用户名: 密码: 验证码:
高温溶剂法制备半导体纳米晶及其发光调制和形貌控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Synthesis of Semiconductor Nanocrystals with Controllable Morphology and Tunable Emission via High Boiling Point Organic Solvents
  • 作者:王洪哲
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2010
  • 导师:杨文胜 ; 杜祖亮
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2010-06-01
摘要
纳米粒子是纳米技术研究中的一个基本单元,它给人们提供了研究与尺寸相关特性的合适对象,因此,纳米粒子在纳米材料中也占有特别重要的地位,同时在能源、医药卫生、电子和计算机、环境保护、新材料设计等领域也都有着非常广泛的应用前景。近年来针对半导体纳米粒子(纳米晶)的制备方法、合成机理的研究一直是科研工作者所关注的领域,尤其以利用高温溶剂法制备半导体纳米晶所开展的研究工作为代表。目前合成纳米晶材料在前驱体的使用上有相对固定的选择,如在涉及CdSe纳米晶的制备中,除了早期毒性较大的有机金属盐(比如二甲基镉)外,大都选择氧化镉作为镉的前驱物,其它的离子型化合物则很少涉及;在含汞近红外发射半导体纳米晶的制备上,由于其高温下不稳定的特点,室温合成路线就具有很大的优势,但相应的研究报道却很少;在其它诸如金属氧化物半导体纳米晶的制备过程中的一些重要参数如介质的选择、反应温度的调节、反应时间的控制以及表面活性剂的运用对反应的结果都具有直接而重要的影响,如何通过相关实验的设计,深入理解其中相关参数的作用,从而更加有效地开展纳米晶的可控及规模合成也是目前合成、制备研究中亟待解决的问题。
     本论文即以上述问题为出发点,在高温溶剂法的基础上主要开展相关的合成研究及部分性质表征工作,主要包括以下内容:
     (1)选用离子型镉源作前驱体成功的在较低的反应温度下制备了ZnSe/CdSe复合结构纳米晶,并对其发光机理进行了深入的探讨。在此基础上,结合当前“绿色”环保的要求,开展了低毒、高效、低能耗的合成方法研究,针对目前广泛采用的含膦化合物的合成方法,创新性的采用无膦化合物的合成路线制备了较高质量的ZnSe纳米晶并开展了基于宽带隙ZnSe半导体纳米晶的过渡族元素中心掺杂体系ZnSe:Cu/ZnSe/ZnS复合结构纳米晶的绿色合成制备。通过Cu~(2+)的引入,实现了对ZnSe纳米晶的荧光发射的有效调节。适当厚度的ZnS壳层则可以很好的钝化粒子表面,从而提高荧光发射强度;通过采用不同粒径的ZnSe纳米晶为核,该复合结构纳米晶的发射波长可在480~520 nm的范围内实现连续调节。
     (2)探索了室温环境下高质量近红外纳米晶的制备。在CdTe纳米晶结构控制合成的基础上,采用室温离子交换的间接制备方法实现了HgCdTe近红外纳米晶的制备,并进一步实现了具有近红外发射的HgTe纳米晶的室温合成。
     (3)利用高温热解等方法制备了一系列的金属氧化物等化合物,在探索新合成方法的同时,着重探讨了反应温度、复合表面活性剂的使用以及前驱物的选择对产物结构、成分和性质的影响,并对其机理也进行了相应的探讨。以上工作的开展为下一步开展基于纳米晶的器件研究奠定了基础。
Nanoscience and nanotechnology have emerged to become one of the most exciting areas of research today and have attracted the imagination of a large number of researchers. The study on the preparation and properties of nanomaterials is the most active and most important part of applicable nanotechnology and it also constitutes the basic base of nanoscience. Nanoparticles are basic research elements for nanotechnology and nanocrystals occupy a special place amongst nanomaterials because the have enabled a proper study of size-dependent properties. Nanoparticles constitute the building blocks for nanotechnology and thus for numerous potential applications in fields such as energy and power, health and biomedicine, electronics and environmental applications, new engineering materials.
     The synthesis and preparation of nanomaterials are the primary foundation for researches of their applications, and the choose of reaction parameters such as solvents, reaction temperature, reaction time and the use of surfactants has important and direct effects on the results of reactions. The understanding of the reaction mechanism and some key factors in the progress of nuclea an growth will greatly help us to develop the new synthetic concept towards efficiently controllable scale-up preparation of nanocrystals through the elaborately design of synthesis procedures,. The dissertation focuses on the study of high temperature synthetic route and the effects of experimental parameters such as temperature, surfactants and precursors on the morphology, composition and properties of as-synthesized nanocrystals, correspondingly. The mechanism for the formation nanocrystals were discussed as well. Some representative nanocrystals systems including visible and infra-red emission semiconductor nanocrystals, metal chalcogenides nanocrystals and related nanocomposites, and metal oxides nanocrystals were used as the research subjects by meanse of the high boiling-point organic solvent procedure.
     In comparison with organic dyes and fluorescent proteins, quantum dots have unique optical and electronic properties including narrow size-tunable light emission, improved signal brightness, resistance against photobleaching, and simultaneous excitation of multiple fluorescence colors. In chapter 2, based on previous work of phosphine-route synthesis of ZnSe nanocrystals, ZnSe/CdSe core-shell nanocrystals were successfully synthesized by utilizing Se (Se-TBP) in pre-prepared ZnSe precursors by the introduction of Cd~(2+). The crystal structures, shapes and optical properties of as-synthesized nanocrystals were characterized by X-ray diffraction, transmission electron microscopy, UV-vis absorption and photoluminescence spectroscopies. The results indicate that the epitaxial growth of CdSe shell onto ZnSe nanocrystals led to the formation of ZnSe/CdSe core-shell structures with well-crystallized and the tunable PL emission peak from 500 nm to 620 nm by tuning the size of cores or the thickness of shells. A band-gap offset structure which was feathered by either reverse Type-I or Type-II was proposed to be responsible for the red-shift of PL emission. For the synthesis of high quality ZnSe nanocrystals, we developed a so-called“phosphine-free”approach where Se-ODE and zinc stearate were adopted as precursors for the preparation of ZnSe nanocrystals with various sizes. Susequently, the new PL windows covering from 480 to 520 nm was obtained by diffusing the Cu into as-synthesized ZnSe nanocrystals with different sizes. The PL efficiency was improved by coating the ZnS shell onto the ZnSe:Cu/ZnSe nanocrystals ,
     In chapter 3, we start from the morphology controllable synthesis of CdTe nanocrystals with multi-pods were obtained during the early stage of reaction. With increasing reaction time, the system entered into the Ostwald ripening regime and the tetrapod CdTe nanocrystals were then transformed into dot shaped particles. Besides high initial concentration of cadmium precursor and high ratio (up to 10) of Cd~(2+) to Te-TOP, ODA was found to be an activator and play a key role for forming zinc-blende CdTe tetrapods right after the injection due to activating cadmium-oleic acid precursors The PL efficiency of the nanocrystals was very low in the early stage of the reaction. The fast growth of the nanocrystals could cause many defects on the surface sites. The ripening process could modify the surface of the nanocrystals and generate a perfect surface so that the nanocrystals emitted strong PL. On the basis of tetrapod and particle CdTe nanocrystals synthesis, we adopted a simple cation exchange process to obtain infra-red emission HgCdTe nanocrystals by facile treatment on as-synthesized CdTe nanocrystals under room temperature. Through the comparation of cation exchange results, we found that the morphologies of CdTe precursors were well preserved as well as the good crystallinity. The introduction of Hg~(2+) ions into CdTe system resulted in a red-shift of PL to longer wavelength of about 827 nm for the maximum. In addation, we also tried the direct synthesis of fluorescent nanocrystals which were feathered with infrared characteristics. Monodisperse zinc blende HgTe nanocrystals were successfully synthesized at room temperature in noncoordinate organic solvent of ODE. Thiol was applied to control the reaction at a suitable nucleation and growth speed. In the early stage of the reaction, HgTe nanocrystals formed aggregates, and then became individual dot-shaped nanocrystals with stronger photoluminescence emission.
