用户名: 密码: 验证码:
空间机器人遥操作系统延时控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于天地之间的距离非常遥远,导致了空间机器人遥操作系统中存在较大的天地间通讯时延,天地间大时延的存在,不仅会影响整个遥操作系统的稳定,还会使得操作者由于不能及时收到远端的信息,而产生疲惫感和极大的操作压力,因此,如何克服大时延的影响成为空间机器人遥操作系统需要解决的重要问题。
     双边控制由于其能应用于从端环境未知或者非结构化等一系列的优点,成为近几年遥操作系统中的研究重点与热点,而一般的双边控制遥操作都是将整个系统简化为二端口网络模型,虽然这种结构简单,且能满足一般性的遥操作任务性能,但是对于需要进行复杂精细的任务工作的时候,二通道结构则无法满足需求。于是针对力和运动均能双向传递的思想,研究者提出了四通道双边控制结构。在前人的基础上,本文主要完成了如下工作:
     首先,在对经典的四通道结构进行研究分析之后,设计了一种基于真实力反馈的四通道双边控制系统,根据控制器参数将其简称为KBG控制,此结构中考虑了主手施加的真实力对从端的影响,以及从端反馈力对主手的影响,并利用位置偏差进行了力校正。
     其次,对所设计的力反馈遥操作双边控制系统进行了性能分析。以往的研究者们主要只是分析系统的稳定性和透明性,本文给出了一个李亚普诺夫能量函数,利用无源性理论对系统进行了分析,得出整个系统无源的结论,进而可得系统稳定,随后又给出了透明性的度量函数。此外,针对从手对主手的跟踪能力,即系统的跟踪性,给出了系统跟踪性的度量函数。在上述基础上,进而得出了控制器参数的选取范围。
     然后,论文分析了已有时延的处理方法,考虑到马尔科夫过程的特点,得出天地间的大时延符合马尔科夫无后效性的特点,所以利用马尔科夫模型对天地间的大时延进行了预测建模,并通过软件模拟进行了验证。
     最后,为了验证所提出的系统的性能,进行了空间机器人遥操作系统地面仿真实验研究,根据实验结果验证了整个系统的可行性与有效性。
Because of the large distance between heaven and earth, leading to it is difficult to remote control the space robot on the ground because of the large distance between heaven and earth, and the it will have great communication delay. The large time delay, will not only affect the stability of the teleoperation system, but also make the operator fail to receive the distant information, and would produce fatigue and great operating pressure, therefore, large time delay problems become one of the most difficulties in the space robot teleoperation system.
     Bilateral control has a series of advantages, such as it can be applied to the environment from the end of the unknown or unstructured and so on, these make the bilateral control become the research hot focus on teleoperation systems. The general bilateral teleoperation control was simplified to two port network model before, although this kind of structure is simple, and can satisfy the general remote operation task performance, but to the need for intricate task work, two channel structures cannot meet demand. According to the idea that the force and movement both can be transferred in round-trip, the researchers put forward the four channel bilateral control structure. On the basis of predecessors, this paper mainly completed the following work:
     First of all, after researching and analyzing the classic four channel structure, designed a kind of four-channel bilateral control system structure based on true force feedback, we named it as "KBG controller" according to the controller parameters, this structure in considering the true force supplied by operator, the effect of force feedback from the remote environment influence on the operator, and use the position deviation on the force correction.
     Then analysis performance of teleoperation bilateral control system which designed in last section, in the past the researchers mainly focus on analyzing system stability and transparency, in this paper we give a general Lyapunov energy function, using the passive theory to analysis, that the whole system passive conclusion, then can get the system stability, then give the transparency measurement function and analysis. But the two performances cannot fully reflect all the system performance, teleoperation system also needs the tracking ability of the slave to the master, namely system tracking performance, and also give the system tracking performance measurement function and analysis it. Use of system performance analysis, get the controller parameter selection range.
     After that, this paper analyses the existing delay processing methods, considering the characteristics of the Markov process, it was concluded that the time delay between heaven and earth with Markov no aftereffect characteristic of, therefore, use Markov model for large time delay between heaven and earth to forecasting and modeling, and verify it through software simulation.
     Finally in order to verify the performance of the proposed system, we search on a space robot teleoperation system of the ground validation simulink experiment, which has a1-dof slave manipulator, according to the experimental results verify the feasibility and validity of the whole system.
引文
[1]李锋.半闭环双边控制系统研究[D].国防科学技术大学.2009.
    [2]邓启文.空间机器人遥操作双边控制技术研究[D].博士论文.国防科技大学.2006.10.
    [3]王学谦,梁斌,徐文福,李成.空间机器人遥操作地面验证技术研究[J].机器人.2009.31(1):8-18.
    [4]席裕庚.预测控制[M].国防科技出版社.1993.
    [5]李华忠,梁永生,唐强平,等.无时延感的遥操作实时共享控制仿真[J].计算机工程与应用.2009.45(3):11-15.
    [6]李焱,贺汉根.应用遥编程的大时延遥操作技术[J].机器人.2001.23(5):391-396.
    [7]王永,谢圆,周建亮.空间机器人大时延遥操作技术研究综述[J].宇航学报.2010.2.31(2):299-306.
    [8]M.Q.Le, M.T.Pham, M.Tavakoli. An enhanced slidling-mode control for a pneumatic-actuated teleoperation system. IEEE/RSJ International Conference on Intelligent Robots and Systems [C]. 2011.9:659-664.
    [9]邓乐,赵丁选,倪涛,文广等.具有临场感的主从机器人系统双边控制策略[J].吉林大学学报.2006.9.36(5):681-685.
    [10]周生龙,宋爱国.时延遥操作系统的能量观测与控制研究进展[J].测试技术.2010.11.(10):1-5.
