-297.
    [17]Harrison PM, Arosio P. The ferritins:molecular properties iron storage function and cellular regulation.Biochim Biophys Acta,1996,175:161.
    [18]Neme t h E, Tut t le MS, Powels on J, e t al. Hepcidin regulates iron efflux by binding to ferroportin and inducing its internalization. Science,2004,306:2090-2093.
    [19]Schalinske KL, Blem ings KP, Steffen DW, et al. Iron regulatory protein 1 is not required for the modulation of ferritin and transferrin receptor expression by iron in a murine pro-B lymphocyte cell line [J]. Proc N atl A cad Sci U SA,1997,94:10681-10686.
    [20]Roy CN, Blemings KP, Deck KM, e t al. Increased IRP1 and IRP2 RNA binding activity accompanies a reduction of the labile iron pool in HFE-expressing cells. J Cell Physiol,2002,190 (2):218-226.
    [21]Oliveira L, Drapier JC. Down-regulation of iron regulatory protein 1 gene expression by nitric oxide. Proc Natl Acad Sci USA,2000,97:6550-6555.
    [22]Starzynski RR, Lipinski P, Drapier JC, Diet A, Smuda E, Bartlomiejczyk T, Gralak MA, Kruszewski M. Down-regulation of iron regulatory protein 1 activities and expression in superoxide dismutase 1 knock-out mice is not associated with alterations in iron metabolism. J Biol Chem,2005,280:4207-4212.
    [23]Cairo G, Castrusini E, Minotti G. Superoxide and hydrogen peroxide-dependent inhibition of iron regulatory protein activity:a protective stratagem against oxidative injury. FASEB J, 1996(10):1326-1335.
    [24]Michelle L. Wallander, Elizabeth A. Leibold, Richard S. Eisenstein. Molecular control of vertebrate iron homeostasis by iron regulatory proteins. Biochimica et Biophysica Acta, 2006(1763):668-689.
    [1]Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts:molecular control of mammalian iron metabolism. Cell,2004(117):285-297.
    [2]Pantopoulos K. Iron metabolism and the IRE/IRP regulatory system:an update. Ann N Y Acad Sci,2004 (1012):1-13.
    [3]Qian ZM, Pu YM, Tang PL, Wang Q.Transferrin-bound iron uptake by the cultured cerebellar granule cells. Neurosci Lett,1998 (251):9-12.
    [4]Qian ZM, Liao QK, To Y, Ke Y, Tsoi YK, Wang GF, Ho KP.Transferrin-bound and transferrin free iron uptake by cultured rat astrocytes. Cell Mol Biol (Noisy-le-grand),2000(46): 541-548.
    [5]苗茂华,曲成毅.心理压力与认知——糖皮质激素的作用.International Chinese Neuropsychiatry Medicine Journal,2004,5(4):304-306.
    [6]丁寿根.应激过程中下丘脑-垂体-肾上腺轴的调控机理.国外医学军事医学分册,1994,11(1):9.
    [7]Xiuzhu Zhang, Jianqiong Xiong, Yuan Liu, Lin Zeng, Zaiyun Long, Liang Zhang. Effects of high dose glucocorticoid on expression of protein and mRNA transcription of corticotrophin releasing hormone in hypothalamus paraventricular nucleus of rats. Journal of Medical colleges of PLA,2006(21):30-33.
    [8]Kwo-Yih Yeh, Mary Yeh, Jonathan Glass. Glucocorticoids and dietary iron regulate postnatal intestinal heavy and light ferritin expression in rats. Am J Physiol Gastrointest Liver Physiol, 2000(278):217-226.
    [9]Roberts, K. P., M. D. Griswold. Characterization of rat transferrin receptor mRNA in testes and in Sertoli cells in culture. Mol. Endocr,1990(4):531-542.
    [10]Ulrike Ehlert, Jens Gaab, Markus Heinrichs. Psychoneuroendocrinological contributions to the etiology of depresion, posttraumatic stres disorder, and stress-related bodily diso rders:the role of the hypothalamus-pituitary-adrenal axis. Biological Psychology,2001,57(1-3):141.
    [11]Robert M. Sapolsky. Ghicocorticoids, stress, and their adverse neurological effects; relevance to aging. Experimental Gerontology,1999(34):721.
    [12]Simoncini T., Andrea R G. Non-genomic actions of sex steroid hormones. European Journal of Endocrinology,2003,148(3):281-292.