     In chapter 4, we prepared Cu, Cu_2S and CdS/Cu_2S core/shell nanocrystals in organic solvents and characterized as-prepared nanocrystals by TEM, XRD etc. For the preparation of copper nanoparticles, copper oleate was used as precursor and copper nanoparticles were obtained through the thermolysis of precursor at elevated temperature. The influences of applied reaction temperature on the final product were also tested. Monodisperse Cu_2S nanocrystals were also prepared with copper stearate and dodecanthiol act as copper and sulfur sources, respectively. The as-synthesized Cu_2S nanocrystals exhibit some kind of self-assemble characteristic under specific conditions. The composite of CdS/Cu_2S in form of hybrid film is a traditional solar cell material. At last, based on the synthesis of Cu_2S nanocrystals, we also tried the preparation of CdS/Cu_2S core/shell composite nanocrystals, and the red shift of its PL compared with CdS was explained by the bandgap offset between CdS and Cu_2S.
     The major work of the last chapter deals with the preparation of metal oxide nanocrystals in noncoordinating solvent of paraffin oil with metal acetylacetonate as precursors and OA, OAm and dodecanol as composite ligands, respectively. The general growth model of nanocrystals involves two steps, which ideally should occur separately: the nucleation of the nanocrystals and the actual process of growth were realized by injection of additional paraffin oil during the initial stage of reaction. The size of as-synthesized CoO and MnO nanocrystals can be easily adjusted by regulating the reaction temperature and reaction time. Novel structure of CoO such as flower-like morphology can be achieved by slowering the injection speed of paraffin oil, which was used to lower the temperature and steer the reaction into the second stage for nanocrystals growth. In the case of manganese oxide synthesis, a serial of experiments with different reaction temperatures were conducted to investigate the role of different surfactants during the thermal decomposition of metal acetylacetonates. The results indicate that the reaction temperature and the methods used to adjust the temperature and had an important effect on the formation of products. Especially the use of ligands is the guarantee for the preparation of monodisperse nanocrystals.
引文
[1] NIEMEYER C M. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science[J]. Angew. Chem. Int. Ed, 2001,40(22): 4128-4158.
    [2] HENGLEIN A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles[J]. Chemical Reviews, 1989,89(8): 1861-1873.
    [3] BAWENDI M G, STEIGERWALD M L, BRUS L E. The quantum mechanics of larger semiconductor clusters (" quantum dots")[J]. Annual Review of Physical Chemistry, 1990,41(1): 477-496.
    [4] WANG Y. Nonlinear optical properties of nanometer-sized semiconductor clusters[J]. Accounts of Chemical Research, 1991,24(5): 133-139.
    [5] WANG Y. Local field effect in small semiconductor clusters and particles[J]. The Journal of Physical Chemistry, 1991,95(3): 1119-1124.
    [6] BALL P, GARWIN L. Science at the atomic scale[J]. Nature, 1992,355: 761-766.
    [7] HAASE M, WELLER H, HENGLEIN A. Photochemistry of colloidal semiconductors. 26. Photoelectron emission from cadmium sulfide particles and related chemical effects[J]. The Journal of Physical Chemistry, 1988,92(16): 4706-4712.
    [8] HILINSKI E F, LUCAS P A, WANG Y. A picosecond bleaching study of quantum-confined cadmium sulfide microcrystallites in a polymer film[J]. Journal of Chemical Physics, 1988,89(6): 3435-3441.
    [9] WANG Y, SUNA A, MCHUGH J, et al. Optical transient bleaching of quantum‐confined CdS clusters: The effects of surfacet-rapped electron–hole pairs[J]. Journal of Chemical Physics, 1990,92(11): 6927-6939.
    [10]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001.
    [11] SUNDARESAN A, BHARGAVI R, RANGARAJAN N, et al. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides[J]. Physical Review B, 2006,74(16): 161306.
    [12] MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society, 1993,115(19): 8706-8715.
    [13] BECERRA L R, MURRAY C B, GRIFFIN R G, et al. Investigation of the surface-morphology of capped CdSe nanocrystallites by P-31 nuclear-magnetic-resonance[J]. J. Chem. Phys, 1994,100: 3297-3300.
    [14] ARAKI S, SANO M, LI S, et al. Which spin valve for next giant magnetoresistance head generation?[J]. Journal of Applied Physics, 2000,87(9): 5377-5382.
    [15] INOMATA K. Giant magnetoresistance and its sensor applications[J]. Journal of Electroceramics, 1998,2(4): 283-293.
    [16] ZIOLO R F, GIANNELIS E P, WEINSTEIN B A, et al. Matrix-mediated synthesis of nanocrystalline ?-Fe2O3: A new optically transparent magnetic material[J]. Science, 1992,257(5067): 219-223.
    [17] PECHENIK A, PIERMARINI G J, DANFORTH S C. Fabrication of transparent silicon nitride from nanosize particles[J]. Journal of the American Ceramic Society, 1992,75(12): 3283-3288.
    [18] KOSHIDA N, KOJIMA A, MIGITA T, et al. Multifunctional properties of nanocrystalline porous silicon as a quantum-confined material[J]. Materials Science & Engineering C, 2002,19(1-2): 285-289.
    [19] BERGER S, PORAT R, ROSEN R. Nanocrystalline materials: A study of WC-based hard metals[J]. Progress in Materials Science, 1997,42(1-4): 311-320.
    [20] SHAO G Q, WU B L, DUAN X L, et al. Nanocrystalline grains and superfine particles of tungsten carbide-cobalt powder[J]. Ceramic Transactions, 2000,115: 375-383.
    [21] JORTNER J, RAO C N R. Nanostructured advanced materials. Perspectives and directions[J]. Pure and Applied Chemistry, 2002,74(9): 1491-1506.
    [22] FAHLMAN B D. Materials Chemistry; Mount Pleasant. 2007: 282-283.
    [23] PARK J, JOO J, KWON S G, et al. Synthesis of monodisperse spherical nanocrystals[J]. Angewandte Chemie-International Edition, 2007,46(25): 4630-4661.
    [24] JUN Y, CHOI J, CHEON J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes[J]. Angewandte Chemie-International Edition, 2006,45(21): 3414-3439.
    [25] PILENI M P. Nanosized particles made in colloidal assemblies[J]. Langmuir, 1997,13(13): 3266-3276.
    [26] WANG X, PENG Q, LI Y. Interface-mediated growth of monodispersed nanostructures[J]. Accounts of Chemical Research, 2007,40(8): 635-643.
    [27] BISWAS K, RAO C N R. Use of ionic liquids in the synthesis of nanocrystals and nanorods of semiconducting metal chalcogenides[J]. CHEMISTRY-WEINHEIM-EUROPEAN JOURNAL, 2007,13(21): 6123.
    [28] ALFASSI Z, BAHNEMANN D, HENGLEIN A. Photochemistry of colloidal metal sulfides. 3. Photoelectron emission from cadmium sulfide and cadmium sulfide-zinc sulfide cocolloids[J]. The Journal of Physical Chemistry, 1982,86(24): 4656-4657.
    [29] ROSSETTI R, NAKAHARA S, BRUS L E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of cadmium sulfide crystallites in aqueous solution[J]. Journal of Chemical Physics, 1983,79(2): 1086-1088.
    [30] NOZIK A J, WILLIAMS F, NENADOVIC M T, et al. Size quantization in small semiconductor particles[J]. J. Phys. Chem, 1985,89: 397-399.
    [31] ROSSETTI R, HULL R, GIBSON J M, et al. Excited electronic states and optical spectra of ZnS and CdS crystallites in the 15 to 50A size range: Evolution from molecular to bulk semiconducting properties[J]. The Journal of Chemical Physics, 1985,82: 552-559.
    [32] PENG Z A, PENG X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor[J]. Journal of America Chemical Society, 2001,123(1): 183-184.
    [33] PENG X. Green chemical approaches toward high-quality semiconductor nanocrystals[J]. Chemistry - A European Journal, 2002,8(2): 334-339.
    [34] TALAPIN D V, ROGACH A L, KORNOWSKI A, et al. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine- trioctylphosphine oxide-Trioctylphospine mixture[J]. Nano Letters, 2001,1(4): 207-211.
    [35] QU L, PENG Z A, PENG X. Alternative routes toward high quality CdSe nanocrystals[J]. Nano Letters, 2001,1(6): 333-337.
