用户名: 密码: 验证码:
猪流行性腹泻病毒AJ1102株的分离、鉴定及其分子进化特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪流行性腹泻(porcine epidemicdiarrhea, PED)是由猪流行性腹泻病毒(PEDV)引起的一种以腹泻、呕吐和脱水为主要特征的猪肠道传染病。该病1971年首次在英国被发现,随后,其它欧洲国家和部分亚洲国家相继报道了该病的发生与流行。以前,美国从未出现PEDV,但从2013年5月以来,美国多个州发生PEDV的流行,引起了美国乃至全球养猪业的高度重视。
     我国是上世纪80年代初首次发生PEDV。由于该病对新生仔猪的感染率和致死率均很高,给养猪业造成了巨大的经济损失。2010年冬季以来,流行性腹泻在我国10多个省市暴发并呈现新的流行特征:发病率和致死率高、流行广、损失大,而且以前接种过猪流行性腹泻疫苗的猪也未能幸免,提示该流行毒株毒力较强,而且可能与现有疫苗毒株存在较大的差异,导致现有疫苗难以提供免疫保护。有意义的是,美国2013年流行的PEDV在基因组水平上与我国流行的PEDV同源性高达99.5%,称为中国变异株。针对当前流行的猪流行性腹泻病毒,本研究开展了检测方法的建立、病毒的分离与鉴定,同时,对流行毒株的遗传进化特征进行了深入研究。主要研究内容如下:
     1. PEDV RT-PCR检测方法的建立及其流行病学调查
     针对PEDV高度保守的M基因设计了一对特异性引物,建立了PEDV的RT-PCR检测方法,该引物扩增片段大小为552bp。该方法特异性好、敏感性高,并且检测速度快,适于大样品的检测。利用建立的RT-PCR方法,对2010至2011年间从华中、华东、华南等地区9个省份采集的600多份临床样品进行检测,结果显示不同地区的临床样品其PEDV阳性率均超过50%,平均阳性率为58.32%,表明PEDV在我国流行十分广泛,感染率相当高。
     2. PEDV AJ1102株的分离、鉴定尽管PEDV的感染率很高,但国内外的研究表明,猪流行性腹泻病毒的分离相当困难、分离的成功率极低。将采自湖北省某猪场发病仔猪的临床样品接种Vero细胞,盲传3代后有一份临床样品接种的细胞可观察到明显的细胞病变,主要表现为细胞形成空泡的合胞体的病变,最后细胞发生裂解,PEDV特异性RT-PCR检测也证实为阳性;进一步采用间接免疫荧光实验证实病变的细胞能与PEDV特异性单克隆抗体发生反应,空斑实验测定该分离病毒滴度达106.0PFU/ml(F5代)。对分离的病毒通过梯度离心纯化并采用电子显微镜进行鉴定,能观察到直径大小约为100nm的病毒粒子以及明显的囊膜和纤突,具有典型的PEDV病毒粒子形态特征,证实所分离的病毒为PEDV,命名为PEDVAJ1102株。
     3. PEDV AJ1102株的全基因组序列测定与遗传进化分析参考以前所报道的PEDV全基因组序列,设计了16对引物,通过分段扩增的方法对PEDV AJ1102株进行了全基因组序列测定。结果表明:AJ1102株全基因组全长28044bp(GenBank accession number JX188454),基因组排列与PEDV经典毒株CV777一样,排列顺序均为5'-ORF1a-ORF1b-S-ORF3-E-M-N-3'.将AJ1102株以及目前国内外已测定全基因组序列的其它31株PEDV毒株进行比较,并利用MEGA4软件绘制系统发育树,发现32株PEDV可分为两个大群即Ⅰ群和Ⅱ群;其中Ⅰ群和Ⅱ群又被分为两个亚群即la、Ⅰb及Ha、Ⅱb。Ⅱ群主要由国内2010年以后报道的毒株以及2013年美国流行毒株组成。AJ1102株属于Ⅱa亚群,为新型的PEDV变异株,与处于Ⅰa亚群的经典毒株CV777遗传关系较远。
     4.PEDV AJ1102株主要基因的遗传进化分析
     本研究比较分析了AJ1102株5'UTR、3'UTR区域以及结构蛋白M、N、S、E和非结构蛋白ORF3的遗传进化特征。与经典毒株CV777相比,AJ1102株的5’UTR有5个碱基缺失、1个碱基插入和8个碱基突变;3’UTR无缺失或插入,但有10个碱基的突变;S基因的变异位点主要出现在S1区域(1-2217nt),包括3个插入区域(168nt,176-186nt,431-433nt)和1个缺失区域(493-498nt),而且AJ1102株S蛋白的核心抗原表位区(COE)有8个氨基酸突变,SS6(772LQDGQVKI779)抗原表位有1个氨基酸突变;M基因、N基因、ORF3和E基因均无插入或缺失,但存在一些碱基突变。对M、N、S、E、ORF3和E基因的进化分析显示,AJ1102株均与2010年以后分离的毒株处在同一分支,而与经典毒株CV777遗传关系较远,表明AJ1102株是当前的流行毒株,是研制针对当前PEDV流行毒株疫苗的候选毒株。
     5. PEDV流行毒株的遗传标志
     根据对全基因组以及主要结构蛋白的遗传进化分析,发现流行毒株S基因的S1区域具有较大的变异。为了探讨该区域是否具有目前我国PEDV流行毒株的特征性变异或遗传标记,针对S1区域的主要变异区设计了一对可扩增约450bp片段的特异性引物,对61份临床样品进行了RT-PCR扩增与序列分析,发现:目前在我国流行的PEDV毒株的S1基因具有特征性变异,提示这一特征性变异可以作为区分流行毒株和经典毒株的遗传标志,在实际操作中我们可以通过对该区域的检测,以确定特定猪场的PEDV是变异毒株还是经典毒株,为疫苗的选择提供理论依据。
     6.姜黄素对PEDV增殖的抑制作用研究
     中草药姜黄素不仅具有抗炎、抗肿瘤、抗氧化、抗诱变的作用,而且还具有抗病毒的作用,其对乙型肝炎病毒(HBV),丙型肝炎病毒(HCV)、人类免疫缺陷病毒等多种病毒均具有明显的抑制效果。然而姜黄素对PEDV是否具有抗病毒作用还未见报道。本研究利用10uM、20μM及30uM的姜黄素处理细胞后,再接种PEDVAJ1102毒株,并于感染后6h、12h和18h收集样品,通过空斑实验测定病毒滴度,发现姜黄素能够显著抑制PEDV的增殖,且呈时间和剂量依赖性。
Porcine epidemic diarrhea (PED) is a kind of contagious enteric disease caused by porcine epidemic diarrhea viruse (PEDV) characterized by acute watery diarrhea, vomiting and dehydration, which was first reported in England in1971. The occurrence and prevelance were consecutively reported in other Europe countries and part of Asia countries. America never has PEDV previously, there were prevalence of PEDV in several states of United States since May,2013which was paid the high attention in porcine industry of America and the whole world.