    [13]Florian P L, Liao J IC. Nontranscriptional actions of the glucocorticoid receptor. J Mol Med, 2003,81(3):168-174.
    [14]Andrews NC. Iron homeostasis:insights from genetics and animal models. Nat Rev Genet, 2000,1:208-217.
    [15]Harrison-Findik DD, Schafer D, Klein E, etc.Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J Biol Chem,2006,281(32):22974-22982.
    [16]Beinert H, Holm RH, Munck E. Iron-sulfur clusters:Nature's modular, multipurpose structures. Science,1997,277:653-659.
    [17]Zheng L, Cash VL, Flint DH, Dean DR. Assembly of ironsulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem,1998,273: 13264-13272.
    [18]Strain J, Lorenz CR, Bode J, et al. Identification of proteins predicted to mediate iron-sulfur cluster assembly. J Biol Chem,1998,273:31138-31144.
    [19]Land T, Rouault TA. Targeting of a human iron-sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol Cell, 1998,2:807-815.
    [20]Tong WH, Rouault T. Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J,2000,19:5692-5700.
    [21]Rouault TA, Klausner RD. Iron-sulfur clusters as biosensors of oxidants and iron. Trends Biochem Sci,1996,21:174-177.
    [22]Beinert H, Kiley P. Change of oxidation-state or assembly/disassembly of Fe-S clusters. FEBS Lett,1996,382:218-221.
    [23]Pantopoulos K, Hentze MWF. Rapid responses to oxidative stress mediated by iron regulatory protein. EMBO J,1995,14:2917-2924.
    [24]Tang CK, Chin J, Harford JB, Klausner RD, Rouault TA. Iron regulates the activity of the iron-responsive element binding protein without changing its rate of synthesis or degradation. J Biol Chem,1992,267:24466-24470.
    [25]Oliveira L, Drapier JC. Down-regulation of iron regulatory protein 1 gene expression by nitric oxide. Proc Natl Acad Sci USA,2000,97:6550-6555.
    [26]伍曼仪.铁代谢的调控.中国小儿血液,2005,10(1):43-46.
    [1]Hanson, E. S.; Leibold, E. A. Regulation of the iron regulatory proteins by reactive nitrogen and oxygen species. Gene Expr.1999,7:367-376.
    [2]Bouton, C. and Drapier, J. C. Iron regulatory proteins as NO signal transducers. Science STKE, 2003:182.
    [3]Drapier, J. C., Hirling, H., Wietzerbin, J., Kaldy, P. and Kuhn, L. C. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J,1993,12:3643-3649.
    [4]Martins, E. A., Robalinho, R. L. and Meneghini, R. Oxidative stress induces activation of a cytosolic protein responsible for control of iron uptake. Arch. Biochem. Biophys,1995,316: 128-134.
    [5]Schalinske, K. L., Anderson, S. A., Tuazon, P. T., Chen, O. S., Kennedy, M. C. and Eisenstein, R. S. The iron-sulfur cluster of iron regulatory protein 1 modulates the accessibility of RNA binding and phosphorylation sites. Biochemistry,1997,36:3950-3958.
    [6]Hanson, E. S. and Leibold, E. A. Regulation of iron regulatory protein 1 during hypoxia and hypoxia/reoxygenation. J. Biol. Chem,1998,273:7588-7593.
    [7]Andrew M. Thomson, Jack T. Rogers, and Peter J. Leedman. Thyrotropin-releasing Hormone and Epidermal Growth Factor Regulate Iron-regulatory Protein Binding in Pituitary Cells via Protein Kinase C-dependent and independent Signaling Pathways. J. Biol. Chem,2000,275: 31609-31615.
    [8]Morita K, Ishimura K, Tsuruo Y, et al. Dexamethasone enhances serum deprivation induced necrotic death of rat C6 glioma cells through activation of glucocorticoid receptors. Brain Res, 1999,816:309-316.
    [9]Tsai LC, Hung M W, Chang GC, et al. Apoptosis induced by the sodium butyrate in human gastric cancer TMK-1 cells. Anticancer Res,2000,20:2441-2448.
    [10]Lipi'nski, P., Drapier, J. C., Oliveira, L., Retmanska, H., Sochanowicz, B. and Kruszewski, M. Intracellular iron status as a hallmark of mammalian cell susceptibility to oxidative stress:a study of L5178Y mouse lymphoma cell lines differentially sensitive to H2O2. Blood,2000,95: 2960-2966
    [11]Bouton, C. and Drapier, J. C. Iron regulatory proteins as NO signal transducers. Science STKE,2003:182.