    [36] YU W W, PENG X. Formation of high-quality cds and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers[J]. Angewandte Chemie(International ed. Print), 2002,41(13): 2368-2371.
    [37] BATTAGLIA D, PENG X. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent[J]. Nano Letters, 2002,2(9): 1027-1030.
    [38] MATHEW X, THOMPSON G W, SINGH V P, et al. Development of CdTe thin films on flexible substrates: a review[J]. Solar Energy Materials and Solar Cells, 2003,76(3): 293-303.
    [39] LANDOLT-BORNSTEIN N D. Functional relationships in science and technology, Vol. I, edited by AM Hellwege and KH Hellwege [M]. Springer-Verlag Berlin-Gottingen-Heidelberg. 1961.
    [40] MITCHELL K, FAHRENBRUCH A L, BUBE R H. Photovoltaic determination of optical-absorption coefficient in CdTe[J]. Journal of Applied Physics, 1977,48: 829.
    [41] WU X. High-efficiency polycrystalline CdTe thin-film solar cells[J]. Solar Energy, 2004,77(6): 803-814.
    [42] DIDENKO Y T, SUSLICK K S. Chemical aerosol flow synthesis of semiconductor nanoparticles[J]. Journal of America Chemical Society, 2005,127(35): 12196-12197.
    [43] YANG Y A, WU H, WILLIAMS K R, et al. Synthesis of CdSe and CdTe nanocrystals without precursor injection[J]. Angewandte Chemie International Edition, 2005,44: 6712-6715.
    [44] ZHANG H, WANG L, XIONG H, et al. Hydrothermal synthesis for high-quality CdTe nanocrystals[J]. Advanced Materials, 2003,15(20): 1712-1715.
    [45] WUISTER S F, DRIEL F, MEIJERINK A. Luminescence and growth of CdTe quantum dots and clusters[J]. Physical Chemistry Chemical Physics, 2003,5(6): 1253-1258.
    [46] GAPONIK N, TALAPIN D V, ROGACH A L, et al. Thiol-capping of CdTe Nanocrystals: An alternative to organometallic synthetic routes[J]. The Journal of Physical Chemistry B, 2002,106(29): 7177-7185.
    [47] TALAPIN D V, HAUBOLD S, ROGACH A L, et al. A Novel organometallic synthesis of highly luminescent CdTe nanocrystals[J]. The Journal of Physical Chemistry B, 2001,105(12): 2260-2263.
    [48] KUMAR S, NANN T. Hexagonal CdTe nanoparticles of various morphologies[J]. Chemical Communications, 2003,2003(19): 2478-2479.
    [49] PEHNT M, SCHULZ D L, CURTIS C J, et al. Nanoparticle precursor route to low-temperature spray deposition of CdTe thin films[J]. Applied Physics Letters, 1995,67: 2176.
    [50] SCHREDER B, SCHMIDT T, PTATSCHEK V, et al. CdTe/CdS clusters with“core-shell”Structure in colloids and films: The path of formation and thermal breakup[J]. The Journal of Physical Chemistry B, 2000,104(8): 1677-1685.
    [51] SHEN M Y, ODA M, GOTO T. Direct evidence for photoionization in CdTe nanocrystals embedded in trioctylphosphine oxide[J]. Physical Review Letters, 1999,82(19): 3915-3918.
    [52] HU J, LI L, YANG W, et al. Linearly polarized emission from colloidal semiconductor quantum rods[J]. Science, 2001,292(5524): 2060.
    [53] KAN S, MOKARI T, ROTHENBERG E, et al. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods[J]. Nature Materials, 2003,2(3): 155-158.
    [54] MILLO O, KATZ D, STEINER D, et al. Charging and quantum size effects in tunnelling and optical spectroscopy of CdSe nanorods[J]. Nanotechnology, 2004,15(1): R1-R6.
    [55] HUYNH W U, DITTMER J J, ALIVISATOS A P. Hybrid nanorod-polymer solar cells[J]. Science, 2002,295(5564): 2425-2427.
    [56] GUR I, FROMER N A, GEIER M L, et al. Air-stable all-inorganic nanocrystal solar cells processed from solution[J]. Science, 2005,310(5747): 462-465.
    [57] SUN J, WANG L-W, BUHRO W E. Synthesis of cadmium telluride quantum wires and the similarity of their effective band gaps to those of equidiameter cadmium telluride quantum dots[J]. Journal of the American Chemical Society, 2008,130(25): 7997-8005.
    [58] CUI Y, BANIN U, BJORK M T, et al. Electrical transport through a single nanoscale semiconductor branch point[J]. Nano Letters, 2005,5(7): 1519-1523.
    [59] GUR I, FROMER N A, CHEN C-P, et al. Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals[J]. Nano Letters, 2006,7(2): 409-414.
    [60] MANNA L, MILLIRON D J, MEISEL A, et al. Controlled growth of tetrapod-branched inorganic nanocrystals[J]. Nature Materials, 2003,2(6): 382-385.
    [61] TAR D, DE GIORGI M, DELLA SALA F, et al. Optical properties of tetrapod-shaped CdTe nanocrystals[J]. Applied Physics Letters, 2005,87: 224101.
    [62] LI L S, PRADHAN N, WANG Y, et al. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors[J]. Nano Letters, 2004,4(11): 2261-2264.
    [63] JOO J, NA H B, YU T, et al. Generalized and facile synthesis of semiconducting metal sulfide nanocrystals[J]. Journal of the American Chemical Society, 2003,125(36): 11100-11105.
    [64] WARNER J H, TILLEY R D. Synthesis and self-assembly of triangular and hexagonal CdS nanocrystals[J]. Advanced Materials, 2005,17(24): 2997-3000.
    [65] CHENG Y, WANG Y, BAO F, et al. Shape control of monodisperse CdS nanocrystals:? Hexagon and pyramid[J]. The Journal of Physical Chemistry B, 2006,110(19): 9448-9451.
    [66] COZZOLI P D, MANNA L, CURRI M L, et al. Shape and phase control of colloidal ZnSe nanocrystals[J]. Chemistry of Materials, 2005,17(6): 1296-1306.
    [67] DENG Z, CAO L, TANG F, et al. A new route to zinc-blende CdSe nanocrystals: Mechanism and synthesis[J]. The Journal of Physical Chemistry B, 2005,109(35): 16671-16675.
    [68] JASIENIAK J, BULLEN C, VAN EMBDEN J, et al. Phosphine-free synthesis of CdSe nanocrystals[J]. The Journal of Physical Chemistry B, 2005,109(44): 20665-20668.
    [69] MOHAMED M B, TONTI D, AL-SALMAN A, et al. Synthesis of high quality zinc blende CdSe nanocrystals[J]. The Journal of Physical Chemistry B, 2005,109(21): 10533-10537.
    [70] SAPRA S, ROGACH A L, FELDMANN J. Phosphine-free synthesis of monodisperse CdSe nanocrystals in olive oil[J]. Journal of Materials Chemistry, 2006,16(33): 3391-3395.
    [71] CELIK A, COMELEKOGLU U, YALIN S. A study on the investigation of cadmium chloride genotoxicity in rat bone marrow using micronucleus test and chromosome aberration analysis[J]. Toxicology and Industrial Health, 2005,21(9): 243-248.
    [72] DERFUS A M, CHAN W C W, BHATIA S N. Probing the cytotoxicity of semiconductor quantum dots[J]. Nano Letters, 2003,4(1): 11-18.
    [73] HINES M A, GUYOT-SIONNEST P. Bright UV-Blue luminescent colloidal ZnSe nanocrystals[J]. The Journal of Physical Chemistry B, 1998,102(19): 3655-3657.
    [74] REISS P, QUEMARD G, CARAYON S, et al. Luminescent ZnSe nanocrystals of high color purity[J]. Materials Chemistry & Physics, 2004,84(1): 10-13.
    [75]戴全钦. CdSe等半导体纳米晶的合成及性质研究[D].长春:吉林大学超硬材料国家重点实验室, 2007.
    [76] NORRIS D J, YAO N, CHARNOCK F T, et al. High-quality manganese-doped ZnSe nanocrystals[J]. Nano Letters, 2000,1(1): 3-7.