     In1980s, this disease first occurred in our country. It has caused severe economic loss to swine industry due to the high morbidity and mortality to newborn piglets. Since winter in2010, epidemic disease erupted in10provinces of China with new characteristics:pandemic, high morbidity and mortality with severe loss. The pigs vaccinated previously were also infected which incidicated that the epidemic strain with strong virulence had big difference with current vaccine strain, as a result, the current vaccine strain was invalid to provide protection. It is meaningful that the genome sequence of PEDV strain isolated in Ameirica in2013shared99.5%sequence identity with the epidemic PEDV strain isolated in our country which is called Chinese variant strain. For this current porcine epidemic diarrhae virus, we established RT-PCR detection, isolation and identification method, meanwhile, we had a intensive study to genetic evolution characteristics of epidemic strain. The major studies include:
     1. The establishment of RT-PCR detective method diagnosis and epidemiological survey for PEDV.
     To the highly conservative M gene, a pair of specific primer were degined to establish the RT-PCR detective method, the amplified segment was552bp. This method is specific, sensitive and rapid which is propriate for the detection of big samples. The600clinic specimen from9provinces in central, east and south of China were detected, the result indicated the average positive rate of PEDV was58.32%, which showed the high infection rate of pandemic PEDV in China.
     2. Isolation and identification of AJ1102strain
     According to the research at home and abroad, the isolation of PEDV is extremely difficult although the infection rate is high. The clinic specimen of diseased piglets from Hubei pig farm was innoculated in Vero cell, after3blind passages, the apparent CPE could be observed, the specific RT-PCR decteted it positive, the further indirect immunofluorescence test veified that the isolated strain reacted with specific monoclonal antibody. Plaque assay idendified the titer of isolated strain was106.0PFU/ml. Electron microscopy after gradient centrifugation showed virion in100nm diameter with obvious envelope and spike which were the typical morphology of PEDV. All the above conformed the isolated strain PEDV named PEDV AJ1102.
     3. Determination and phylogenetic analysis of the full-length genomic sequences of PEDV AJ1102
     Refer to complete genome sequence of PEDV reported previously,16pairs of primers were designed to determinate complete genome sequence of PEDV AJ1102strain by RT-PCR segmented amplifying method. The result showed, the complete genome sequence of PEDV AJ1102strain was28044bp (GenBank accession number JX188454), arranged in5'-ORFla-ORFlb-S-ORF3-E-M-N-3'with the same sequnce as the PEDV typical strain CV777. Compared AJ1102strain with other31strains at home and aborad whose complete sequneces determined and pictured the phylogenetic tree by MEGA4, which showed the32strains of PEDV divided into two classes:group Ⅰ and group Ⅱ which had two subtypes respectively:Ⅰa、Ⅰb and Ⅱa、Ⅱb. Group Ⅰ was composed by the strains reported after2010inland and America epidemic strains in2013. AJ1102belongs to subtype Ⅱa, the neotype variant strain which is remote to classical strain CV777in Ⅰa.
