用户名: 密码: 验证码:
密封用磁性NBR/Fe_3O_4复合材料与NBR/SrO·6Fe_2O_3复合材料的摩擦磨损与磁学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶密封制品是以橡胶为基材制造的、用于防止流体介质从机械、仪表的静止部件或运动部件泄漏,并防止外界灰尘、泥沙及空气(对于高真空而言)进入密封机构内部的部件。橡胶密封制品的作用重要、结构独特,具有装配维修方便、使用可靠、成本适中、与液压和气动工作液或润滑剂有较好的相容性、用途广泛等特点,早已引起国内外各工业部门的关注。近年来随着对橡胶密封制品的需求量不断增加,对其技术水平的要求不断提高,使得研究如何提高密封件的使用效果成为热点课题。改善橡胶密封制品的性能,首先应从改善橡胶材料的基本性能入手,研究橡胶材料及其性能,不仅对密封装置中的密封件有用,触类旁通,对其他橡胶制品的研究也有参考价值。并且为了提高密封件的使用寿命,除了要考虑密封材料必须的力学性能、弹性和耐油性外,还必须最大限度地提高材料的抗磨、减摩性能。
     本课题在调研了国内、外橡胶密封的现状和发展的基础上,提出了应用纳米技术对复合橡胶进行改性,以磁性纳米Fe_3O_4粒子与纳米SrO·6Fe_2O_3粒子为研究的突破点。纳米颗粒具有尺寸小、比表面积大、表面间形态不同于颗粒内部、表面原子配位不全、表面活性强等特性。采用磁性纳米材料填充橡胶以期使丁腈橡胶的性能获得提高如耐磨耗性能并使丁腈橡胶带有磁性。本课题选择纳米Fe_3O_4粒子和纳米SrO·6Fe_2O_3粒子作为橡胶的填充剂,并且选用具有优良的耐油、耐热和耐腐蚀性的丁腈橡胶作为基材。从设计和制备磁性NBR/Fe_3O_4复合材料和NBR/SrO·6Fe_2O_3复合材料入手,研究纳米粒子的存在状态与橡胶复合材料结合后的力学性能、磁学性能、摩擦、磨损性能;探究纳米粒子复合橡胶材料的抗磨、减摩机理,为设计密封用高性能弹性体复合材料提供理论和应用依据。
     本文的主要工作及成果如下:
     1.探讨了纳米Fe_3O_4粒子和纳米SrO.6Fe_2O_3粒子作为填充剂的特性,利用WL2000SP型混炼机制备了磁性NBR/Fe_3O_4复合材料和NBR/SrO·6Fe_2O_3复合材料。利用JSM-5600LV低真空电子显微镜对复合材料表面进行研究发现:纳米Fe_3O_4粒子的加入有效地改善了NBR基体的表面结构,具有较好的补强作用。随着纳米Fe_3O_4粒子的添加量不断加大,复合材料的表面结构逐渐变差,当添加量为10%左右时,表面结构较为理想。并且复合材料中具有较好的相态结构,纳米粒子随着添加量的不断加大,不均匀现象逐渐增多,不利于纳米粒子对材料的改性作用。
     2.利用DXL-10000电子拉力试验机等测试设备对复合材料的物理机械性能进行了测试,测试结果表明:随着纳米粒子的加入,NBR/Fe_3O_4复合材料和NBR/SrO·6Fe_2O_3复合材料的拉伸强度和扯断伸长率逐渐减小。复合材料的硬度明显大于普通NBR。普通NBR的邵尔A硬度为63度,而复合材料的硬度则随着纳米粒子填充量的不断加大逐渐得到提高。随着纳米粒子添加量不断提高,磁性NBR/Fe_3O_4和NBR/SrO·6Fe_2O_3复合材料的门尼粘度NBR的门尼粘度略有升高,复合材料的挥发分,灰分含量、结合丙烯腈含量在小范围内变化。从细观层面上分析了磁性丁腈橡胶的热粘弹性理论并修正了加入磁性粒子后橡胶的内能、熵和Helmholtz自由能之间的关系以及非线性热粘弹性本构关系模型,实验得出应力应变与温度的关系,并分析了磁性粒子含量的变化所来的性能变化,确定了10%含量时的磁性NBR/Fe_3O_4复合材料具有较好的性能。
     3.利用U10充磁机和摩擦磨损试验机对复合材料的磁性能与摩擦磨损性能测试后发现:随着纳米粒子含量的增多,复合材料的磁性能单调增加,表现出典型的顺磁性特征,并且两种复合材料矫顽力均有较小幅度的增长;纳米粒子作为填充物可有效降低NBR摩擦系数与磨损率。当添加量为10%时NBR/Fe_3O_4复合材料的综合摩擦磨损效果较好,摩擦系数与磨损率低于普通NBR近300%。纳米SrO·6Fe_2O_3粒子作为填充物,在添加量为10%时,可有效降低NBR摩擦系数与磨损率。但是随着添加量的不断加大,NBR/SrO·6Fe_2O_3复合材料的综合摩擦性能明显变差,劣于普通NBR。
     4.对磁性橡胶的密封应用前景研究发现:纳米磁性橡胶复合材料轴封具备普通橡胶轴封不具备的一系列优点:较低的摩擦系数和磨损率、良好的自修复能力和自密封性能等,有效地提高了轴封的密封能力。
Rubber seal is made by rubber materials, which used to prevent any liquid leak from the static and moving components of the machine, and prevent dirt, soil and air (the vacuum environment) into internal parts of the sealed machine. Rubber is the polymer material with the unique mechanic performance, which mainly shows by: producing great shape for low strain, elasticity of restoring their original shape after deformation, the size of materials remain unchanged under pressure, and have better compatibility with hydraulic oil and lubricant. The important of rubber seal shows unique structure, convenient assembly and maintenance, usage credibility, low cost, wide application and so on, which causes concern