    [77] SUYVER J F, WUISTER S F, KELLY J J, et al. Luminescence of nanocrystalline ZnSe: Mn2+[J]. Physical Chemistry Chemical Physics, 2000,2(23): 5445-5448.
    [78] PRADHAN N, PENG X. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters:?Control of optical performance via greener synthetic chemistry[J]. Journal of the American Chemical Society, 2007,129(11): 3339-3347.
    [79] PRADHAN N, GOORSKEY D, THESSING J, et al. An alternative of CdSe nanocrystal emitters: Pure and tunable impurity emissions in ZnSe nanocrystals[J]. Journal of the American Chemical Society, 2005,127(50): 17586-17587.
    [80] SON D H, HUGHES S M, YIN Y, et al. Cation exchange reactions in ionic nanocrystals[J]. Science, 2004,306(5698): 1009-1012.
    [81] ROBINSON R D, SADTLER B, DEMCHENKO D O, et al. Spontaneous superlattice formation in nanorods through partial cation exchange[J]. Science, 2007,317(5836): 355-358.
    [82] KLIMOV V I, MIKHAILOVSKY A A, XU S, et al. Optical gain and stimulated emission in nanocrystal quantum dots[J]. Science, 2000,290(5490): 314-317.
    [83] HARRISON M T, KERSHAW S V, ROGACH A L, et al. Wet chemical synthesis of highly luminescent HgTe/CdS core/shell nanocrystals[J]. Advanced Materials, 2000,12(2): 123-125.
    [84] HARRISON M T, KERSHAW S V, BURT M G, et al. Colloidal nanocrystals for telecommunications. Complete coverage of the low-loss fiber windows by mercury telluride quantum dots[J]. Pure and Applied Chemistry, 2000,72(1/2): 295-308.
    [85] HIGGINSON K A, KUNO M, BONEVICH J, et al. Synthesis and characterization of colloidalβ-HgS quantum dots[J]. The Journal of Physical Chemistry B, 2002,106(39): 9982-9985.
    [86] KUNO M, HIGGINSON K A, QADRI S B, et al. Molecular clusters of binary and ternary mercury chalcogenides: Colloidal synthesis, characterization, and optical spectra[J]. The Journal of Physical Chemistry B, 2003,107(24): 5758-5767.
    [87] BRENNAN J G, SIEGRIST T, CARROLL P J, et al. Bulk and nanostructure Group II-VI compounds from molecular organometallic precursors[J]. Chemistry of Materials, 1990,2(4): 403-409.
    [88] GREEN M, WAKEFIELD G, DOBSON P. A simple metalorganic route to organically passivated mercury telluride nanocrystals[J]. Journal of Materials Chemistry, 2003,13(5): 1076-1078.
    [89] PIEPENBROCK M-O M, STIRNER T, KELLY S M, et al. A Low-temperature synthesis for organically soluble HgTe nanocrystals exhibiting near-infrared photoluminescence and quantum confinement[J]. Journal of the American Chemical Society, 2006,128(21): 7087-7090.
    [90] KOKTYSH D S, GAPONIK N, REUFER M, et al. Near-infrared electroluminescence from HgTe nanocrystals[J]. ChemPhysChem, 2004,5(9): 1435-1438.
    [91] GAPONIK N, TALAPIN D V, ROGACH A L, et al. Efficient phase transfer of luminescent thiol-capped nanocrystals: From water to nonpolar organic solvents[J]. Nano Letters, 2002,2(8): 803-806.
    [92] PAPPAS T C, WICKRAMANYAKE W M S, JAN E, et al. Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons[J]. Nano Letters, 2006,7(2): 513-519.
    [93] TSAY J M, PFLUGHOEFFT M, BENTOLILA L A, et al. Hybrid approach to the synthesis of highly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals[J]. Journal of the American Chemical Society, 2004,126(7): 1926-1927.
    [94] HARAM S K, MAHADESHWAR A R, DIXIT S G. Synthesis and characterization of copper sulfide nanoparticles in triton-x100 water-in-Oil microemulsions[J]. The Journal of Physical Chemistry, 1996,100(14): 5868-5873.
    [95] ZHANG P, GAO L. Copper sulfide flakes and nanodisks[J]. Journal of Materials Chemistry, 2003,13(8): 2007-2010.
    [96] LARSEN T H, SIGMAN M, GHEZELBASH A, et al. Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor[J]. Journal of the American Chemical Society, 2003,125(19): 5638-5639.
    [97] SIGMAN M B, GHEZELBASH A, HANRATH T, et al. Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets[J]. Journal of the American Chemical Society, 2003,125(51): 16050-16057.
    [98]张瑞峰,杜有如.硫化镉太阳能电池的工艺研究-用电子枪技术蒸镀CdS薄膜制造CdS-Cu2S太阳电池[J].太阳能学报, 1981,2(2): 169-173.
    [99]张瑞峰,肖树义.硫化镉-硫化亚铜异质节太阳能电池的制作与稳定性机理的探讨[J].仪器仪表学报, 1982,3(2): 123-128.
    [100]展铁政,张春燕,禄蔡.多晶CdS/Cu2S异质结太阳能电池光电流及转换效率的计算[J].太阳能学报, 1993,14(4): 317-324.
    [101]王给详,孙玉茹,李亦兵.薄膜CdS-Cu2S电池的某些改进[J].太阳能学报, 1982,3(1): 37-42.
    [102]张淑芬,杜有如,李春鸿.光热对薄膜CdS/Cu2S太阳能电池物理参数的影响[J].太阳能学报, 1997,18(4): 457-460.
    [103] GHOSH M, SAMPATHKUMARAN E V, RAO C N R. Synthesis and magnetic properties of CoO nanoparticles[J]. Chemistry of Materials, 2005,17(9): 2348-2352.
    [104]GHOSH M, BISWAS K, SUNDARESAN A, et al. MnO and NiO nanoparticles: Synthesis and magnetic properties[J]. Journal of Materials Chemistry, 2006,16(1): 106-111.
    [105] SUN X, ZHANG Y W, SI R, et al. Metal (Mn, Co, and Cu) oxide nanocrystals from simple formate precursors[J]. Small, 2005,1(11): 1081-1086.
    [106] ZHANG Y, ZHU J, SONG X, et al. Controlling the synthesis of CoO nanocrystals with various morphologies[J]. The Journal of Physical Chemistry C, 2008,112(14): 5322-5327.
    [107] YIN M, O'BRIEN S. Synthesis of monodisperse nanocrystals of manganese oxides[J]. Journal of the American Chemical Society, 2003,125(34): 10180-10181.
    [108] SEO W S, JO H H, LEE K, et al. Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles[J]. Angewandte Chemie International Edition, 2004,43(9): 1115-1117.
    [109]嵇天浩,孙家跃,杜海燕.分散型无机纳米粒子—制备,组装和应用[M].北京:科学出版社, 2009.
    [110] HULETT G A, OSTWALD W. Beziehungen zwischen Oberflachenspannung und Loslichkeit.[J]. Zeits. physik. Chem., 1901,37: 385-406.
    [111] VOORHEES P W. The theory of Ostwald ripening[J]. Journal of Statistical Physics, 1985,38(1): 231-252.
    [112] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996,271(5251): 933-937.
    [113] HEATH J R. Nanoscale materials[J]. Accounts of Chemical Research, 1999,32(5): 388-388.
    [114] MURRAY C B, KAGAN C R, BAWENDI M G. Synthesis and characterization of monodispers nanocrystals and close-packed nanocrystals assemblies[J]. Annual Review of Materials Science, 2000,30: 545-610.
    [115] COLVIN V L, SCHLAMP M C, ALIVISATOS A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature, 1994,370(6488): 354-357.
    [116] COE S, WOO W K, BAWENDI M, et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices[J]. Nature, 2002,420(6917): 800-803.
    [117] ZHAO J, BARDECKER J A, MUNRO A M, et al. Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer[J]. Nano Letters, 2006,6(3): 463-467.
    [118] SUN Q, WANG Y A, LI L S, et al. Bright, multicoloured light-emitting diodes based on quantum dots[J]. Nature Photonics, 2007,1(12): 717-722.