     4. the phylogenetic analysis for major genes of AJ1102
     The study compared the difference in5'UTR,3'UTR, M, N, S, E and ORF3between AJ1102and classical strain CV777. AJ1102had5bases deletion,1base insertion and8bases mutation in5'UTR; there was no insertion and deletion in3'UTR except10bases mutation; the major mutation area was in S1area (1-2217nt) including3insertion areas(168nt,176-186nt,431-433nt) and1deletion area(493-498nt), and there were8amino acids mutation in COE epitope of S protein,1amino acid mutation in SS6(772LQDGQVKI779) epitope; there was no insertion and deletion in M, N, ORF3and E genes except some bases mutation. The phylogenetic analysis of M, N, S, E, ORF3and E genes showed that AJ1102was in the same branch with the other isolated strains after2010, and remote to classical strain CV777, thus proved AJ1102was the current epidemic strain and the exactly the cadidate strain for vaccine preparation of the current PEDV.
     5. The genetic marker for current strain of PEDV
     According to the genetic evolution analysis of complete gene and major structure proteins, we found there was comparatively big variant in SI area of S gene. In order to explore if this area had the characteristic or genetic marker of current PEDV strain, we designed a pair of specific primer to amplify the450bp segments of major variant area of S1area to do RT-PCR amplifying and sequence analysis which indicated that there was representative variation could be used as the genetic marker to distinguish between epidemic strain and classical strain to provide theoretical basis for vaccine selection.
     6. Analysis for the anti-PEDV effects of curcumin
     Curcumin is a kind of Chinese herb has not only anti-inflammation, anti-tumor, anti-oxidation and antimutagenesis effect but also anti-virus effect which can remarkably inhibit HBV, HCV, HIV and other various viruses. However the anti-virus effect of curcumin hasn't been reported. This study utilized curcumin of lOuM,20uM and30uM to take effects on cells and then AJ1102strain was inoculated, the cells were collected after6h,12h and18h, the plague assay was used to identify the virus titer. It was found that the curcumin remarkably inhibited the proliferationof PEDV, with time and dose dependent.
引文
1.陈建飞,猪流行性腹泻病毒全基因组序列分析及感染性cDNA克隆的构建[博士学位论文].中国农业科学院,2012.
    2.李建强,柳纪省,兰喜,等.猪流行性腹泻病毒纤突蛋白基因克隆与序列分析.农业生物技术学报.2007,15(04):562-566.
    3.吕茂杰,陈建飞,时洪艳,等.猪流行性腹泻病毒核衣壳蛋白与感染细胞核磷蛋白的共定位分析.微生物学报.2011,61(05):643-647.
    4.马思奇,王明,冯力,等.猪传染性胃肠炎与猪流行性腹泻二联氢氧化铝细胞灭活疫苗的研究.中国畜禽传染病.1995(06):23-27.
    5.马思奇,王明,周金法,等.猪流行性腹泻病毒适应Vero细胞培养及以传代细胞毒制备氢氧化铝灭活疫苗免疫效力试验.中国畜禽传染病.1994(02):15-19.
    6.孟凡丹.猪传染性胃肠炎和流行性腹泻二联核酸疫苗免疫效力研究[硕士学位论文].东北农业大学,2011.
    7.钱永清,闻人楚,唐永兰,等.猪流行性腹泻病毒的分离培养与鉴定.上海农业学报.1999,15(02):41-44.
    8.孙东波,陈建飞,时洪艳,等.猪流行性腹泻病毒S蛋白受体结合域的分析.畜牧兽医学报.2009,40(04):528-532.
    9.佟有恩,冯力,李伟杰,等.猪流行性腹泻弱毒株的培育.中国畜禽传染病.1998,20(06):329-332.
    10.王新平,朱维正.猪流行性腹泻病毒实验感染猪排毒规律的研究.兽医右学学报.1988(08):59-63.
    11.王明,马思奇,周金法,等.猪流行性腹泻灭活疫苗的研究.中国畜禽传染病.1993(05):17-19.
    12.宣华,邢德坤,王殿瀛,等.应用猪胎肠单层细胞培养猪流行性腹泻病毒的研究[J].兽医大学学报.1984,4(3):202-208.
    13.杨敏,猪流行性腹泻病毒结构蛋白基因的克隆与特征分析[硕士学位论文].甘肃农业大学,2006.
    14. Aggarwal B B, Kumar A and Bharti A C. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res,2003,23(1 A):363-398.
    15. Almazan F, Gonzalez J M, Penzes Z, Izeta A, Calvo E, Plana-Duran J and Enjuanes L. Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA,2000,97(10):5516-5521.
    16. Ammon H P and Wahl M A. Pharmacology of Curcuma longa. Planta Med,1991, 57(1):1-7.
    17. Bae J L, Lee J G, Kang T J, Jang H S, Jang Y S and Yang M S. Induction of antigen-specific systemic and mucosal immune responses by feeding animals transgenic plants expressing the antigen. Vaccine,2003,21(25-26):4052-4058.
    18. Baric R S, Nelson G W, Fleming J O, Deans R J, Keck J G, Casteel N and Stohlman S A. Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. J Virol,1988,62(11):4280-4287.
