用户名: 密码: 验证码:
基于动态神经网络的非线性自适应逆控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应逆控制用数字信号处理的理论和方法解决自适应控制的问题,为控制系统设计和研究开辟了一个新颖的途径。自适应滤波技术是自适应逆控制系统设计和实现的基础,现代神经网络技术的发展为非线性自适应逆控制的研究和实现创造了条件。探索和设计合适的动态神经网络结构和算法,构建更加丰富的系统结构等已成为非线性自适应逆控制研究的重点,尤其对动态神经网络的研究为非线性自适应逆控制研究和实现奠定了必要的基础。本文研究了动态神经网络的结构和算法,及基于动态神经网络的非线性自适应逆控制系统,主要研究内容如下:
     一、在分析研究生物神经元及人工神经元模型结构及功能的基础上,提出了一种新的动态人工神经元模型(DAF神经元),它是一类自适应IIR突触时空神经元模型,它在简化动态神经元模型结构的同时提高了神经元的动态性能和自适应能力。基于DAF神经元模型可以构建一种新的动态神经网络(DAFNN),DAFNN是一种局部反馈动态神经网络,其总体结构仍为前馈神经网络结构。与非线性自适应逆控制系统中常用的反馈神经网络相比,DAFNN的结构和算法都更加简单,而且具有可自适应调节的时间深度和时间分辨率。因此,DAFNN在非线性自适应逆控制中更具应用优势。
     二、通过对PSO算法结构、稳定性及收敛性的研究,提出了一种以概率1全局收敛PSO算法,并进一步推广为神经网络离线学习算法。该算法通过加强对微粒群最优位置的局部搜索能力,提高了收敛的速度和精度;同时缩小了粒子群规模,提高了运行效率。与传统的BPTT算法相比,该算法无论是收敛速度、精度还是泛化能力,都有明显提高。
     三、根据信号流图理论,设计并推导了一种神经网络的在线学习算法,并利用Lyapunov稳定性定理分析了算法的稳定性,提出了可以保证算法收敛的自适应学习速率。对于动态神经网络在线学习而言,该算法避免了传统梯度计算中复杂的链式求导过程,利用神经网络的信号流图及其线性的伴随流图,可以直接计算任何变量的梯度信息。并且,自适应的学习速率确保了动态神经网络稳定和算法的收敛。
     四、结合两种现有非线性自适应逆控制系统的结构特点,提出了一种改进的非线性自适应逆控制系统扰动消除结构,在自适应过程收敛后,该系统能迅速消除输出扰动,且不影响系统自适应过程。最后,提出了一种用于非线性对象控制的近似线性自适应逆控制系统,它利用一组线性自适应LMS滤波器构建系统辨识器、控制器及对象逆模型,从而简化了非线性自适应逆控制系统结构和算法。
Adaptive inverse control (AIC) is a new method for the control problems. Itsrealization is based on adaptive filtering technology. Dynamical neural networks areimportant tools for design and control of nonlinear adaptive inverse control systems(NAICSs). In this dissertation, the architecture and learning algorithms of a certaindynamical neural networks and NAICSs based on that are studied. The main contents andresults are concluded as follow:
     A novel dynamical neuron model is proposed for deal with temproal and spatialsignals. It is a kind of IIR filter synapses neuron, but the weights of the filters are adaptiveand the architecture is simpler than traditional ones. Feedforward neural networks based onsuch neurons, called DAFNNs, are locally recurrent neural networks, a kind of dynamicalneural networks. Compared with traditional recurrent neural networks, DAFNNs haveadaptive temporal depth and resolution. So they are good solutions for NAICSs.
     A modified PSO (Particle Swarm Optimization) algorithm is proposed for nonlinearfuntions optimization. It has high convergence velocity and great convergence precision byimprove the locally searcher ability on best position of the swarm. Such PSO algorithm isused as a off-line training algorithm for neural networks. It can converge to global bestsolution in theory. Simulation results also show the neural networks trained with it havebetter generalization ability than that of BPTT algorithm.
     A kind of on-line gradient learning algorithms based on signal flow graphs isproposed for neural networks on-line training. The signal flow graph and adjoint one of aneural network are used to compute the its gradients. The adaptive learning rate is designedby Lypunov theory for such on-line training algorithms.
     A modified NAICS is proposed for improve the output disturbance cancellationability of the system. Such systems can cancel the disturbance immediately withoutaffecting other adaptive processings. Another NAICS is proposed in the paper. A set ofadaptive LMS filters are used as identifiers and controllers in the systems. The architectureof the systems is similar to a linear AIC. So the adaptive algorithms of the systems aresimpler than that of typical NAICSs.