    [12]Bouton, C. and Drapier, J. C. Iron regulatory proteins as NO signal transducers. Science STKE,2003:182.
    [13]Neonaki, M., Graham, D. C., White, K. N. and Bomford, A. Down-regulation of liver iron-regulatory protein 1 in haemochromatosis. Biochem. Soc. Trans,2002,30:726-728.
    [14]Oliveira, L. and Drapier, J. C. Down-regulation of iron regulatory protein 1 gene expression by nitric oxide. Proc. Natl. Acad. Sci. U.S.A,2000,97:6550-6555.
    [15]Starzy'nski, R. R., Lipi'nski, P., Drapier, J. C., Diet, A., Smuda, E., Bartlomiejczyk, T., Gralak, M. A. and Kruszewski, M. Down-regulation of iron regulatory protein 1 activities and expression in superoxide dismutase 1 knock-out mice is not associated with alterations in iron metabolism. J. Biol. Chem,2005,280:4207-4212.
    [16]Pojuls L, Mul J, Roca-Ferrer J. Expression of glucocorticoid receptor alpha and beta isof-orms in human cells and tissues. Am J Physiol Cell Physiol,2002,283(4):C1 324-C1 331.
    [17]R. H. DeRik, M. Schaaf. E. R de Kloet. Glucocorticoid receptor variants:clinical implications. Jounal of Steriod Biochemistry and Molecular Biology,2002,81(2):103-122.
    [18]Seheinman RI, Cogswell PC, Lofquist AK. Role of transcriptional activation of 1 kappa B alpha in mediation of immunosuppression by glucocorticoids. Science,1995,270(5234):283-286.
    [19]李保春,崔若兰.系统性红斑狼疮患者外周血白细胞糖皮质激素受体及血浆皮质醇测定.中国病理生理杂志,1990,80:171.
    [20]Yoshimura A, Ichihara M, Kinjyo I, Moriyama M, Copeland NG, Gilbert DJ, Jenkins NA, Hara T, Miyajima A:Mouse oncostatin M:An immediate early gene induced by multiple cytokines through the JAK-STAT5 pathway. EMBO J,1996,15:1055-1063.
    [21]Ihle, JN. STATs:signal transducers and activators of transcription. Cell,1996,84:331-334.
    [22]Marc A. Kerenyi, Florian Grebien, Helmuth Gehart, Manfred Schifrer, Matthias Artaker, Boris Kovacic. STAT5 regulates cellular iron uptake of erythroid cells via 1RP-2 and TfR-1. Blood,2008,112:3878-3888.
    [23]Rafal Radoslaw STARZYNSKI, Ana Sofia GONC.ALVES(?), Franc,oise MUZEAU(?), Zofia TYROLCZYK, Ewa SMUDA, Jean-Claude DRAPIER(?), Carole BEAUMONT(?), Pawel LIPINSKI. STAT5 proteins are involved in down-regulation of iron regulatory protein 1 gene expression by nitric oxide. Biochem. J,2006,400:367-375.
    [24]Stocklin, E., Wissler, M., Gouilleux, F., and Groner, B. Functional interactions between STAT5 and the glucocorticoid receptor. Nature,1996,383:726-728,
    [25]Rogers RS,Horvath CM, Matunis MJ. SUMO modification of STAT1 and its role in PIAS-mediated inhibition of gene activation. J Biol Chem,2003,278:30091-30097.
    [1]FRAZER D M, WILKINS S J, BECKER E M, et al. A rapid decrease in the expression of DMT1 and Dcytb but not Iregl or hephaestin explains the mucosal block phenomenon of iron absorption. Gut,2003,52:340-346.
    [2]贾悦,董凌燕,铁元素在糖尿病中的作用[J].国外医学·内科学分册,2005年,31(5):201.
    [3]陈敏,田明浩.铁代谢异常与糖尿病关系的研究进展.国外医学内分泌学分册,2004,24(增 刊):43-46.
    [4]KANGJ O. Chronic iron overload and toxicity. Clin Lab Sci,2001,14(3):209-219.
    [5]TRINDER D, FOX C, VAUTIER G, et al. Molecular pathogenesis of iron overload. Gut, 2002,51:290-295.