    19. Baudoux P, Carrat C, Besnardeau L, Charley B and Laude H. Coronavirus pseudoparticles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes. J Virol,1998,72(11):8636-8643.
    20. Bernard S and Laude H. Site-specific alteration of transmissible gastroenteritis virus spike protein results in markedly reduced pathogenicity. J Gen Virol,1995,76 (Pt 9): 2235-2241.
    21. Bosch B J, van der Zee R, de Haan C A and Rottier P J. The coronavirus spike protein is a class I virus fusion protein:structural and functional characterization of the fusion core complex. J Virol,2003,77(16):8801-8811.
    22. Brian D A and Baric R S. Coronavirus genome structure and replication. Curr Top Microbiol Immunol,2005,287:1-30.
    23. Bridgen A, Duarte M, Tobler K, Laude H and Ackermann M. Sequence determination of the nucleocapsid protein gene of the porcine epidemic diarrhoea virus confirms that this virus is a coronavirus related to human coronavirus 229E and porcine transmissible gastroenteritis virus. J Gen Virol,1993,74 (Pt 9):1795-1804.
    24. Bridgen A, Kocherhans R, Tobler K, Carvajal A and Ackermann M. Further analysis of the genome of porcine epidemic diarrhoea virus. Adv Exp Med Biol,1998,440: 781-786.
    25. Carvajal A, Lanza I, Diego R, Rubio P and Carmenes P. Evaluation of a blocking ELISA using monoclonal antibodies for the detection of porcine epidemic diarrhea virus and its antibodies. J Vet Diagn Invest,1995,7(1):60-64.
    26. Chae C, Kim O, Choi C, Min K, Cho W S, Kim J and Tai J H. Prevalence of porcine epidemic diarrhoea virus and transmissible gastroenteritis virus infection in Korean pigs. VetRec,2000,147(21):606-608.
    27. Chang S H, Bae J L, Kang T J, Kim J, Chung G H, Lim C W, Laude H, Yang M S and Jang Y S. Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Mol Cells,2002,14(2): 295-299.
    28. Chen J, Wang C, Shi H, Qiu H, Liu S, Chen X, Zhang Z and Feng L. Molecular epidemiology of porcine epidemic diarrhea virus in China. Arch Virol,2010,155(9): 1471-1476.
    29. Chen J, Xiong J, Yang J, Mao Z and Chen X. Nucleotide sequences of four RNA segments of a reovirus isolated from the mud crab Scylla serrata provide evidence that this virus belongs to a new genus in the family Reoviridae. Arch Virol,2011, 156(3):523-528.
    30. Chen J F, Sun D B, Wang C B, Shi H Y, Cui X C, Liu S W, Qiu H J and Feng L. Molecular characterization and phylogenetic analysis of membrane protein genes of porcine epidemic diarrhea virus isolates in China. Virus Genes,2008,36(2):355-364.
    31. Christopher-Hennings J, Nelson E A, Nelson J K, Rossow K D, Shivers J L, Yaeger M J, Chase C C, Garduno R A, Collins J E and Benfield D A. Identification of porcine reproductive and respiratory syndrome virus in semen and tissues from vasectomized and nonvasectomized boars. Vet Pathol,1998,35(4):260-267.
    32. Cruz D J, Kim C J and Shin H J. The GPRLQPY motif located at the carboxy-terminal of the spike protein induces antibodies that neutralize Porcine epidemic diarrhea virus. Virus Res,2008,132(1-2):192-196.
    33. Curtis K M, Yount B and Baric R S. Heterologous gene expression from transmissible gastroenteritis virus replicon particles. J Virol,2002,76(3):1422-1434.
    34. de Haan C A, Kuo L, Masters P S, Vennema H and Rottier P J. Coronavirus particle assembly:primary structure requirements of the membrane protein. J Virol,1998, 72(8):6838-6850.
    35. de Haan C A, Masters P S, Shen X, Weiss S and Rottier P J. The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. Virology,2002,296(1):177-189.
    36. Dea S, Vaillancourt J, Elazhary Y and Martineau G P. An outbreak of diarrhea in piglets caused by a coronavirus antigenically distinct from transmissible gastroenteritis virus. Can Vet J,1985,26(3):108-111.
    37. Debouck P and Pensaert M. Experimental infection of pigs with-a new porcine enteric coronavirus, CV 111. Am J Vet Res,1980,41(2):219-223.
    38. Delmas B, Gelfi J, L'Haridon R, Vogel L K, Sjostrom H, Noren O and Laude H. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature,1992,357(6377):417-420.
    39. Dijkman R, Jebbink M F, Wilbrink B, Pyre K, Zaaijer H L, Minor P D, Franklin S, Berkhout B, Thiel V and van der Hoek L. Human coronavirus 229E encodes a single ORF4 protein between the spike and the envelope genes. Virol J,2006,3:106.
    40. Duarte M and Laude H. Sequence of the spike protein of the porcine epidemic diarrhoea virus. J Gen Virol,1994,75 (Pt 5):1195-1200.