引文
1.B.Widrow,E.Walad著.刘树棠,韩崇昭译.自适应逆控制.西安:西安交通大学出版社,2000
    2.卢志刚,吴士昌,于灵慧.非线性自适应逆控制及其应用.北京:国防工业出版社,2004
    3.郭雷,程代展,冯德兴.控制理论导论.北京:科学出版社,2005
    4.曹建福,韩崇昭,方洋旺.非线性系统理论及应用.西安:西安交通大学出版杜,2006
    5.胡寿松.自动控制原理.北京:国防工业出版社,1995
    6.黄琳.稳定性理论.北京:北京大学出版社,1982
    7.程代展.非线性微分几何控制理论.北京:科学出版社,1987
    8.高为炳.变结构控制的理论及设计方法.北京:科学出版社,1996
    9.李春文,冯元琨.多变量非线性控制的逆系统方法.北京:清华大学出版社,1991
    10.洪奕光,程代展.非线性系统的分析与控制.北京:科学出版社,2005
    11.吴忠强.非线性系统的鲁棒控制及应用.北京:机械工业出版社,2005
    12.韩曾晋.自适应控制.北京:清华大学出版社.2000
    13.刘兴堂.应用自适应控制.陕西:西北工业大学出版社,2003
    14.周东华.非线性系统的自适应控制导论.北京:清华大学出版社,2002
    15.张乃尧,阎平凡.神经网络与模糊控制.北京:清华大学出版社,1998
    16.杨建刚.人工神经网络实用教程.浙江:浙江大学出版社,2001
    17.魏海坤.神经网络结构设计的理论与方法.北京:国防工业出版社,2005
    18.戴先中.多变量非线性系统的神经网络逆控制方法.北京:科学出版社,2005
    19.徐丽娜.神经网络控制.北京:电子工业出版,2003
    20.阎平凡,张长水.人工神经网络与模拟进化算法.北京:清华大学出版社,2005
    21.阮晓刚.神经计算科学.北京:国防工业出版社.2006
    22.舒怀林.PID神经网络及其控制系统.北京:国防工业出版社,2006
    23. A.I.Mees, A.R.Bergen. Describing Function Revisited. IEEE Trans. Automatic Control. 1975, 20(4): 473-478
    24. W.McCulloch, W.Pitts. A Logical Calculus of Ideas Immanent In Nervous Activity. Bulletin of Mathematical Biophysics. 1943(5): 115-133
    25. D.O.Hebb. The Organization of Behavior. New York: Wiley, 1949
    26. F.Rosenblat. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review. 1958(65): 386-458
    27. B.Widrow, M.Hoff. Adaptive Switching Circuits. New York: IRE, 1960. 94-104
    28. M.Minsky, S.Papert. Perceptrons. MIT Press. 1969
    29. J.J.Hopfield. Neural Networks and Physical Systems With Emergent Collective Computational Abilities. Proceedings of the National Academy of Science of the U.S.A.. 1982,79: 2554-2558
    30. G.A.Carpenter, S.Grossberg. Adaptive Resonance Theory: Stable Self-Organization of Neural Recognition Codes in Response to Arbitrary Lists of Input Patterns. 8th Annual Conf. On the Cognitive Science Society, 1986: 45-63
    31. G.A.Carpentre, S.Grossberg. A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics and Image Processing. 1983,37: 54-115
    32. G.A.Carpentre, S.Grossberg. Art2: self-organization of stable category recognition codes for analog output patterns. Applied Optics. 1987, 26(23): 4919-4930
    33. G.A.Carpentre, S.Grossberg. Art3 hierarchical search: Chemical transmitters in self-organizing pattern recognition architectures. Proceeding of the International Joint Conference on Neural Networks. Washington DC. USA. 1990, 2:30-33
    34. T.Kohonen. Self-organized formation of topologically correct feature maps. Biological Cybernetics. 1982, 43: 59-69
    35. T.Kohonen. Self-organization and Associative Memory. Springer-Verlag. Berlin. 1984
    36. J.Anderson, E.Rosenfeld. Neurocoputing. MIT Press. 1988
    37. K.Fukushima. Recognization: a self-orgnizing neural network model for a mechchanism of pattern recognization unaffected by shift position. Biological Cybernetics. 1980, 36(4): 193-220
    38. K.Fukushima, S.Miyake. Recognization: a new algorithm for pattern recognization tolerant of deformation and shifs in position. Pattern Reognition. 1982, 15(6): 455-469
    39. P.J.Werbos. Beyond regression: new tools for prediction and analysis in the behavior sciene. Ph.D. Thesis. Harvard University.