    [6]ADAMS P C, REBOUSSIN D M, BARTON J C, et al. Hemochromatosis and iron-overload screening in a racially diverse population. New Engl J Med,2005,352:1769-1778.
    [7]BATTS K P. Iron overload syndromes and the liver. Mod Pathol,2007,20 (Suppl 1):S31-S39.
    [8]VALENTI L, PULIXI E A, AROSIO P, et al. Relative contribution of iron genes, dysmetabolism and hepatitis C virus (HCV) in the pathogenesis of altered iron regulation in HCV chronic hepatitis. Haematologica,2007,92(8):1037-1042.
    [9]CORRADINI E, FERRARA F, PIETRANGELO A. Iron and the liver. Pediatr Endocrinol Rev,2004,2(Suppl2):245-248.
    [10]ASARE G A, MOSSANDA K S, KEW M C, et al. Hepatocellular carcinoma caused by iron overload:a possible mechanism of direct hepatocarcinogenicity. Toxicol,2006,219(1-3):41-52.
    [11]PIPERNO A, D'ALBAI R, FARGION S, et al. Liver iron concentration in chronic viral hepatitis:a study of 98 patients. Eur J Gastroenterol Hepatol,1995,7(12):1203-1208.
    [12]曹治寰,白玉,杨学农,等.乙型肝炎肝损伤中铁代谢异常的研究.中华肝脏病杂志,2001,9(1):37-39.
    [13]GIANNINIE,MASTRACCIL,BOTTA F, et al. Liver iron accumulation in chronic hepatitis C patients without HFE mutations:relationships with histological damage, viral load and genotype and alphaglutathione S-transferase levels. Eur J Gastroenterol hepatol,2001,13(11):1355-1361.
    [14]THORBU RN D, CU RR Y G, SPOON ER R, et al. The role of iron and haemochromatosis gene mutations in the progression of liver disease in chronic hepatitis C. Gut, 2002,50 (2):248-252.
    [15]ER HARD T A,MA SCHN EROLB ER G A,MELL EN THIN C, et al. HFE mutations and chronic hepatitis C:H63D and C282Y heterozygosity are independent risk factors for liver fibrosis and cirrhosis. J Hepatol,2003,38(3):335-342.
    [16]SUMIDA Y, NA KA SHMA T, YO HT, et al. Serum thioredoxin elucidates the significance of serum ferritin as a marker of oxidative stress in chronic liver diseases. Liver,2001,215: 295-299.
    [17]BA YRA KTARY, KOSEO GLUT, TEMIZER A, et al. Relationship between the serum alanine aminotransferase level at the end of interferon treat ment and histologic changes in wild-type and precore mutant hepatitis B virus infections. J Viral Hepat,1996,3(3):137-142.
    [18]OL YN YK J K, REDD Y K R, DI BISCE GL IE A M, et al. Hepatic iron concentration as a predictor of response to interferon alfa therapy in chronic hepatitis C. Gastroenterology,1995,108(4):1104-1109.
    [19]PIAN KOS, MCHUTCHISON J G, GORDON S C, et al. Hepatic iron concentration does not influence response to therapy with interferon plus ribavirin in chronic HCV infection. J Interferon Cytokine Res,2002,22 (4):483-489.
    [20]YANO M, HA YA SHI H, WA KU SAWA S, et al. Long term effects of phlebotomy on biochemical and histological parameters of chronic hepatitis C. Am J Gastroenterol,2002,97 (1):133-137.
    [21]FARGION S, FRACANZANI A L, ROSSINI A, et al. Iron reduction and sustained response to interferon-alpha therapy in patients with chronic hepatitis C:results of an Italian multicenter randomized study. Am J Gast roenterol,2002,97(5):1204-1210.
    [22]DI BISCEGLIE A M, BON KOVSKY H L, CHOPRA S, et al. Iron reduction as an adjuvant to interferon t herapy in patients with chronic hepatitis C who have previously not responded to interferon:a multicenter, prospective, randomized, cont rolled trial. Hepatology,2000,32(1): 135-138.
    [23]FONTANA R J, ISRAEL J, L ECLAIRI P, et al. Iron reduction before and during interferon t herapy of chronic hepatitis C:result s of a multicenter, randomized, controlled trial. Hepatology,2000,31(3):730-736.