    [119] KIM L A, ANIKEEVA P O, COE-SULLIVAN S A, et al. Contact printing of quantum dot light-emitting devices[J]. Nano Letters, 2008,8(12): 4513-4517.
    [120] ANIKEEVA P O, HALPERT J E, BAWENDI M G, et al. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum[J]. Nano Letters, 2009,9: 2532-2536.
    [121] WOOD V, PANZER M J, CARUGE J-M, et al. Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture[J]. Nano Letters, 2009,10(1): 24-29.
    [122] CHAN W C W, NIE S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science, 1998,281(5385): 2016-2018.
    [123] BRUCHEZ JR M, MORONNE M, GIN P, et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998,281(5385): 2013-2016.
    [124] ALIVISATOS P. The use of nanocrystals in biological detection[J]. Nature Biotechnology, 2004,22(1): 47-52.
    [125] MICHALET X, PINAUD F F, BENTOLILA L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science, 2005,307(5709): 538-544.
    [126] KIM S, LIM Y T, SOLTESZ E G, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping[J]. Nature Biotechnology, 2004,22(1): 93-97.
    [127] PENG X, MANNA L, YANG W, et al. Shape control of CdSe nanocrystals[J]. Nature, 2000,404(6773): 59-61.
    [128] PENG Z A, PENG X. Nearly Monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth[J]. Journal of the American Chemical Society, 2002,124(13): 3343-3353.
    [129] PENG Z A, PENG X. Mechanisms of the shape evolution of CdSe nanocrystals[J]. Journal of the American Chemical Society, 2001,123(7): 1389-1395.
    [1] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996,271(5251): 933-937.
    [2] MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society, 1993,115(19): 8706-8715.
    [3] BRUCHEZ JR M, MORONNE M, GIN P, et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998,281(5385): 2013-2016.
    [4] CHAN W C W, NIE S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science, 1998,281(5385): 2016-2018.
    [5] COLVIN V L, SCHLAMP M C, ALIVISATOS A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature, 1994,370(6488): 354-357.
    [6] KLIMOV V I, MIKHAILOVSKY A A, XU S, et al. Optical gain and stimulated emission in nanocrystal quantum dots[J]. Science, 2000,290(5490): 314-317.
    [7] NAZZAL A Y, QU L, PENG X, et al. Photoactivated CdSe nanocrystals as nanosensors for gases[J]. Nano Letters, 2003,3(6): 819-822.
    [8]蔡柯,王洪哲,申怀彬,等.复合结构纳米晶CdS: Cu/CdS的制备及光学特性[J].无机材料学报, 2009,24(2): 247-250.
    [9] STECKEL J S, ZIMMER J P, COE-SULLIVAN S, et al. Blue luminescence from (CdS) ZnS core-shell nanocrystals[J]. Angewandte Chemie-International Edition, 2004,43(16): 2154-2157.
    [10] VINAYAKAN R, SHANMUGAPRIYA T, NAIR P V, et al. An approach for optimizing the shell thickness of core-shell quantum dots using photoinduced charge transfer[J]. The Journal of Physical Chemistry C, 2007,111(28): 10146-10149.
    [11] KIM S, SHIM W, SEO H, et al. Bandgap engineered reverse type-I CdTe/InP/ZnS core-shell nanocrystals for the near-infrared[J]. Chemical communications (Cambridge, England), 2009,(10): 1267-1269.
    [12] ALDANA J, WANG Y A, PENG X. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols[J]. Journal of the American Chemical Society, 2001,123(36): 8844-8850.
    [13] PIRYATINSKI A, IVANOV S A, TRETIAK S, et al. Effect of quantum and dielectric confinement on the exciton-exciton interaction energy in type II core/shell semiconductor nanocrystals[J]. Nano Letters, 2006,7(1): 108-115.
    [14] SHEN H, WANG H, TANG Z, et al. High quality synthesis of monodisperse zinc-blende CdSe and CdSe/ZnS nanocrystals with a phosphine-free method[J]. CrystEngComm, 2009,11(8): 1733-1738.
    [15] ZHONG H, ZHOU Y, YANG Y, et al. Synthesis of type-II CdTe-CdSe nanocrystal heterostructured multiple-branched rods and their photovoltaic applications[J]. The Journal of Physical Chemistry C, 2007,111(17): 6538-6543.
    [16] REISS P, BLEUSE J, PRON A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion[J]. Nano Letters, 2002,2(7): 781-784.
    [17] CHEN H-S, LO B, HWANG J-Y, et al. Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO[J]. The Journal of Physical Chemistry B, 2004,108(44): 17119-17123.
    [18] DABBOUSI B O, RODRIGUEZ-VIEJO J, MIKULEC F V, et al. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highlyluminescent nanocrystallites[J]. The Journal of Physical Chemistry B, 1997,101(46): 9463-9475.
    [19] LIU G, SCHULMEYER T, BROTZ J, et al. Interface properties and band alignment of Cu2S/CdS thin film solar cells[J]. Thin Solid Films, 2003,431: 477-482.
    [20] ZENG R, ZHANG T, LIU J, et al. Aqueous synthesis of type-II CdTe/CdSe core/shell quantum dots for fluorescent probe labeling tumor cells[J]. Nanotechnology, 2009,20: 095102.
    [21] ZHONG X, XIE R, ZHANG Y, et al. High-quality violet- to red-emitting ZnSe/CdSe Core/Shell Nanocrystals[J]. Chemistry of Materials, 2005,17(16): 4038-4042.
    [22] LI L S, PRADHAN N, WANG Y, et al. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors[J]. Nano Letters, 2004,4(11): 2261-2264.
    [23] PENG X, SCHLAMP M C, KADAVANICH A V, et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility[J]. Journal of the American Chemical Society, 1997,119(30): 7019-7029.
    [24] DANEK M, JENSEN K F, MURRAY C B, et al. Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe[J]. Chemistry of Materials, 1996,8(1): 173-180.
    [25] REISS P, PROTIERE M, LI L. Core/shell semiconductor nanocrystals[J]. Small, 2009,5(2): 154-168.
    [26] KORTAN A R, HULL R, OPILA R L, et al. Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media[J]. Journal of the American Chemical Society, 1990,112(4): 1327-1332.
    [27] SCHOOSS D, MEWS A, EYCHM LLER A, et al. Quantum-dot quantum well CdS/HgS/CdS: Theory and experiment[J]. Physical Review B, 1994,49(24): 17072-17078.
    [28] PENG Z A, PENG X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor[J]. Journal of the American Chemical Society, 2000,123(1): 183-184.
    [29] DENG Z, CAO L, TANG F, et al. A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis[J]. The Journal of Physical Chemistry B, 2005,109(35): 16671-16675.
    [30] JASIENIAK J, BULLEN C, VAN EMBDEN J, et al. Phosphine-free synthesis of CdSe nanocrystals[J]. The Journal of Physical Chemistry B, 2005,109(44): 20665-20668.
    [31] IVANOV S A, PIRYATINSKI A, NANDA J, et al. Type-II core/shell CdS/ZnSe nanocrystals:? Synthesis, electronic structures, and spectroscopic properties[J]. Journal of the American Chemical Society, 2007,129(38): 11708-11719.
    [1] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996,271(5251): 933-937.
    [2] MURRAY C B, KAGAN C R, BAWENDI M G. Synthesis and characterization of monodisperse nanocrystals and closed-packed nanocrystal assemblies[J]. Annual Review of Materials Science, 2000,30(1): 545-610.
    [3] PENG X. Green chemical approaches toward high-quality semiconductor nanocrystals[J]. Chemistry-Weinheim-Euripean Journal, 2002,8(2): 334-339.
    [4] MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society, 1993,115(19): 8706-8715.
    [5] JASIENIAK J, BULLEN C, VAN EMBDEN J, et al. Phosphine-free synthesis of CdSe nanocrystals[J]. The Journal of Physical Chemistry B, 2005,109(44): 20665-20668.
    [6] COZZOLI P D, MANNA L, CURRI M L, et al. Shape and phase control of colloidal ZnSe nanocrystals[J]. Chemistry of Materials, 2005,17(6): 1296-1306.
    [7] MURCIA M J, SHAW D L, WOODRUFF H, et al. Facile sonochemical synthesis of highly luminescent ZnS-shelled CdSe quantum dots[J]. Chemistry of Materials, 2006,18(9): 2219-2225.