    40. B.Widrow. Adaline and madaline. Proceeding of 1st IEEE International Conference on Neural Networks. San Dieg. USA. 1987, 145-158
    41. S.Amari. Mathematical theory on formation of category detecting nerve cell's. Biological Cybernetics. 1978, 29:127-136
    42. J.A.Feldman, D.H.Ballard. Connectionist models and their properties. Cognitive Science. 1986, 6: 205-254
    43. G.E.Hinton, T.J.Sejnowskii, D.H.Achklwy. Boltzmann machine: constraint satisfaction networks that learn. CMV-CS-84-119, Carneie-Mellon. 1984
    44. D.E.Rumeihart, J.L.McClelland. Parallel distributed processing. MIT Press. 1986
    45.焦李成.神经网络计算.西安:西安电子科技大学出版社.1993
    46.邢春颖等译.现代神经网络应用.北京:电子工业出版社.1996
    47.胡守仁.神经网络应用技术.北京:国防科技大学出版社.1993
    48.何玉彬,李新忠.神经网络控制技术及其应用.北京:科技出版社.2000
    49.柴天佑,王笑波.RBF神经网络在加速冷却控制系统中的应用.自动化学报.2000.26(2):219-225
    50. J.Moody, C.Darken. Fast lerning in networks of locally-tuned processing units. Neural Computation. 1959. 1(2): 281-294
    51. V.Etxebarri& Adaptive control of discrete systems using neural networks. IEEE Proc. Control Theory Appl.. 1994.141 (4): 209-215
    52.蒋国飞,吴沧浦.基于Q学习算法和BP神经网络的倒立摆控制.自动化学报.1999.24(5):662-666
    53.吴耀军,陶宝祺.B样条小波神经网络.模式识别与人工智能.1996.9(3):228-233
    54. D.T. Pham, X. Liu. Dynamic system modeling using partially recurrent neural networks. Journal of Systems Engineering. 1992. (2): 90-97
    55.韦巍.一种回归神经网络的快速在线学习算法.自动化学报.1998.24(5):616-621
    56.陈晓东,马广富,王子才.改进的Elman网络与机理模型的互补建模方法.系统仿真学报.1999.11(2):97-100
    57.田杰,陈杰.Elman网络在Smith预测控制中的应用.控制理论与应用.2003.20(4):585-588
    58. S.Chen. S. Billings. P. Grant. Non-linear system identification using neural networks. Int. J. Control. 1990. 51(6): 1191-1214
    59. K.Narendra. K.Parthasarathy. Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks. 1990. 1: 4-27
    60. A.C.Tsoi. Locally recurrent globally feedforward network: a critical review of architectures. IEEE Trans NN. 1994. 5:229-239
    61. Z.Ahmad, J.Zhang. A nonlinear model predictive control strategy using multiple neural network models. Proceedings of 3rd International Symposium on Neural networks. Chengdu. China. 2006. 2: 943-948
    62. J.H.Chen, Y.Z.Yea, C.W.Wang. Neural network model predictive control for nonlinear MIMO processes with unmeasured disturbances. Chemical Engineering. 2002.35(2): 150-159
    63. B.M.Akesson, H.T.Toivonen. A new network model predictive controller. Journal of Process Control. 2006.16(9):937-946
    64. Y.Qu, L.Xu, J.H.Wang. RBF neural network and its application in IMC. Proc. WCICA. Dalian. China. 2006. 1: 2408-2411
    65. W.L.Wang, Y.W.Zhao. Modified DMC method and its realization based on BP neural networks. Proceedings of the 3rd WCICA. Hefei. China. 2000. 2:847-851
    66.胡寿松,周川,胡维礼.基于神经网络的模型跟随鲁棒自适应控制.自动化学报.2000.26(5):623-639
    67. K.J.Hunt, D.Sbarbaro, R.Zbikowski. Neural networks for control systems-a survey. Automatica. 1992.28(6): 1083-1112
    68. K.S.Narendra, K.Parthasarathy. Identification and control for dynamical systems using neural networks. IEEE Trans. Neural Networks. 1990. 1(1):4-27
    69. B.Kosko. Neural neowrks and fuzzy systems. Prentice Hall. Englewood. Cliffs. 1992
    70.牛玉刚,邹云,杨成梧.基于神经网络的一类非线性系统自适应跟踪控制.控制理论与应用.2001.18(3):461-464
    71.孙富春,李莉,孙增圻.非线性系统神经网络自适应控制的发展现状及展望.控制理论与应用.2005.22(2):254-259
    72.周景振,韩曾晋.一种新型多变量模糊自适应控制系统的研究.自动化学报.1999.25(2):215-220
    73.朴营国,何希勤,张化光.一种多输入-多输出模糊自适应控制方法的研究.自动化学报.2000.26(1):105-110
    74.殷斌,冯纯伯.线性离散时变系统的鲁棒自适应控制.自动化学报.1999.25(6):786-790
    75.黄长水,阮荣耀.一类不确定非线性系统的鲁棒自适应控制.自动化学报.2001.27(1):82-88
    76.谢明江,刘允刚,代颖,施颂椒.机器人混合H_2/H_∞自适应控制.上海交通大学学报.2000.34(5):654-656
    77.佘文学,周凤岐,周军.一类不确定非线性系统变结构自适应鲁棒控制.西北工业大学学报.2004.22(1):25-28
    78.杨盐生,贾欣乐.一类不确定非线性系统变结构自适应鲁棒控制.电子学报.2001.29(7):905-908
    79.何振亚.自适应信号处理.北京:科学出版社.2002