    41. Egberink H F, Ederveen J, Callebaut P and Horzinek M C. Characterization of the structural proteins of porcine epizootic diarrhea virus, strain CV777. Am J Vet Res, 1988,49(8):1320-1324.
    42. Enjuanes L, Sola I, Almazan F, Izeta A, Gonzalez J M and Alonso S. Coronavirus derived expression systems. Progress and problems. Adv Exp Med Biol,2001,494: 309-321.
    43. Enjuanes L, Sola I, Almazan F, Ortego J, Izeta A, Gonzalez J M, Alonso S, Sanchez J M, Escors D, Calvo E, et al. Coronavirus derived expression systems. J Biotechnol, 2001,88(3):183-204.
    44. Godet M, Grosclaude J, Delmas B and Laude H. Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J Virol,1994,68(12):8008-8016.
    45. Guscetti F, Bernasconi C, Tobler K, Van Reeth K, Pospischil A and Ackermarm M. Immunohistochemical detection of porcine epidemic diarrhea virus compared to other methods. Clin Diagn Lab Immunol,1998,5(3):412-414.
    46. Haijema B J, Volders H and Rottier P J. Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis. J Virol,2004,78(8):3863-3871.
    47. Herrewegh A A, Vennema H, Horzinek M C, Rottier P J and de Groot R J. The molecular genetics of feline coronaviruses:comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes. Virology,1995,212(2):622-631.
    48. Hofmann M and Wyler R. Propagation of the virus of porcine epidemic diarrhea in cell culture. JClin Microbiol,1988,26(11):2235-2239.
    49. Hsieh P K, Chang S C, Huang C C, Lee T T, Hsiao C W, Kou Y H, Chen I Y, Chang C K, Huang T H and Chang M F. Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J Virol,2005,79(22):13848-13855.
    50. Huang Y W, Dickerman A W, Pineyro P, Li L, Fang L, Kiehne R, Opriessnig T and Meng X J. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. MBio,2013,4(5).
    51. Ishikawa K, Sekiguchi H, Ogino T and Suzuki S. Direct and rapid detection of porcine epidemic diarrhea virus by RT-PCR. J Virol Methods,1997,69(1-2): 191-195.
    52. Jackwood M W, Hilt D A, Callison S A, Lee C W, Plaza H and Wade E. Spike glycoprotein cleavage recognition site analysis of infectious bronchitis virus. Avian Dis,2001,45(2):366-372.
    53. Jinghui F and Yijing L. Cloning and sequence analysis of the M gene of porcine epidemic diarrhea virus LJB/03. Virus Genes,2005,30(1):69-73.
    54. Joe B, Vijaykumar M and Lokesh B R. Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr,2004,44(2):97-111.
    55. Jung K, Kang B K, Kim J Y, Shin K S, Lee C S and Song D S. Effects of epidermal growth factor on atrophic enteritis in piglets induced by experimental porcine epidemic diarrhoea virus. Vet J,2008,177(2):231-235.
    56. Kadoi K, Sugioka H, Satoh T and Kadoi B K. The propagation of a porcine epidemic diarrhea virus in swine cell lines. New Microbiol,2002,25(3):285-290.
    57. Kang T J, Seo J E, Kim D H, Kim T G, Jang Y S and Yang M S. Cloning and sequence analysis of the Korean strain of spike gene of porcine epidemic diarrhea virus and expression of its neutralizing epitope in plants. Protein Expr Purif,2005, 41(2):378-383.
    58. Kido H, Micic M, Smith D, Zoval J, Norton J and Madou M. A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization. Colloids SurfB Biointerfaces,2007,58(1):44-51.
    59. Kim H J, Yoo H S, Kim J C, Park C S, Choi M S, Kim M, Choi H, Min J S, Kim Y S, Yoon S W, et al. Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. JEthnopharmacol,2009,124(2):189-196.
    60. Kim K, Kim K H, Kim H Y, Cho H K, Sakamoto N and Cheong J. Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway. FEBS Lett, 2010,584(4):707-712.
    61. Kim O and Chae C. Comparison of reverse transcription polymerase chain reaction, immunohistochemistry, and in situ hybridization for the detection of porcine epidemic diarrhea virus in pigs. Can J Vet Res,2002,66(2):112-116.
    62. Kim O and Chae C. Experimental infection of piglets with a korean strain of porcine epidemic diarrhoea virus. J Comp Pathol,2003,129(1):55-60.
    63. Kim S Y, Song D S and Park B K. Differential detection of transmissible gastroenteritis virus and porcine epidemic diarrhea virus by duplex RT-PCR. J Vet Diagn Invest,2001,13(6):516-520.
    64. Kocherhans R, Bridgen A, Ackermann M and Tobler K. Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence. Virus Genes,2001,23(2): 137-144.
    65. Kuo L and Masters P S. Evolved variants of the membrane protein can partially replace the envelope protein in murine coronavirus assembly. J Virol,2010,84(24): 12872-12885.