    [8] KANARAS A G, SONNICHSEN C, LIU H, et al. Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures[J]. Nano Letters, 2005,5(11): 2164-2167.
    [9] TARI D, DE GIORGI M, DELLA SALA F, et al. Optical properties of tetrapod-shaped CdTe nanocrystals[J]. Applied Physics Letters, 2005,87(22): 224101.
    [10] CARBONE L, KUDERA S, CARLINO E, et al. Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid[J]. Journal of the American Chemical Society, 2005,128(3): 748-755.
    [11] MANNA L, MILLIRON D J, MEISEL A, et al. Controlled growth of tetrapod-branched inorganic nanocrystals[J]. Nature Materials, 2003,2(6): 382-385.
    [12] MILLIRON D J, HUGHES S M, CUI Y, et al. Colloidal nanocrystal heterostructures with linear and branched topology[J]. Nature, 2004,430(6996): 190-195.
    [13] YU W W, WANG Y A, PENG X. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals[J]. Chemistry of Materials, 2003,15(22): 4300-4308.
    [14] TALAPIN D V, HAUBOLD S, ROGACH A L, et al. A Novel organometallic synthesis of highly luminescent CdTe nanocrystals[J]. The Journal of Physical Chemistry B, 2001,105(12): 2260-2263.
    [15] PENG X, MANNA L, YANG W, et al. Shape control of CdSe nanocrystals[J]. Nature, 2000,404(6773): 59-61.
    [16] MANNA L, SCHER E C, ALIVISATOS A P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals[J]. Journal of the American Chemical Society, 2000,122(51): 12700-12706.
    [17] LI L S, PRADHAN N, WANG Y, et al. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors[J]. Nano Letters, 2004,4(11): 2261-2264.
    [18] COZZOLI P D, PELLEGRINO T, MANNA L. Synthesis, properties and perspectives of hybrid nanocrystal structures[J]. Chemical Society Reviews, 2006,35(11): 1195-1208.
    [19] PUNTES V F, KRISHNAN K M, ALIVISATOS A P. Colloidal nanocrystal shape and size control: The case of cobalt[J]. Science, 2001,291(5511): 2115-2117.
    [20] MOKARI T, SZTRUM C G, SALANT A, et al. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods[J]. Nature Materials, 2005,4(11): 855-863.
    [21] MALKMUS S, KUDERA S, MANNA L, et al. Electron-hole dynamics in CdTe tetrapods[J]. The Journal of Physical Chemistry B, 2006,110(35): 17334-17338.
    [22] ZHONG H, ZHOU Y, YANG Y, et al. Synthesis of type II CdTe-CdSe nanocrystal heterostructured multiple-branched rods and their photovoltaic applications[J]. The Journal of Physical Chemistry C, 2007,111(17): 6538-6543.
    [23] NEMETH E, TUTTLE M S, POWELSON J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization[J]. Science, 2004,306(5704): 2090.
    [24] JANA N R, GEARHEART L, MURPHY C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods[J]. The Journal of Physical Chemistry B, 2001,105(19): 4065-4067.
    [25] JIN R, CAO Y W, MIRKIN C A, et al. Photoinduced conversion of silver nanospheres to nanoprisms[J]. Science, 2001,294(5548): 1901-1913.
    [26] SUN Y, XIA Y. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science, 2002,298(5601): 2176-2179.
    [27] REDL F X, CHO K S, MURRAY C B, et al. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots[J]. Nature, 2003,423(6943): 968-971.
    [28] ALIVISATOS P. The use of nanocrystals in biological detection[J]. Nature Biotechnology, 2004,22(1): 47-52.
    [29] MICHALET X, PINAUD F F, BENTOLILA L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science, 2005,307(5709): 538-544.
    [30] KIM S, LIM Y T, SOLTESZ E G, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping[J]. Nature Biotechnology, 2004,22(1): 93.
    [31] ROGACH A, KERSHAW S, BURT M, et al. Colloidally prepared HgTe nanocrystals with strong room-temperature infrared luminescence[J]. Advanced Materials, 1999,11(7): 552-555.
    [32] GAPONIK N, TALAPIN D V, ROGACH A L, et al. Efficient phase transfer of luminescent thiol-capped nanocrystals: from water to nonpolar organic solvents[J]. Nano Letters, 2002,2(8): 803-806.
    [33] KIM S, FISHER B, EISLER H-J, et al. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures[J]. Journal of the American Chemical Society, 2003,125(38): 11466-11467.
    [34] TSAY J M, PFLUGHOEFFT M, BENTOLILA L A, et al. Hybrid approach to the synthesis of highly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals[J]. Journal of the American Chemical Society, 2004,126(7): 1926-1927.
    [35] KOVALENKO M V, KAUFMANN E, PACHINGER D, et al. Colloidal HgTe nanocrystals with widely tunable narrow band gap energies:? From telecommunications to molecular vibrations[J]. Journal of the American Chemical Society, 2006,128(11): 3516-3517.
    [36] PIEPENBROCK M-O M, STIRNER T, KELLY S M, et al. A low-temperature synthesis for organically soluble HgTe nanocrystals exhibiting near-infrared photoluminescence and quantum confinement[J]. Journal of the American Chemical Society, 2006,128(21): 7087-7090.
    [37] LI Y, DING Y, LIAO H, et al. Room-temperature conversion route to nanocrystalline mercury chalcogenides HgE (E= S, Se, Te)[J]. Journal of Physics and Chemistry of Solids, 1999,60(7): 965-968.
    [38] LIU Y, CAO J, WANG Y, et al. Aqueous solution route to nanocrystalline HgE (E= S, Se, Te)[J]. Journal of Materials Science Letters, 2002,21(21): 1657-1659.
    [39] GREEN M, WAKEFIELD G, DOBSON P. A simple metalorganic route to organically passivated mercury telluride nanocrystals[J]. Journal of Materials Chemistry, 2003,13(5): 1076-1078.
    [40] SONG H, CHO K, KIM H, et al. Synthesis and characterization of nanocrystalline mercury telluride by sonochemical method[J]. Journal of Crystal Growth, 2004,269(2-4): 317-323.
    [41] YANG J, ZHOU Y, ZHENG S, et al. Self-reorganization of CdTe nanoparticles into near-infrared Hg1?xCdxTe nanowire networks[J]. Chemistry of Materials, 2009,21(14): 3177-3182.
    [42] ROGACH A L, HARRISON M T, KERSHAW S V, et al. Colloidally prepared CdHgTe and HgTe quantum dots with strong near-infrared luminescence[J]. Physical Status Solidi B, 2001,224: 153-158.
    [43] PENG X, SCHLAMP M C, KADAVANICH A V, et al. Epitaxial growth of highly luminescent CdSe/CdS Core/Shell nanocrystals with photostability and electronic accessibility[J]. Journal of the American Chemical Society, 1997,119(30): 7019-7029.
    [44] HIGGINSON K A, KUNO M, BONEVICH J, et al. Synthesis and characterization of colloidalβ-HgS quantum dots[J]. The Journal of Physical Chemistry B, 2002,106(39): 9982-9985.
    [45] GOPICH I V, SZABO A. Single-macromolecule fluorescence resonance energy transfer and free-energy profiles[J]. The Journal of Physical Chemistry B, 2003,107(21): 5058-5063.
    [46] KUNO M, HIGGINSON K A, QADRI S B, et al. Molecular clusters of binary and ternary mercury chalcogenides: Colloidal synthesis, characterization, and optical spectra[J]. The Journal of Physical Chemistry B, 2003,107(24): 5758-5767.
    [1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2002.
    [2] EL-SAYED M A. Some interesting properties of metals confined in time and nanometer space of different shapes[J]. Accounts of Chemical Research, 2001,34(4): 257-264.
    [3] CAO Y W C, JIN R, MIRKIN C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J]. Science, 2002,297(5586): 1536-1540.
    [4] MCFARLAND A D, VAN DUYNE R P. Single silver nanoparticles as real-Time optical sensors with zeptomole sensitivity[J]. Nano Letters, 2003,3(8): 1057-1062.