    80. E.Walach, B. Widrow. Adaptive signal processing for adaptive control. IFAC Workshop in adaptive systems in control and signal processing, San Francisco, CA, 1983. Acoustics, Speech, and Signal processing, IEEE international conference on ICASSP'84. 1984,9: 191~19
    81. B.Widrow. Adaptive model control applied to real-time blood-pressure regulation. Proceedings in Pattern Recognition and Machine Learning. New York. USA. 1971: 310-324
    82. B,Widrow, J.McCool, B.Medoff. Adaptive control by inverse modeling. Conf. of 12th Asilomar Conference on Circuits, Systems and Computers. Santa Clara. 1978: 90-94
    83. B.Widrow, D.Shur, S.Shaffer. On adaptive inverse control. Conf. of 15th Asilomar Conference on Circuits, Systems and Computers. Santa Clara. 1981: 185-189
    84. S.Shaffer. Adaptive inverse-model control. Ph.D. Stanford University. 1982
    85. B.Widrow. Adaptive inverse control. Second IFAC Workshop on Adaptive Systems in Control and Signal Processing. Lund. Sweden. 1986
    86. B. Widrow, G. L. Plett. Adpative Inverse Control based on linear and nonlinear adaptive filtering. Proceedings of World congress. Neural networks, San Diego. 1996: 620-627
    87. G. L. Plett. Adaptive inverse control of unknown stable SISO and MIMO linearsystems. Int. J. Adaptive control. Signal Processing. 2002,16(4): 243-272
    88. D.E.Rumelhart. G.E.Hinton, R.J.Williams. Learning Representations by Back-Propagation Errors. Nature. 1986(323): 533-536
    89. G.L.Plett, Adaptive Inverse Control of Linear and Nonlinear Systems Using Dynamic Neural Networks. IEEE Trans. Neural Networks. 2003,14(2): 360-376.
    90. A. Kaelin. On the use of a priori knowledge in adaptive inverse control. IEEE Trans.on circuits and systems I : Fundamental theory and applications. 2000.47(1): 54-62
    91. M. Shafiq, S. H. Riyaz. Internal model control structure using Adaptive inverse control strategy. ICCA. Final program and book of abstracts. The 4th international conference on control and automation. 2003: 59-69
    92. C.L.M.Harnold, K.Y.Lee, Application of the Free-Model Based Neural Networks in Model Reference Adaptive Inverse Control. Proceedings of the American Control Conference. June, Chicago, USA. 2000: 1664-1668.
    93. H.J.Helder, D.Wooten, J.Principe, A Neural Network Development Environment for Adaptive Inverse Control. IEEE World Congress on Computational Intelligence. May, Anchorage, AK. 1998: 963-967.
    94. W.J.Klippel, Adaptive Inverse Control of Weakly Nonlinear Systems. Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing. Apr. Munich, Ger. 1997: 355-358.
    95. Li Li-zheng, He Qing-hua, Adaptive inverse control based on an incremental linear regression model in one unknown Systems. Engineering and Electronics. 2002. 24(10): 53-58
    96. Jeng Jin-Tsong, Lee Tsu-Tain. Nonlinear Adaptive Inverse control via the unified model neural network. Proceedings of SPIE- The International Society for Optical Engineering. 1999 : 153-162
    97. Yu Huamin, Zhu Haichao, Shi Yin. Active noise control FXLMS Algorithm based on Non-minimum phase adaptive inverse control. Journal of vibration Engineering. 2003.16(3): 331-336
    98. C.L.M.Harnold, K.Y.Lee, A Free-Model Based Model Reference Adaptive Inverse Controller Design for a Boiler-Turbine Plant by Using Functional Mapping. IEEE Power Engineering Society Summer Meeting, July, Seattle, WA. 2000: 212-216
    99. X.J.Liu, J.Q.Yi, D.B.Zhao, W.Wang, A Kind of Nonlinear Adaptive Inverse Control Systems Based on Fuzzy Neural Netwroks. Proceedings of the Third International Conference on Machine Learning and Cybernetics. August, Shanghai, P.R.China. 2004: 946-950.
    100. A.M.Karshenas, M.W.Dunnigan, B.W.Williams, Adaptive Inverse Control Algorithm for Shock Testing. Control Theory and Applications. 2000,147(3): 267-276.