    [24]SUZU KI Y, SAITO H, SUZU KI M,et al. Up-regulation of transferrin receptor expression in hepatocytes by habitual alcohol drinking is implicated in hepatic iron overload in alcoholic liver disease. Alcohol Clin Exp Res,2002,26 (8):26-31.
    [25]DE FEO TM, FARGION S,DUCA L, et al. Non-transferrin-bound iron in alcohol abusers. Alcohol Clin Exp Res,2001,25(10):1494-1499.
    [26]BEUTELSPACHER S C, SERBECIC N, TAN P H, et al. Low dose ethanol modulates toxic effect of iron-overloading in the liver. J Nut r Sci Vitaminol,2004,50 (2):78-86.
    [27]Harrison-findik DD, Klein E, Evans J, et al. Regulation of liver hepcidin expression by alcohol in vivo does not involve kupffer cell activation or TNF-alpha signaling. Am J Physiol Gastrointest Liver Physiol,2009,296:112-118.
    [28]Ohtake T, Saito H, Hosoki Y, et al. Hepcidin is down-regulated in alcohol loading. Alcohol Clin Exp Res,2007,31 (1):S2-S8.
    [29]Harrison-findik DD, Schafer D, Klein E, et al. Alcohol metabolismmediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J Biol Chem,2006,281:22974-22982.
    [30]Harrison-findik DD. Role of alcohol in the regulation of iron metabolism. World J Gastroenterol,2007,13:4925-4930.
    [31]Fuch J, PoddaM, PacherL. Morbidity risk in HFE associated hereditary hemochromatosis C282Y heterozygotes. Toxicology,2002,180 (2):169-181.
    [32]Hramiak IM, Finegood DT, Adams PC. Factors affecting glucose tolerance in hereditary hemochromatosis. Clin Invest Med,1997,20 (4):110-118.
    [33]Niederau C, Strohmeyer G. Strtegies for early diagnosis of haemochromatosis. Eur J Gastroenterol Hepatol,2002,14(3):223-229.
    [34]Cario H, Holl RW,Debatin KW, et al. Insulin Sensitivity and bete cell secretion in thalassaemia major with secondary haemochromatosis:assessment by oral glucose tolerance test. Eur J Pediatr,2003,162 (3):139-146.
    [35]Chern JP, Lin KH, Lu MY, et al. Abnormal glucose tolerance in transfusion-dependent beta-thalassemic patients. Diabetes Care,2001,24 (3):850-854.
    [36]MacDOnald GA, Bridle KR,Ward PJ. Lipid peroxidation inhepatic steatosis in humans is associated with hepatic fibrosis and occurs predominately in acinar zone 3. J Gastroenterol Hepatol,2001,16 (1):599-606.
    [37]李辉,王炳元.铁过负荷与脂肪肝.现代医药卫生,2004,20(8):630-631.
    [38]徐光福,葛桂珍,李澎涛.铁剂诱发大鼠肝纤维化的组织学变化.世界华人消化杂志,2004,12(3):7142718.
    [39]Fernandez2Real JM, Pelarroja G, Castro A. Blood letting in high-ferritin type 2 diabetes: effects on insulin sensitivity and beta cell function. Diabetes,2002,51 (4):1000-1004.
    [40]贾国存,汤有才,廖清奎,等.铁剥夺对白血病细胞凋亡相关基因表达的影响.实用儿 科临床杂志,2005,20(1):16-17.
    [41]Bus s JL, Tor t i FM, Tor t i SV. The role of iron chelation in cancer therapy. Curr Med Chem,2003,10(12):1021-1034.
    [42]Kawabat a H, Na kama ki T, Ikonomi P. Exp ression of transferrin receptor 2 in normal and neoplastic hematopoietic cells. Blood,2001,98(9):2714-2719.
    [43]Dr ys dale J, Arosio P, Inve r nizzi R. Mitochondrial ferritin:a new player in iron metabolism. Blood Cells Mol Dis,2002,29 (3):376-383.
    [44]Wu KJ, Polack A, Ricca rdo DF. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by C-myc. Science,1999,283:676-679.
    [45]Weintein DA, Roy CN, Flemi ng MD. Inappropriate expression of hepcidin is associated with iron refractory anemia:implications for the anemia of chronic disease. Blood,2002,100(10): 3776-3781.
    [46]周密,廖清奎,李丰益,等.促红细胞生成素增加K562细胞转铁蛋白受体的表达及其对细胞周期的影响.中华儿科杂志,2003,41(7):528-530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700