of various industry departments at home and abroad. In recent years, with the increasing of demand of rubber seal, the skill level of requirements is increasing, which the research about improve the effectiveness of the seals to be a hot topic. The improving performance of rubber seal should the first improve the performance of rubber materials, which will not only benefit for rubber, but also other rubber products. To improve the life of seals, the anti-friction and anti-wear properties of material are improved at the greatest level in addition to improve mechanical properties, flexibility and oil resistance of material.
     On the basis of the survey of present and future prospects of rubber seal at home and abroad, we propose the modification of rubber composites by nanotechnology based on magnetic nano-Fe_3O_4 particles and nano-SrO·6Fe_2O_3 particles in the project. Nano particles employed smaller size, specific surface, surface morphology is different from inside particles, the surface atoms, strong surface reactivity and so on.Rubber composites are made by filling magnetic nano-material into nitrile-butadiene rubber(NBR), which improve anti-friction and anti-wear properties as well as rubber magnetic properties. Nano-Fe_3O_4 particles and nano-SrO·6Fe_2O_3 particles are applied as filler, and NBR with excellent oil resistance, heat-resisting and corrosion resistance is applied as matrix material. Started with design and preparation of magnetic NBR/Fe_3O_4 composites and NBR/SrO·6Fe_2O_3composites, the existence conditions of nano-particles, mechanical properties, magnetic properties, friction and wear properties of composites are studied, which lay the foundation of high-performance elastomer composites for sealing. The major work and results are as follows:
     1. The characteristics of nano-Fe_3O_4 particles and nano-SrO·6Fe_2O_3 particles as filler are discussed, magnetic NBR/Fe_3O_4 composites and NBR/SrO·6Fe_2O_3 composites was prepared by WL2000SP mixing rolls, and the surface microstructure of composites are surveyed by JSM-5600LV electron microscope. The result shows that after the addition of nano-Fe_3O_4 particles, the surface microstructure of NBR/Fe_3O_4 composites are greatly improved, which shows the good reinforcement of nano- particles. With addition of nano-Fe_3O_4 increasing, the surface microstructure of composites become inferior gradually, and the composites have good microstructure and phase structure with mass fraction of nano-Fe_3O_4 particles10%. With addition of nano-Fe_3O_4 increasing, the uneven phenomenon of nano-particles increasing, which are unfavorable to modification of nano-particles for materials.