    101. B.Widrow. GL.Plett, Adaptive Inverse Control Based on Linear and Nonlinear Adaptive Filtering. Neural Networks for Identification, Control, Robotics and Signal/Image Processing. August, Venice, 1996: 30-38
    102. D.GPeng, P.Yang, Z.P.Wang, Y.H.Yang, Adaptive Inverse Control Based on Parallel Self-learning Neural Networks and Its Applications. Proceedings of the Third International Conference on Machine Learning and Cybernetics. August, Shanghai, P.R.China. 2004: 392-396.
    103. Y.S.Wang, K.J.Wang, J.S.Qu, Y.R.Yang, Adaptive Inverse Control Based on Particle Swarm Optimization Algorithm. Proceedings of the IEEE International Conference on Macaronis & Automation. July, Niagara Falls, Canda. 2005: 2169-2172.
    104. Z.Wang, P.Li, S.Guo, Adaptive Inverse Control for Nonlinear Systems Based on RBF Neural Network. Proceedings of the 5th World Congress on Intelligent Control and Automation. June, Hangzhou, P.R.China. 2004: 485-487.
    105. C.C.Shaw, T.S.Liu, S.H.Chien, Adaptive Inverse Control for Pickup Head Flying Height in Near-field Optical Disk Drives. July, Melboune, Australia. 2004: 1050-1057.
    106. C.H.Ru, L.N.Sun, M.X.Kong, Adaptive Inverse Control for Piezoelectric Actuator Based on Hysteresis Model. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics. August, Guangzhou, P.R.China. 2005: 3189-3193.
    107. C.H.Ru, L.N.Sun, W.B.Rong, L.GChen, Adaptive Inverse Control for Piezoelectric Actuator with Dominant Hysteresis. Proceedings of the 2004 IEEE International Conference on Control Applications. September, Taipei, Taiwan. 2004: 973-976
    108. S.K.Liu, GR.Yan, Adaptive Inverse Control Method for Space Flexible Truss Structure Vibration Control. Proceedings of the Second International Conference on Machine Learning and Cybernetics. November, Xi'an, P.R.China. 2003: 923-927.
    109. M.A.Z.Khalid, S.F.Muhammad, Adaptive Inverse Control with IMC Structure Implementation on Robotic Arm Manipulator. Emerging Technologies and Factory Automation, 2005. 2005: 537-543.
    110. D.Deb, G.Tao, O.B.Jason, R.S.Douglas, An Adaptive Inverse Control Scheme for A Synthetic Jet Actuator Model. 2005 American Control Conference. June, Portland, USA. 2005: 2646-2651.
    111. J.T.Jeng, C.C.Chuang, Y.C.Lee, Annealing Robust Nonlinear Adaptive Inverse Control with FNNBSVR for Magnetic Bearing Systems. Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. July, Kobe, Japan. 2003: 1276-1281.
    112. G.L.Plett, H.Bottrich, DDEKF Learning for Fast Nonlinear Adaptive Inverse Control. Proceedings of the 2002 International Joint Conference on Neural Networks. May, Honolulu, HI. 2002: 2092-2097.
    113. L.N.Sun, C.H.Ru, W.B.Rong, Hysteresis Compensation for Piezoelectric Actuator Based on Adaptive Inverse Control. Proceedings of the 5th World Congress on Intelligent Control and Automation. June, Hangzhou, P.R.China. 2004: 5036-5039.
    114. S.Muhammand, S.H.Riyaz, Internal Model Control Structure Using Adaptive Inverse Control Strategy. The fourth International Conference on Control and Automation. June, Montreal, Canada. 2003: 149-152.
    115. L.H.Yu, J.C.Fang, C.Wu, Magnetically Suspended Control Moment Gyro Gimbal Servo-system Using Adaptive Inverse Control During Disturbances. Electronics Letters. 2005, 41(17): 950-951.
    116. S.Muhammad, K.Tahir, Newton-Raphson Based Adaptive Inverse Control Scheme for Tracking of Nonlinear Dynamic Plants. The first International Symposium on Systems and Control in Aerospace and Astronautics. 2006: 1339-1343.
    117. B.Widrow, G.L.Plett, Nonlinear Adaptive Inverse Control. Proceedings of the 36th Conference on Decision & Control. December, California, USA. 1997: 1032-1037.
    118. L.Jia, J.S.Yu, Nonlinear Hybrid Adaptive Inverse Control Using Neural Fuzzy System and Its Application to CSTR Systems. Proceedings of the 4th World Congress on Intelligent Control and Automation. June, Shanghai, P.R.China. 2002: 1896-1900.
    119. Kaelin, D.V.Grunigen, On the Use of A Priori Knowledge in Adaptive Inverse Control. IEEE Trans. Circuits and Systems Part 1: Fundamental Theory and Applications. 2000, 47(1): 54-62.
    120. T.B.Yang, Performance of Variable Step-size LMS Algorithms for Linear Adaptive Inverse Control Systems. Student Conference on Engineering Sciences and Technology, SCONEST 2004. Dec.Karachi, Pakistan. 2004: 122-126.