    66. Kusanagi K, Kuwahara H, Katoh T, Nunoya T, Ishikawa Y, Samejima T and Tajima M. Isolation and serial propagation of porcine epidemic diarrhea virus in cell cultures and partial characterization of the isolate. J Vet Me d Sci,1992,54(2):313-318.
    67. Kutluay S B, Doroghazi J, Roemer M E and Triezenberg S J. Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virology,2008,373(2):239-247.
    68. Kweon C H, Kwon B J, Lee J G, Kwon G O and Kang Y B. Derivation of attenuated porcine epidemic diarrhea virus (PEDV) as vaccine candidate. Vaccine,1999, 17(20-21):2546-2553.
    69. Kweon C H, Kwon B J, Woo S R, Kim J M, Woo G H, Son D H, Hur W and Lee Y S. Immunoprophylactic effect of chicken egg yolk immunoglobulin (Ig Y) against porcine epidemic diarrhea virus (PEDV) in piglets. J Vet Med Sci,2000,62(9): 961-964.
    70. Kweon C H, Lee J G, Han M G and Kang Y B. Rapid diagnosis of porcine epidemic diarrhea virus infection by polymerase chain reaction. J Vet Med Sci,1997,59(3): 231-232.
    71. Lai M M and Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res, 1997,48:1-100.
    72. Laude H, Gelfi J, Lavenant L and Charley B. Single amino acid changes in the viral glycoprotein M affect induction of alpha interferon by the coronavirus transmissible gastroenteritis virus. J Virol,1992,66(2):743-749.
    73. Lee C, Park C K, Lyoo Y S and Lee du S. Genetic differentiation of the nucleocapsid protein of Korean isolates of porcine epidemic diarrhoea virus by RT-PCR based restriction fragment length polymorphism analysis. Vet J,2008,178(1):138-140.
    74. Lee C S, Kang B K, Lee D H, Lyou S H, Park B K, Ann S K, Jung K and Song D S. One-step multiplex RT-PCR for detection and subtyping of swine influenza H1, H3, N1, N2 viruses in clinical samples using a dual priming oligonucleotide (DPO) system. J Virol Methods,2008,151(1):30-34.
    75. Lee D K, Park C K, Kim S H and Lee C. Heterogeneity in spike protein genes of porcine epidemic diarrhea viruses isolated in Korea. Virus Res,2010,149(2): 175-182.
    76. Lee H K and Yeo S G. Cloning and sequence analysis of the nucleocapsid gene of porcine epidemic diarrhea virus Chinju99. Virus Genes,2003,26(2):207-212.
    77. Li B X, Ge J W and Li Y J. Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus. Virology,2007,365(1):166-172.
    78. Li C J, Zhang L J, Dezube B J, Crumpacker C S and Pardee A B. Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication. Proc Natl Acad Sci U S A,1993,90(5):1839-1842.
    79. Li W, Li H, Liu Y, Pan Y, Deng F, Song Y, Tang X and He Q. New variants of porcine epidemic diarrhea virus, China,2011. Emerg Infect Dis,2012,18(8):1350-1353.
    80. Li Z L, Zhu L, Ma J Y, Zhou Q F, Song Y H, Sun B L, Chen R A, Xie Q M and Bee Y Z. Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field strains in south China. Virus Genes,2012,45(1):181-185.
    81. Lissenberg A, Vrolijk M M, van Vliet A L, Langereis M A, de Groot-Mijnes J D, Rottier P J and de Groot R J. Luxury at a cost? Recombinant mouse hepatitis viruses expressing the accessory hemagglutinin esterase protein display reduced fitness in vitro. J Virol,2005,79(24):15054-15063.
    82. Liu J Y, Lin S J and Lin J K. Inhibitory effects of curcumin on protein kinase C activity induced by 12-O-tetradecanoyl-phorbol-13-acetate in NIH 3T3 cells. Carcinogenesis,1993,14(5):857-861.
    83. Masters P S. The molecular biology of coronaviruses. Adv Virus Res,2006,66: 193-292.
    84. Mukundan M A, Chacko M C, Annapurna V V and Krishnaswamy K. Effect of turmeric and curcumin on BP-DNA adducts. Carcinogenesis,1993,14(3):493-496.
    85. Narayanan K, Chen C J, Maeda J and Makino S. Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal. J Virol,2003, 77(5):2922-2927.
    86. Narayanan K, Maeda A, Maeda J and Makino S. Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells. J Virol,2000,74(17): 8127-8134.
    87. Ortego J, Sola I, Almazan F, Ceriani J E, Riquelme C, Balasch M, Plana J and Enjuanes L. Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence. Virology,2003,308(1):13-22.
    88. Park J E, Cruz D J and Shin H J. Receptor-bound porcine epidemic diarrhea virus spike protein cleaved by trypsin induces membrane fusion. Arch Virol,2011,156(10): 1749-1756.
    89. Park S J, Kim H K, Song D S, Moon H J and Park B K. Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field isolates in Korea. Arch Virol,2011,156(4):577-585.