    [5] YU A, LIANG Z, CHO J, et al. Nanostructured electrochemical sensor based on dense gold nanoparticle films[J]. Nano Letters, 2003,3(9): 1203-1207.
    [6] ZHOU W, HAN Z, WANG J, et al. Copper catalyzing growth of single-walled carbon nanotubes on substrates[J]. Nano Letters, 2006,6(12): 2987-2990.
    [7] HAASE G, DUNKLEY W L. Ascorbic acid and copper in linoleate oxidation. II. Ascorbic acid and copper as oxidation catalysts[J]. The Journal of Lipid Research, 1969,10(5): 561-567.
    [8] KIM W, CHOI H C, SHIM M, et al. Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes[J]. Nano Letters, 2002,2(7): 703-708.
    [9] SAVINOVA E R, SAVINOV E N, PARMON V N. Copper colloids stabilized by water-soluble polymers: Part II. Their application as catalysts for dihydrogen evolution[J]. Journal of Molecular Catalysis, 1988,48(2-3): 231-248.
    [10] LIANG H, HELEN XU G. Lubricating behavior in chemical-mechanical polishing of copper[J]. Scripta Materialia, 2002,46(5): 343-347.
    [11] LIU G, LI X, QIN B, et al. Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface[J]. Tribology letters, 2004,17(4): 961-966.
    [12] YANG J, ZHOU Y, OKAMOTO T, et al. Preparation of oleic acid-capped copper nanoparticles[J]. Chemistry Letters, 2006,35(10): 1190-1191.
    [13] KIM D, JEONG S, PARK B, et al. Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions[J]. Applied Physics Letters, 2006,89: 264101.
    [14] MATSUBA Y, TERADA N, ITO D. Copper metallization technique by using metal nano particles for printed circuit[J]. Journal of Japan Research Institute for Advanced Copper-Base, 2006,45: 1-5.
    [15] HU Q, HU P, O'NEILL B. Laser-assisted micro structure fabrication by using nano-particles[J]. The Laser User, 2008,52(Autumn 2008).
    [16] OLYNICK D L, GIBSON J M, AVERBACK R S. Trace oxygen effects on copper nanoparticle size and morphology[J]. Applied Physics Letters, 1996,68: 343.
    [17] LI Z, GONG P, ZHAI Y. Effect of granularity on anti-oxidizing ability of copper nano-powder[J]. Journal of Iron and Steel Research International, 2007,14(5S1): 126-129.
    [18] HAYEZ V, FRANQUET A, HUBIN A, et al. XPS study of the atmospheric corrosion of copper alloys of archaeological interest[J]. Surface and Interface Analysis, 2004,36(8): 876-879.
    [19] ZIEGLER K J, DOTY R C, JOHNSTON K P, et al. Synthesis of organic monolayer-stabilized copper nanocrystals in supercritical water[J]. Journal of the American Chemical Society, 2001,123(32): 7797-7803.
    [20] LIU G, SCHULMEYER T, BROTZ J, et al. Interface properties and band alignment of Cu2S/CdS thin film solar cells[J]. Thin Solid Films, 2003,431: 477-482.
    [21] HE Y, KRIEGSEIS W, BLASING J, et al. (001)-Textured Cu2S thin films deposited by RF reactive sputtering[J]. Japanese Journal of Applied Physics Part 1, 2002,41(7).
    [22] NEVILLE R C. Solar energy conversion: The solar cell[M]. Amsterdam: Elsevier, 1995.
    [23] XU N S, HUQ S E. Novel cold cathode materials and applications[J]. Materials Science and Engineering: R: Reports, 2005,48(2-5): 47-189.
    [24] SAKAMOTO T, SUNAMURA H, KAWAURA H, et al. Nanometer-scale switches using copper sulfide[J]. Applied Physics Letters, 2003,82: 3032.
    [25] WU Y, WADIA C, MA W, et al. Synthesis and photovoltaic application of copper(I) sulfide nanocrystals[J]. Nano Letters, 2008,8(8): 2551-2555.
    [26] WANG S, YANG S. Growth of crystalline Cu2S nanowire arrays on copper surface: Effect of copper surface structure, reagent gas composition, and reaction temperature[J]. Chemistry of Materials, 2001,13(12): 4794-4799.
    [27] LIU Z, XU D, LIANG J, et al. Growth of Cu2S ultrathin nanowires in a binary surfactant solvent[J]. The Journal of Physical Chemistry B, 2005,109(21): 10699-10704.
    [28] SIGMAN M B, GHEZELBASH A, HANRATH T, et al. Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets[J]. Journal of the American Chemical Society, 2003,125(51): 16050-16057.
    [29] LIM W P, WONG C T, ANG S L, et al. Phase-selective synthesis of copper sulfide nanocrystals[J]. Chemistry of Materials, 2006,18(26): 6170-6177.
    [30] ZHUANG Z, PENG Q, ZHANG B, et al. Controllable synthesis of Cu2S nanocrystals and their sssembly into a superlattice[J]. Journal of the American Chemical Society, 2008,130(32): 10482-10483.
    [31] LIU Z, LIANG J, XU D, et al. A facile chemical route to semiconductor metal sulfide nanocrystal superlattices[J]. Chemical Communications, 2004,2004(23): 2724-2725.
    [32] ZHANG H-T, WU G, CHEN X-H. Large-scale synthesis and self-assembly of monodisperse hexagon Cu2S nanoplates[J]. Langmuir, 2005,21(10): 4281-4282.
    [33] DU X-S, YU Z-Z, DASARI A, et al. Facile synthesis and assembly of Cu2S nanodisks to corncoblike nanostructures[J]. Chemistry of Materials, 2006,18(22): 5156-5158.
    [34] SAUNDERS A E, GHEZELBASH A, SMILGIES D-M, et al. Columnar self-assembly of colloidal nanodisks[J]. Nano Letters, 2006,6(12): 2959-2963.
    [35] LUEDTKE W D, LANDMAN U. Structure, dynamics, and thermodynamics of passivated gold nanocrystallites and their assemblies[J]. The Journal of Physical Chemistry, 1996,100(32): 13323-13329.
    [36] MURRAY C B, KAGAN C R, BAWENDI M G. Synthesis and characterization of monodisperse nanocrystals and lose-packed nanocrystal assemblies[J]. Annual Review of Materials Science, 2000,30(1): 545-610.
    [37] MURRAY C B, KAGAN C R, BAWENDI M G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices[J]. Science, 1995,270(5240): 1335-1338.
    [38] VAN BLAADEREN A, RUEL R, WILTZIUS P. Template-directed colloidal crystallization[J]. Nature, 1997,385(6614): 321-324.
    [39] IVANOV S A, PIRYATINSKI A, NANDA J, et al. Type-II core/shell CdS/ZnSe nanocrystals:? Synthesis, electronic structures, and spectroscopic properties[J]. Journal of the American Chemical Society, 2007,129(38): 11708-11719.
    [40] ZENG Q, KONG X, SUN Y, et al. Synthesis and optical properties of Type II CdTe/CdS core/shell quantum dots in aqueous solution via successive ion layer adsorption and reaction[J]. The Journal of Physical Chemistry C, 2008,112(23): 8587-8593.
    [41] WANG C H, CHEN T T, TAN K W, et al. Photoluminescence properties of CdTe/CdSe core-shell type-II quantum dots[J]. Journal of Applied Physics, 2006,99: 123521.
    [42] ZHONG H, ZHOU Y, YANG Y, et al. Synthesis of type II CdTe-CdSe nanocrystal heterostructured multiple-branched rods and their photovoltaic applications[J]. The Journal of Physical Chemistry C, 2007,111(17): 6538-6543.
    [43] NEMCHINOV A, KIRSANOVA M, HEWA-KASAKARAGE N N, et al. Synthesis and characterization of type II ZnSe/CdS core/shell nanocrystals[J]. The Journal of Physical Chemistry C, 2008,112(25): 9301-9307.
    [44] DABBOUSI B O, RODRIGUEZ-VIEJO J, MIKULEC F V, et al. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites[J]. The Journal of Physical Chemistry B, 1997,101(46): 9463-9475.
    [45] STECKEL J S, ZIMMER J P, COE-SULLIVAN S, et al. Blue luminescence from (CdS) ZnS core-shell nanocrystals[J]. Angewandte Chemie-International Edition, 2004,43(16): 2154-2157.