    121. N.O.P.Arancibia, T.C.Tsao, Robustly 1_∞-Stable Implementation of the Adaptive Inverse Control Scheme for Noise Cancelation. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference. Dec. Seville, Spain. 2005: 5800-5807.
    122. Y.EWu, Z.G.Wu, H.Li, X.Li, The Novel Detection Approach of Shunt Active Filter Based on Adaptive Inverse Control. International Conference on Power Electronics and Drivers Systems. 2005: 538-541.
    123.于灵慧,房建成.Henon混沌同步的自适应逆控制.控制理论与应用.2005,22(4):624-631.
    124.李爱军,王新民,刘惠英.非线性系统的神经网络自适应逆控制.测控技术.2002,21(11):61-63.
    125.胡文霏,黄金泉.航空发动机自适应逆控制研究.航空动力学报.2005,20(2):293-297.
    126.伍维根,李泽蓉.混沌系统的自适应逆控制研究.攀枝花学院学报.2005,22(5):80-83.
    127.吴言凤,吴正国,李华.基于RLS算法的自适应逆控制系统的研究.海军工程大学学报.2005,17(1):80-84.
    128.赵斌,张如辉.基于U-滤波LMS算法的自适应逆控制系统.自动化与仪器仪表.2002,6:7-10.
    129.党映农,韩崇昭.基于Volterra基函数网络的自适应逆控制方法.西安交通大学学报.2000,34(9):8-12.
    130.黄金泉,胡文霏.基于ε-滤波LMS算法的航空发动机自适应逆控制.推进技术.2005,26(1):54-57.
    131.彭道刚,杨平,王志萍.基于单神经元的自适应逆控制仿真研究.自动化与仪器仪表.2005,(3):7-9.
    132.叶军.基于复合正交神经网络的自适应逆控制研究.计算机仿真.2004,21(2):92-94.
    133.卢志刚,冀尔康,李伟,吴士昌.基于混合Elman网络的非线性自适应逆控制.仪器仪表学报.2005,26(8):349-351.
    134.周辉,董正宏,朱仁峰.基于神经网络的反馈式自适应逆控制系统.控制工程.2006,13(3):244-249.
    135.杜刚,战兴群,钟山,张卫明.基于神经网络的非线性船舶航向自适应逆控制.测控技术.2005,24(4):23-26.
    136.刘金琨,刘涛.基于小波神经网络的自适应逆控制及其应用.系统工程与电子技术.2003,25(5):591-594.
    137.贺昱曜,徐德民,万建.基于预测的模型参考自适应逆控制.长安大学学报.2004,24(1):100-103.
    138.韩璞,于萍,王东风.基于支持向量回归的自适应逆控制方法.华北电力大学学报.2006,33(3):31-35.
    139.宋文龙,曹军.基于自适应逆控制的干燥窑温度控制方法研究.农业工程学报.2006,22(3):95-98.
    140.吴言风,吴正国,李华.基于自适应逆控制的有源滤波器的检测算法.控制与决策.2005,20(12):1419-1422.
    141.王启志,王晓霞.利用神经网络自适应逆控制消除干扰和噪声.江南大学学报.2005,4(5):469-471.
    142.王启志.神经网络辨识的自适应逆控制.华侨大学学报.2005,26(4):397-400.
    143.韩璞,张海琳,张丽静.神经网络自适应逆控制的仿真研究.华北电力大学学报.2001,28(3):26-30.
    144.邢志伟,封锡胜.水下机器人神经网络自适应逆控制.控制工程.2003,10(3):235-238.
    145.曲东升,孙立宁,高有将.压电陶瓷致动器自适应逆控制方法的研究.压电与声光.2002, 24(5):354-357.
    146.柳晓菁,易建强,赵冬斌,王伟.一种基于RBF网络的非线性自适应逆控制系统.控制与决策.2004,19(10):1175-1177.
    147.张宇明,曹其新.一种事变非线性系统的自适应逆控制仿真.系统仿真学报.2006,18(3):760-763.
    148.苏建明,王京,郭强.智能自适应逆控制在无压式淬火机上的应用.工业仪表与自动化装置.2003,(5):24-25.
    149.于华民,朱海潮,施引.自适应逆控制FXLMS算法有源噪声控制仿真研究.海军工程大学学报.2003,15(5):22-25.
    150.卢志刚,于灵慧,吴士昌.自适应逆控制的离散混沌保密通信系统.通信学报.2004,25(9):125-131.
    151.吴振顺,付丙勤,冯玉宾,赖海江.自适应逆控制在电液伺服系统中的应用.哈尔滨工业大学学报.2005,37(3):385-387.
    152.白晶,李华德,孙和平.自适应逆控制增强矢量控制系统参数鲁棒性的研究.电气应用.2005,24(10):119-122.