    90. Park S J, Moon H J, Luo Y, Kim H K, Kim E M, Yang J S, Song D S, Kang B K, Lee C S and Park B K. Cloning and further sequence analysis of the ORF3 gene of wild-and attenuated-type porcine epidemic diarrhea viruses. Virus Genes,2008,36(1): 95-104.
    91. Park S J, Moon H J, Yang J S, Lee C S, Song D S, Kang B K and Park B K. Sequence analysis of the partial spike glycoprotein gene of porcine epidemic diarrhea viruses isolated in Korea. Virus Genes,2007,35(2):321-332.
    92. Pensaert M B and de Bouck P. A new coronavirus-like particle associated with diarrhea in swine. Arch Virol,1978,58(3):243-247.
    93. Pijpers A, van Nieuwstadt A P, Terpstra C and Verheijden J H. Porcine epidemic diarrhoea virus as a cause of persistent diarrhoea in a herd of breeding and finishing pigs. Vet Rec,1993,132(6):129-131.
    94. Poeck H, Bscheider M, Gross O, Finger K, Roth S, Rebsamen M, Hannesschlager N, Schlee M, Rothenfusser S, Barchet W, et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol,2010,11(1):63-69.
    95. Puranaveja S, Poolperm P, Lertwatcharasarakul P, Kesdaengsakonwut S, Boonsoongnern A, Urairong K, Kitikoon P, Choojai P, Kedkovid R, Teankum K, et al. Chinese-like strain of porcine epidemic diarrhea virus, Thailand. Emerg Infect Dis, 2009,15(7):1112-1115.
    96. Pyo H M, Kim I J, Kim S H, Kim H S, Cho S D, Cho I S and Hyun B H. Escherichia coli expressing single-chain Fv on the cell surface as a potential prophylactic of porcine epidemic diarrhea virus. Vaccine,2009,27(14):2030-2036.
    97. Rechtman M M, Har-Noy O, Bar-Yishay I, Fishman S, Adamovich Y, Shaul Y, Halpern Z and Shlomai A. Curcumin inhibits hepatitis B virus via down-regulation of the metabolic coactivator PGC-lalpha. FEBS Lett,2010,584(11):2485-2490.
    98. Reddy A C and Lokesh B R. Effect of dietary turmeric (Curcuma longa) on iron-induced lipid peroxidation in the rat liver. Food Chem Toxicol,1994,32(3): 279-283.
    99. Ren X and Li P. Development of reverse transcription loop-mediated isothermal amplification for rapid detection of porcine epidemic diarrhea virus. Virus Genes, 2011,42(2):229-235.
    100.Ren X, Suo S and Jang Y S. Development of a porcine epidemic diarrhea virus M protein-based ELISA for virus detection. Biotechnol Lett,2011,33(2):215-220.
    101.Romero M R, Efferth T, Serrano M A, Castano B, Macias R I, Briz O and Marin J J. Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an "in vitro" replicative system. Antiviral Res,2005,68(2):75-83.
    102.Sabaktarashvili M A, Bregvadze L P, Pkhaladze L K and Gulbani T G. [Adrenal hyperandrogenia and lipid metabolism]. Georgian Med News,2005,(120):33-36.
    103.Saif L J. Coronavirus immunogens. Vet Microbiol,1993,37(3-4):285-297.
    104.Sato T, Takeyama N, Katsumata A, Tuchiya K, Kodama T and Kusanagi K. Mutations in the spike gene of porcine epidemic diarrhea virus associated with growth adaptation in vitro and attenuation of virulence in vivo. Virus Genes,2011, 43(1):72-78.
    105.Schwarz B, Routledge E and Siddell S G. Murine coronavirus nonstructural protein ns2 is not essential for virus replication in transformed cells. J Virol,1990,64(10): 4784-4791.
    106.Shibata I, Ono M and Mori M. Passive protection against porcine epidemic diarrhea (PED) virus in piglets by colostrum from immunized cows. J Vet Med Sci,2001, 63(6):655-658.
    107.Shirato K, Matsuyama S, Ujike M and Taguchi F. Role of proteases in the release of porcine epidemic diarrhea virus from infected cells. J Virol,2011,85(15):7872-7880.
    108.Song D and Park B. Porcine epidemic diarrhoea virus:a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes,2012,44(2):167-175.
    109.Song D S, Kang B K, Lee S S, Yang J S, Moon H J, Oh J S, Ha G W, Jang Y S and Park B K. Use of an internal control in a quantitative RT-PCR assay for quantitation of porcine epidemic diarrhea virus shedding in pigs. J Virol Methods,2006,133(1): 27-33.
    110.Song D S, Kang B K, Oh J S, Ha G W, Yang J S, Moon H J, Jang Y S and Park B K. Multiplex reverse transcription-PCR for rapid differential detection of porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine group A rotavirus. J Vet Diagn Invest,2006,18(3):278-281.
    111.Song D S, Yang J S, Oh J S, Han J H and Park B K. Differentiation of a Vero cell adapted porcine epidemic diarrhea virus from Korean field strains by restriction fragment length polymorphism analysis of ORF 3. Vaccine,2003,21(17-18): 1833-1842.