    [46] DANEK M, JENSEN K F, MURRAY C B, et al. Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe[J]. Chemistry of Materials, 1996,8(1): 173-180.
    [47] TALAPIN D V, MEKIS I, GOTZINGER S, et al. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals[J]. The Journal of Physical Chemistry B, 2004,108(49): 18826-18831.
    [48] SHEN H, WANG H, TANG Z, et al. High quality synthesis of monodisperse zinc-blende CdSe and CdSe/ZnS nanocrystals with a phosphine-free method[J]. CrystEngComm, 2009,11(8): 1733-1738.
    [1] LOGOTHETIS E M, PARK K, MEITZLER A H, et al. Oxygen sensors using CoO ceramics[J]. Applied Physics Letters, 1975,26(4): 209-211.
    [2] KOSHIZAKI N, YASUMOTO K, SASAKI T. A gas-sensing CoO/SiO2 nanocomposite[J]. Nanostructured Materials, 1999,12(5-8): 971-974.
    [3] ZENG H, LI J, LIU J, et al. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly[J]. Nature, 2002,420(6914): 395-398.
    [4] AN K, LEE N, PARK J, et al. Synthesis, Characterization, and self-assembly of pencil-shaped CoO nanorods[J]. Journal of the American Chemical Society, 2006,128(30): 9753-9760.
    [5] PARK J, AN K, HWANG Y, et al. Ultra-large-scale syntheses of monodisperse nanocrystals[J]. Nature materials, 2004,3(12): 891-895.
    [6] SUN X, ZHANG Y W, SI R, et al. Metal (Mn, Co, and Cu) oxide nanocrystals from simple formate precursors[J]. Small (Weinheim an der Bergstrasse, Germany), 2005,1(11): 1081-1086.
    [7] LAGUNAS A, MAIRATA I, JIMENO C, et al. TEMPO-mediated, room temperature synthesis of pure CoO nanoparticles[J]. Chemical communications (Cambridge, England), 2006,(12): 1307-1309.
    [8] ZHANG Y, ZHU J, SONG X, et al. Controlling the synthesis of CoO nanocrystals with various morphologies[J]. The Journal of Physical Chemistry C, 2008,112(14): 5322-5327.
    [9] KATARI J E B, COLVIN V L, ALIVISATOS A P. X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface[J]. The Journal of Physical Chemistry, 1994,98(15): 4109-4117.
    [10] HYEON T, CHUNG Y, PARK J, et al. Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals[J]. The Journal of Physical Chemistry B, 2002,106(27): 6831-6833.
    [11] JOO J, YU T, KIM Y W, et al. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals[J]. Journal of the American Chemical Society, 2003,125(21): 6553-6557.
    [12] YU W W, PENG X. Formation of high-quality cds and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers[J]. Angewandte Chemie (International ed. Print), 2002,41(13): 2368-2371.
    [13] COLFEN H, ANTONIETTI M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment[J]. Angewandte Chemie-International Edition, 2005,44(35): 5576-5591.
    [14] TANG Z, KOTOV N. One-dimensional assemblies of nanoparticles: Preparation, properties, and promise[J]. Advanced Materials, 2005,17(8): 951-962.
    [15] KHOWASH P K, ELLIS D E. Nature of defect structure in CoO[J]. Physical Review B, 1987,36(6): 3394-3399.
    [16] SI H, WANG H, SHEN H, et al. Controlled synthesis of monodisperse manganese oxide nanocrystals[J]. CrystEngComm, 2009,11: 1128-1132.
    [17] YANG Y, WU H, WILLIAMS K, et al. Synthesis of CdSe and CdTe nanocrystals without precursor injection[J]. Angewandte Chemie-International Edition, 2005,44: 6712-6715.
    [18] CHEN W, CHEN K, PENG Q, et al. Triangular CdS nanocrystals:Rational solvothermal synthesis and optical studies[J]. Small, 2009,5(6): 681-684.
    [19] CHABRE Y, PANNETIER J. Structural and electrochemical properties of the proton/γ-MnO2 system[J]. Progress in Solid State Chemistry, 1995,23(1): 1-130.
    [20] WHITTINGHAM M S, ZAVALIJ P Y. Manganese dioxides as cathodes for lithium rechargeable cells: The stability challenge[J]. Solid State Ionics, 2000,131(1-2): 109-115.
    [21] SHEN Y F, ZERGER R P, DEGUZMAN R N, et al. Manganese oxide octahedral molecular sieves: Preparation, characterization, and applications[J]. Science, 1993,260(5107): 511-515.
    [22] YIN M, O'BRIEN S. Synthesis of monodisperse nanocrystals of manganese oxides[J]. Journal of the American Chemical Society, 2003,125(34): 10180-10181.
    [23] GIRALDO O, BROCK S L, WILLIS W S, et al. Manganese oxide thin films with fast ion-exchange properties[J]. Journal of the American Chemical Society, 2000,122(38): 9330-9331.
    [24] ARMSTRONG A R, BRUCE P G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries[J]. 1996,381: 499-500.
    [25] DE VRIES A H, HOZOI L, BROER R, et al. Importance of interatomic hole screening in core-level spectroscopy of transition metal oxides: Mn 3s hole states in MnO[J]. Physical Review B, 2002,66(3): 35108.
    [26] LEE G H, HUH S H, JEONG J W, et al. Anomalous magnetic properties of MnO nanoclusters[J]. Journal of the American Chemical Society, 2002,124(41): 12094-12095.
    [27] ZHAO N, NIE W, LIU X, et al. Shape- and size-controlled Synthesis and dependent magnetic properties of nearly monodisperse Mn3O4 nanocrystals [J]. Small, 2008,4(1): 77-81.
    [28] JANA N R, CHEN Y, PENG X. Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach[J]. Chemistry of Materials, 2004,16(20): 3931-3935.
    [29] PARK J, KANG E, BAE C J, et al. Synthesis, characterization, and magnetic properties of uniform-sized MnO nanospheres and nanorods[J]. The Journal of Physical Chemistry B, 2004,108(36): 13594-13598.
    [30] OULD-ELY T, PRIETO-CENTURION D, KUMAR A, et al. Manganese(II) oxide nanohexapods:? Insight into controlling the form of nanocrystals[J]. Chemistry of Materials, 2006,18(7): 1821-1829.
    [31] YANG L-X, ZHU Y-J, TONG H, et al. Low temperature synthesis of Mn3O4 polyhedral nanocrystals and magnetic study[J]. Journal of Solid State Chemistry, 2006,179(4): 1225-1229.
    [32] SALAZAR-ALVAREZ G, SORT J, SURI ACH S, et al. Synthesis and size-dependent exchange bias in inverted core-shell MnO/Mn3O4 nanoparticles[J]. Journal of the American Chemical Society, 2007,129(29): 9102-9108.
    [33] DJERDJ I, AR?ON D, JAGLI?I? Z, et al. Nonaqueous synthesis of manganese oxide nanoparticles, structural characterization, and magnetic properties[J]. The Journal of Physical Chemistry C, 2007,111(9): 3614-3623.
    [34] SEO W S, JO H H, LEE K, et al. Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles[J]. Angewandte Chemie International Edition, 2004,43(9): 1115-1117.
    [35] MULLIN J W. Crystallization[M]. Oxford: Butterworth-Heinemann, 1997.
    [36] ALS-NIELSEN J, MCMORROW D. Elements of modern X-ray physics[M]. Wiley Chichester, 2001.
    [37] JENKINS R, SNYDER R. Introduction to X-ray powder diffractometry[J]. Chemical analysis, 1996,138: 89-91.
    [38] JULIEN C, MASSOT M, POINSIGNON C. Lattice vibrations of manganese oxides Part I. Periodic structures[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004,60(3): 689-700.
    [39] BERNARD M-C, GOFF A H-L, THI B V. Electrochromic reactions in manganese oxides[J]. Journal of the Electrochemical Society, 1993,140(11): 3065-3070.
    [40] ABRAHAMSON H B, LUKASKI H C. Synthesis and characterization of iron stearate compounds[J]. Journal of Inorganic Biochemistry, 1994,54(2): 115-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700