    153.李国勇.智能控制及其matlab实现.北京:电子工业出版社.2005
    154. C.Morris, H.Lecar. Voltage oscillations in the barncle gaint muscle fiber. Biophysiology Journal. 1981.35:203-213
    155. A.L.Hodgkin, A.F.Huxley. Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo. Journal of Physiology. 1952. 116:449-472
    156. A.D.Back, A.C.Tsoi. FIR and ⅡR synapses, a new neural network architecture for time series modeling. Neural Comput. 1991. 3: 375-385,.
    157. E.A.Wan. Temporal backpropagation for FIR neural networks. Proc. Int. Joint Conf. Neural Networks. 1990. 1: 575-580.
    158. N.Benvenuto, F.Piazza, and A.Uncini. Comparison of four learning algorithms for multilayer perceptron with FIR synapses. Proc. IEEE Int. Conf. Neural Networks, 1994.
    159. A.D.Back, A.C.Tsoi. A simplified gradient algorithm for IIR synapse multilayer perceptron. Neural Comput.. 1993. 5: 456-462,.
    160. P.Campolucci, EPiazza, A.Uncini. On-line learning algorithms for neural networks with ⅡR synapses. Proc. IEEE Int. Conf. Neural Networks, Perth, Australia, Nov. 1995.
    161. P. Frasconi, M. Gori, G. Soda. Local feedback multilayered networks. Neural Comput.. 1992. 4: 120-130,.
    162. M.Gori, Y.Bengio, R.De Mori. BPS: A learning algorithm for capturing the dynamic nature of speech. Proc. Int. Joint Conf. Neural Networks. 1989.
    163. R.R.Leighton, B.C.Conrath. The autoregressive backpropagation algorithm. Proc. Int. Joint Conf. Neural Networks. 1991: 369-377
    164. H.T.Siegelmann, B.GHome, and C.L.Giles. Computational capabilities of recurrent NARX neural networks. IEEE Trans. Systems, Man and Cybernetics-Part B. 1997,27(2): 208-215
    165. P.Campolucci, A.Uncini, F.Piazza. On-line learning algorithms for locally recurrent nerual networks. IEEE Trans. Neural Networks. 1999.10(2): 253-273
    166.I.J.Leontaritis, S.A.Billings. Input-output parametric models for nonlinear systems, Part I : deterministic nonlinear systems; Part II: stachastic non-linear systems. Int. J. Control, 1985, 41(1):303-344.
    167. J.P.F.Sum, W.K.Kan, GH.Young. A note on the equivalence of narx and rnn. Neural Computing & Applications. 1999. 8: 33-39
    168. Y.Q.Liu, GF.Ma, X.YJiang, A Design Method for Adaptive Inverse Control Using NARX Neural Networks. Proceedings of the 5th World Congress on Intelligent Control and Automation. June, Hangzhou, P.R.China 2004: 459-463
    169. B.Widrow. 30 years of adaptive neural networks: Perceptron, Madaline, and backpropagation. Proceeding of the IEEE. 1990.78(9): 1415-1442
    170. D.B.Parker. Learning-logic. Invention Report S81-64, File 1, Office of Technology Licensing. Stanford University. Stanford. 1982
    171. R.J.Williams. An efficien gradient-based algorithm for on line training of recurrent network trajectories. Neural Computation. 1990. 2: 490-501
    172. P.J.Werbors. Backpropagation through time: What it does and how to do it. Proc. IEEE, Special Issue on Neural Networks, Oct. 1990. 78: 1550-1560.
    173. B.A.Pearlmutter. Gradient calculations for dynamic recurrent neural networks: A survey. IEEE Trans. Neural Networks, vol. 6, Sept. 1995.
    174. R.J.Williams, D.Zipser. A learning algorithm for continually running fully recurrent neural networks. Neural Comput.. 1989. 1: 270-280
    175. B.A.Pearlmutter. Two new learning procedures for recurrent networks. Neural Networks Rev.. 1990. 3(3): 99-101
    176. D.Mandic. A normolised RTRL algorithm. Signal Processing. 2000. 80: 1909-1916
    177. G.V.Puskoriws Nearo-control of nonlinear dynamic systems with kalmann filter trained neural network. IEEE Trans Neural Network. 1994. 5: 279-297
    178. T.K.Moon. The expectation-maximization algorithm. IEEE Signal Processing. 1996. Nov.: 48-60
    179. M.Gori, Y.Bengio, R.D.Mori. BPS: A learning algorithm for capturing the dynamic nature of speech. Proc. Int. Joint Conf. Neural Networks. 1989
    180. Y. Bengio, R. D. Mori, M. Gori. Learning the dynamic of speech with backpropagation for sequences Pattern Recognition Lett.. 1992.13: 375-385
    181. R. R. Leighton, B. C. Conrath. The autoregressive backpropagation algorithm. Proc. Int. Joint Conf. Neural Networks. 1991: 369-377
    182. H. Bersin. A simplification of the backpropagation through time algorithm for optimal neurocontrol. IEEE Trans Neural Network. 1997. 2: 437-441
    183. J. Kennedy, R. Eberhart. Particle swarm optimization. Proc. IEEE International Conf. on Neural Networks. Perth. Australia. 1995: 1943-1948