     2.The physical and mechanical properties of composites are tested by DXL-10000 electronic tensile tester and so on. Test result shows: with adding different mass fraction of nano-particles, maximum elongation、300%stress at definite elongation and tensile-strength of composites are decreased, but shore A hardness and mooney viscosity of composites are improved, while the volatile component, ash content and content of bound acrylonitrile are changed in a small range. From the microscopic level, We also investigated the relationship between internal energy, entropy and Helmholtz free energy after adding nano-Fe_3O_4 particles, and nonlinear thermoviscoelastic constitutive model are deduced, Stress-strain curves of NBR/Fe_3O_4 composites with different mass fraction of nano-Fe_3O_4 particles at were obtained in this experiment. The composites have good performance with mass fraction of nano-Fe_3O_4 particles10%. 0oC
     3. The magnetic properties and frictional wear properties of the composites are tested by U10 magnetizer and friction-abrasion testing machine. Test result shows: with increasing the mass fraction of nano-particles, magnetic properties of the composites monotonely increase, saturation magnetization strength of the composites increase constantly. The composites show typical characteristics of paramagnetism. And the coercive force of two composites have increased in small scope. The properties of anti-wear for NBR composites are improved when two kinds of nano-particles were filled in, and the tribological properties of NBR/Fe_3O_4 composites are better. When addition of nano-Fe_3O_4 particles are 10%, the wear rate of NBR/Fe_3O_4 composites are 300% lower than ordinary rubber. while the friction coefficient and wear rate of NBR are small reduced at the beginning by adding nano-SrO·6Fe_2O_3 particles, but the friction coefficient and wear rate are incessant larger with the increasing addition of nano-SrO·6Fe_2O_3 particles.
     4.The application of magnetic rubber seal in the future have a series of merits relative to ordinary rubber seal, for example: lower friction coefficient and wear rate, favourable repaire themselves and self-sealing performance, which help improve sealing performance of shaft gland.
引文
[1]周文荣.我国合成橡胶产业现状及发展[J].中国橡胶,2006, 22(20):7-11.
    [2]林原,谢四海,黄兴.橡塑密封技术的新进展[J].润滑与密封,2002,27(5):88-90.
    [3]李法华.功能橡胶材料及制品的发展[J].橡胶工业,2001,48(2):112-121.
    [4]黄兴,林原.新世纪密封技术面临的问题及其发展趋势[J].润滑与密封,2002,1:76-78.
    [5]胡国帧,石流,严家宾.化工密封技术[M].北京:化学工业出版社,1990.
    [6] ROLAN DVAN DORT. Revolutionary Metal-To-Metal Seal Spells End of Rubber[J]. Scandinavian Oil Gas Magazine, 2007, 35(7-8):188-189.
    [7] Yuankan Dai, Hong Zheng, Chixing Zhou, et al. Quick Profile Die Balancing of Automotive rubber Seal Extrusion by CAE Technology[J]. Journal of Macromolecular Science, Part A, 2008, 45(12):1028-1036.
    [8]徐颖.密封[M].北京:冶金工业出版社,1999.
    [9]广廷洪,汪德涛.密封件使用手册[M].北京:机械工业出版社,1994.
    [10] Y. K. Dai, C. X. Zhou, W. Yu. Inverse designing simulation of extrusion die of auto rubber seal and verifications[J]. Plastics, Rubber and Composites, 2007, 36(4):141-148.
    [11]谢忠麟.汽车用橡胶密封制品的技术进展[J].橡胶工业,2007,54(6):367-378.
    [12] J.-M. Degrange, M. Thomine, Ph. Kapsa, et al. Influence of viscoelasticity on the tribological behaviour of carbon blackfilled nitrile rubber (NBR) for lip seal application[J]. Wear, 2005,259(1): 684-692
    [13]高鹏,陈晔.纳米改性对短纤维橡胶基密封复合材料性能的影响[J].润滑与密封,2009,34(8):66-70.
    [14] IWAYAMA TADASHI. Seal technology. Application of analytic technology to performance evaluation of rubber seals[J]. Valve Technical Review, 2006, 21(1):31-36.
    [15]李振环,班玉红,孔建.机械密封用橡胶材料的技术进展[J].特种橡胶制品,2009,30(1):60-64.
    [16]赵志正.在高寒条件下使用的橡胶密封材料[J].世界橡胶工业,2009,36(12):23-25.
    [17] Y.T. Pe, X.L. Bui, X.B. Zhou, et al. Tribological behavior of W-DLC coated rubber seals[J]. Surface and Coatings Technology, 2008, 202(9):1869-1875.
    [18]高福年.用氢化丁腈橡胶制作橡胶密封制品[J].弹性体,2001,11(4):27-32.
    [19]靳海葆.耐高温高压动态橡胶密封材料[J].材料开发与应用,1997,12(1):37-39.
    [20]王小萍,朱立新,贾德民.橡胶纳米复合材料研究进展[J].合成橡胶工业,2004, 257-260.
    [21]段宏基,魏刚,杨雅琦,等.丁腈橡胶的改性在密封材料中的应用研究进展[J].弹性体,2008,18(6):66-71.
    [22]杨伟燕,成瑾,赵军霞.橡胶纳米复合材料研究进展及其发展前景[J].甘肃科技,2006,22(10):133-135.