    112.Spaan W, Cavanagh D and Horzinek M C. Coronaviruses:structure and genome expression. JGen Virol,1988,69 (Pt 12):2939-2952.
    113.Sueyoshi M, Tsuda T, Yamazaki K, Yoshida K, Nakazawa M, Sato K, Minami T, Iwashita K, Watanabe M, Suzuki Y, et al. An immunohistochemical investigation of porcine epidemic diarrhoea. J Comp Pathol,1995,113(1):59-67.
    114.Sun D, Feng L, Shi H, Chen J, Cui X, Chen H, Liu S, Tong Y, Wang Y and Tong G. Identification of two novel B cell epitopes on porcine epidemic diarrhea virus spike protein. Vet Microbiol,2008,131(1-2):73-81.
    115.Sun D, Shi H, Chen J, Shi D, Zhu Q, Zhang H, Liu S, Wang Y, Qiu H and Feng L. Generation of a mouse scFv library specific for porcine aminopeptidase N using the T7 phage display system. J Virol Methods,2012,182(1-2):99-103.
    116.Sun R Q, Cai R J, Chen Y Q, Liang P S, Chen D K and Song C X. Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerg Infect Dis,2012,18(1): 161-163.
    117.Tahara S M, Dietlin T A, Bergmann C C, Nelson G W, Kyuwa S, Anthony R P and Stohlman S A. Coronavirus translational regulation:leader affects mRNA efficiency. Virology,1994,202(2):621-630.
    118.To T L, Ward L A, Yuan L and Saif L J. Serum and intestinal isotype antibody responses and correlates of protective immunity to human rotavirus in a gnotobiotic pig model of disease. J Gen Virol,1998,79 (Pt 11):2661-2672.
    119.Tobler K and Ackermann M. PEDV leader sequence and junction sites. Adv Exp Med Biol,1995,380:541-542.
    120.Tobler K and Ackermann M. [Identification and characterization of new and unknown coronaviruses using RT-PCR and degenerate primers]. Schweiz Arch Tierheilkd,1996,138(2):80-86.
    121.Turgeon D C, Morin M, Jolette J, Higgins R, Marsolais G and DiFranco E. Coronavirus-like particles associated with diarrhea in baby pigs in Quebec. Can Vet J, 1980,21(3):100-xxiii.
    122.Vennema H, de Groot R J, Harbour D A, Horzinek M C and Spaan W J. Primary structure of the membrane and nucleocapsid protein genes of feline infectious peritonitis virus and immunogenicity of recombinant vaccinia viruses in kittens. Virology,1991,181(1):327-335.
    123.Wang K, Lu W, Chen J, Xie S, Shi H, Hsu H, Yu W, Xu K, Bian C, Fischer W B, et al. PEDV ORF3 encodes an ion channel protein and regulates virus production. FEBS Zetf,2012,586(4):384-391.
    124.Weissenhorn W, Hinz A and Gaudin Y. Virus membrane fusion. FEBS Lett,2007, 581(11):2150-2155.
    125.Wood E N. An apparently new syndrome of porcine epidemic diarrhoea. Vet Rec, 1977,100(12):243-244.
    126.Wood E N. Transmissible gastroenteritis and epidemic diarrhoea of pigs. Br Vet J, 1979,135(4):305-314.
    127.Woods R D. Efficacy of a transmissible gastroenteritis coronavirus with an altered ORF-3 gene. Can J Vet Res,2001,65(1):28-32.
    128.Xu X, Zhang H, Zhang Q, Dong J, Liang Y, Huang Y, Liu H J and Tong D. Porcine epidemic diarrhea virus E protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expression. Virol J,2013,10:26.
    129.Youn S, Leibowitz J L and Collisson E W. In vitro assembled, recombinant infectious bronchitis viruses demonstrate that the 5a open reading frame is not essential for replication. Virology,2005,332(1):206-215.
    130.Yount B, Roberts R S, Sims A C, Deming D, Frieman M B, Sparks J, Denison M R, Davis N and Baric R S. Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J Virol,2005,79(23):14909-14922.
    131. Yuan L, Kang S Y, Ward L A, To T L and Saif L J. Antibody-secreting cell responses and protective immunity assessed in gnotobiotic pigs inoculated orally or intramuscularly with inactivated human rotavirus. J Virol,1998,72(1)1:330-338.
    132.Zeng R, Yang R F, Shi M D, Jiang M R, Xie Y H, Ruan H Q, Jiang X S, Shi L, Zhou H, Zhang L, et al. Characterization of the 3a protein of SARS-associated coronavirus in infected vero E6 cells and SARS patients. JMol Biol,2004,341(1):271-279.
    133.Zhao M, Sun Z, Zhang Y, Wang G, Wang H, Yang F, Tian F and Jiang S. Complete genome sequence of a Vero cell-adapted isolate of porcine epidemic diarrhea virus in eastern China. J Virol,2012,86(24):13858-13859.
    134.Zuniga S, Cruz J L, Sola I, Mateos-Gomez P A, Palacio L and Enjuanes L. Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription. J Virol,2010,84(4):2169-2175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700