    184. J. Kennedy, R. Eberhart. Swarm Intelligence. SanFrancisco:Morgan Kaufman Publishers, 2001.
    185.马彩虹.桑代克的学习定律及其启示.常熟高专学报.2001.5(3):68-70
    186.包晓峰.班杜拉社会学习理论述评.文教资料.2006.3:78-79
    187. S. Y. Shi, R. Eberhart. A Modified Particle Swarm Optimizer. Proceedings of the IEEE International Conference on Evolutionary Computation. 1998.69-73.
    188. S. Y. Shi, R. Eberhart. Fuzzy Adaptive Particle Swarm Optimization. Proceedings of the IEEE Congress on Evolutionary Computation. 2001:101-106
    189. S. Hu, Q. H. Wu, J. Y. Wen. A Particle Swarm Optimizer with Passive Congregation. Biosystems, 2004, 78: 135-147
    190. M. Clerc, J. Kennedy. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evolutionary Computation. 2002.6(1):58-73
    191.李宁,孙德宝,邹彤.基于差分方程的PSO算法粒子运动轨迹分析.计算机学报.2006.29(11):2052-2060
    192.王华秋,曹长修.基于模拟退火的并行粒子群优化研究.控制与决策.2005.20(5):500-504
    193.封磊,蔡创,齐春.PSO和GA的对比及其混合算法的研究进展.控制工程.2005.12(S):89-92
    194.高鹰,谢胜利.混沌粒子群优化算法.计算机科学.2004.31(8):13-15
    195.陈国初,俞金寿.变领域宽度的爬山微粒群优化算法及其应用.化工学报.2005.56(10):1928-1931
    196. F. Solis, R. Wets. Minimization by random search techniques. Mathematics of Operations Research. 1981. 6(1): 19-31
    197. Y. H. Shi, R. Eberhan. Empirical study of panicle swarm optimization. Proceedings of the Congress on Evolutionary Computation. Washington D. C. USA. 1999: 1945-1949
    198. S. I. Mason. Feedback theory-some properties of signal flow graphs. Proc. Inst. Radio Eng.. 1953. 41: 1144-1156
    199. A. Y. Lee. Signal flow graphs-computer-aided system analysis and sensitivity calculations. IEEE Trans. on circuits and systems. 1974.21 (2): 209-217
    200. P. Campolucci, A. Marchegiani, A. Uncini. Signal-flow-graph derivation of on-line gradient learning algorithms. IEEE International Conf. on Neural Networks. Houston. USA. 1997:1-6
    201. G. Cybenko. approximation by superpositions of a sigmoidan function. Math. Contr. Signal Sys.. Vol. 2 No. 4. 1989: 303-314
    202. K. I. Funahashi. on the approximate realization of continuous mapping by neural networks, Intel. Conf. NN,1989
    203. K. Hornik, M. Stinchcombe, H. White. universal approximation of an unknown mapping and its derivatives using multilayer feedforword networks, neural networks. No. 3. 551-560. 1990
    204. W. D. Hu. Z. Z. Wang. the approximation of arbitrary functions with multilayer BP neural networks. Proc. IJCNN'92. Beijing. China. 1992
    205. T. P. Chen, C. Hong. Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Trans. on Neural Networks. 1995. 6(4): 911-917
    206.伦淑娴,张化光.一类非线性时滞离散系统模糊H∞滤波器的设计.电子学报,2005,33(2):231-235
    207. S. G. Cao, N. M. Rees, G. Feng. Quadratic stability analysis and design of continuous-time fuzzy control systems. International Journal of Systems Science. 1996. 27(2): 193-203
    208. S. G. Cao, N. M. Rees, G. Feng. Analysis and design of fuzzy control systems using dynamic fuzzy-state space models. IEEE Transaction on Fuzzy Systems. 1999. 7(2): 192-199
    209. T. Takagi, M. Sugeno. Fuzzy identification of systems and its applications to modeling and control. IEEE Transaction on Systems, Man and Cybernetics. 1985. 15(1): 116-132
    210. D. Wlodzislaw and J. Norvbert. Survey of neural transfer functions. Neural Computing Surveys. 1999. 2: 163-212
    211.吴佑寿,赵明生,丁晓青.一种激励函数可调的新人工神经网络及应用.中国科学(E辑).1997,27(1):55-60
    212. G. Sulee and M. P. Danilo. Recurrent neural networks with trainable amplitude of activation functions. Neural Networks. 2003, 16: 1095-1100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700