    [11]TaoNi, Hironao Yamada, Hongyan Zhang. Image Based Real-Time 3D Reconstruction for Teleoperation System[C].2010 International Conference on CMCE.2010:265-268.
    [12]邓启文,韦庆,李泽湘.大时延力反馈双边控制系统[J].机器人.2005.9.5(27):410-413.
    [13]徐向峰.7DOF空间机器人遥操作控制算法研究[D].河南工业大学.2010.
    [14]查世红.空间机器人六自由度浮游目标捕获功能地面验证系统研究[D].中国科学技术大学.2008.
    [15]曹鹏.基于移动机械臂的机器人遥操作系统的研究[D].上海大学.2010.
    [16]杨穗霞.空间舱内机器人地面实验平台的总体设计与控制技术研究[D].北京邮电大学.2005.
    [17]张娅岚.空天地网络通信协议发展研究[J].福建电脑.2009(2):38-39.
    [18]陈俊杰.空间机器人遥操作克服时延影响的研究进展[J].测控技术.2007.26(2):1-7.
    [19]A.Forouzantaba, H.A.Talebi, A.K.Sedigh. Bilateral control of master-slave manipulators with constant time delay[J]. ISA Transactions.51(2012)74-80.
    [20]Mohammad Motamedi, Mohammad Taghi Ahmadian, Gholamreza Vossoughi, etc. Adaptive sliding mode control of a piezo-actuated bilateral teleoperated micromanipulation system[J]. Precision Engineering.2011.4.35(2):309-317.
    [21]Y.S.Lee, Y.S.Moon, W.H.Kwon. Delay-dependent robust H∞ control for uncertain system with a state-delay[J]. Automatica.2004.1.40(1):65-72.
    [22]Robust Hoo fuzzy static output feedback control of T-S fuzzy system with parametric uncertainties. Fuzzy Sets and Systems[J].2007.1.158(2):135-146.
    [23]王瑞奇,顾文锦,夏长俊,张文广.面向在轨服务的机器人遥操作双边控制[J].机电工程.2011.5.Vol.5(28):577-581.
    [24]李明富,赵迪等.基于虚拟现实的预测仿真遥操作系统[J]. Automation and Instrumentation.2008(8):8-11.
    [25]王清阳.机器人遥操作预测控制新方法及实现[J].机器人技术.2008.24(8-2):260-261.
    [26]刘冬雨.面向卫星在轨维护的机器人臂_手遥操作的研究[D].哈尔滨工业大学.2010.6.
    [27]陈俊杰,黄惟一.遥操作机器人系统克服时延影响的关键技术[J].华中科技大学学报(自然科学版).2004.10(32):187-190.
    [28]ZHANG Dianhua, NIU Shulin, ZHANG Hao, etc. The optimal control strategy for pure delay inertia process and its application on strip rolling MN-AGC System[C].2010:859-863.
    [29]Chien-Liang Lai, Pau-Lo Hsu. Design the remote control system with the time-delay estimator and the adaptive Smith Predictor[C]. IEEE Trans on Industrial informatics.2010.2. 6(l):73-80.
    [30]Xuanxuan Teng, Yuh Yamashita. Novel ODE-type Nonlinear Smith Predictor for Networked Control System with time-varing delay[C].19th Mediterranean Conference on Control and Automation.2011.6:19-24.
    [31]魏秋月王文庆.大滞后系统模糊自适应PI-Smith控制[J].自动化与仪表.2011(4):27-30
    [32]Dale A. Lawrence. Stability and transparency in bilateral teleoperation[J]. IEEE Transactions on Robotics and Automation.1993.9(5):624-637.
    [33]KEYVAM H Z, SEPTIMIU E S. Transparency in time-delayed system and the effect of local force feedback for transparent teleoperation[J]. IEEE Transactions on Robotics and Automation, 2002,18(1):108-114.
    [34]王裕基,孙富春,刘华平,闵海波.无环境力反馈的四通道双边控制[J].控制理论与应用,2011,28(3):315-320.
    [35]Lee D J, MARK W S. Passive bilateral teleoperation with constant time delay[J]. IEEE Transactions in Robotics,2006,22(2):269-281.
    [36]EMMANUEL N, LUIS B, ROMEO O. Passivity-based control for bilateral teleoperation:A tutorial[J]. Automatica,2011,47:485-495.
    [37]周晗.遥操作双边控制手控器设计[D].国防科技大学.2009.
    [38]尹继超.机器人遥操作中关键技术的研究[D].哈尔滨工程大学.2010.
    [39]孙永梅,段晓霞.时间延迟估计方法的研究进展[J].化工自动化及仪表.2010.37(10):2-5.
    [40]王文川,韩焱.基于变步长LMS自适应时延估计算法[J].2009.7(1):32-36.
    [41]何燕春.时延估计算法及其应用研究[D].南京信息工程大学.2009.5.
    [42]亓会平,唐功友,刘海林.时滞网络控制系统的动态输出鲁棒控制[J].中国海洋大学学报(自然科学版)2011.12.41(12):114-117.
    [43]葛愿.基于隐马尔可夫模型的网络化控制系统建模与控制[D].中国科学技术大学.2011.
    [44]http://zh.wikipedia.org.
    [45]孙启湲.基于互联网的移动机器人网络控制系统研究[D].天津大学.2004.
    [46]阎伟萍.网络遥操作机器人系统的研究—视频传输与网络通信[D].哈尔滨工业大学.2010.
    [47]胡志坤.Visual C++通信编程工程实例精解[M].2007.
    [48]胡萍,符秀辉.基于Web的机器人遥操作系统[J].仪器仪表学报.2005.26(8):479-480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700