    [23]张心亚,沈慧芳,黄洪,等.纳米粒子材料的表面改性及其应用研究进展[J].材料工程,2005,10:58-63.
    [24] Cartfledgc H C Y, Baillie C, Mai-Yiu-Wing. Friction and wear mechemics on a thermoplastics composite GF/PA66 subjected to different thermal histories[J]. Wear, 1996, 194:178-184.
    [25]严志云,贾德民.橡胶纳米复合材料研究进展[J].广东化工,2005,3:34-39.
    [26]高琼芝,周彦豪,陈福林,等.纳米技术在橡胶工业中应用的新进展[J].合成橡胶工业,2003,26(4):197-202.
    [27]刘永然,曾凡全.金属复合橡胶板(MCR)的研发与运用[J].摩托车技术,2009,6:48-49.
    [28]张瑞,王大鹏,娄秀冬.内燃机用高强高弹密封衬垫的研制[J].小型内燃机与摩托车, 2004,5:19-22.
    [29]谢苏江,蔡仁良.压缩非石棉纤维增强橡胶密封板材垫片参数的试验研究[J].流体传动与控制,2004,2:13-16.
    [30]赵云峰,吴福迪,任淑媛.新型氟醚橡胶密封材料[J].特种橡胶制品,2002,23(1):29-31.
    [31]关长斌,崔占全,周振君.玻璃纤维对橡胶密封材料性能的影响[J].合成橡胶工业,2004,27(2):96-100.
    [32]焦更生.优化丁腈橡胶的密封性能[J].橡胶参考资料,2001,5:20-28.
    [33]曹松杰.加工助剂在汽车工业橡胶密封件中的应用[J].世界橡胶工业, 1999,5:10-16.
    [34]王成云,李永涛,佟常飞,等.橡胶基纳米复合材料研究进展[J].山东化工,2002,31(6):11-17.
    [35] Jianguo Deng, Xiaobing Ding, Wenchuan Zhang, et al. Magnetic and conducting Fe_3O_4-Gross-linked polyaniline nanoparticles with core-shell structure[J], Polymer, 2002,43:2179-2184.
    [36]曾艳,张平,余颖,等.纳米材料在橡胶改性技术中的应用[J].现代化工,2002,22:200-202.
    [37] Barrett T S,Stachowiak G, Batchelor A W. Effect of roughness and sliding speed on the wear and friction of ultrahigh molecular weight polyethylene. Wear, 1992,153:331-350
    [38]肖岩.聚丙烯/纳米粒子共混物复合材料的形态、结构与性能研究[D].四川大学硕士学位论文, 2005.
    [39]任艳军.改性Y2O3增强橡胶材料研究[D].燕山大学硕士学位论文,2006.
    [40]韩秀山.纳米级超细碳酸钙生产和应用前景广泛[J].化工时代, 2001, 26(1):59-60.
    [41]益庆,张立群.微纳米级粘土艨胶复合材料[J].北京化工大学学报,2000,27(1):86-91.
    [42] Xiaobin Ding, Zonghua Sun, Guoxiang Wan, et al. Preparation of thermosensitie magnetic particles by dispersion polymerization[J]. Reactive andfunctionalpolymers, 1998,38:11-15.
    [43]褚轶雯,胡建华,汪长春.磁性Fe_3O_4纳米粒子的3D字组装[J].全国高分子学术论文报告会, 2005,文章编号:G-P-656.
    [44] Peixun Li, Bo Yu, Xiuchen Wei. Synthesis and characterization of high oil-absorbing magnetic composite material[J]. Journal of applied polymer science, 2004, 93: 894-900.
    [45] I-W.Park, M.Yoon, Y.M.Kim, et al. Magnetic properties and microstructure of cobalt nanoparticles in a polymer films[J], Solid state communications,2003, 44:385-389.
    [46]胡志孟,赖世全,李同生.凹凸土/丁腈橡胶纳米复合材料的制备与性能[J].弹性体,2004,14(3):39-42.
    [47]周扬波,古菊,贾德民,杜杨.改性纳米碳酸钙对丁腈胶的补强作用[J].弹性体,2004,14(3):35-38.
    [48]周扬波,古菊,贾德民.纳米碳酸钙的表面改性及其在橡胶中的应用[J].特种橡胶制品,2004,25(3):54-58.
    [49]庄清平.白炭黑与单分散二氧化硅粒子补强橡胶的差异[J].橡胶工业,2004,51(3):138-142.
    [50]黄远红,胡文军,郭静,马艳.橡胶密封材料的渗水性和透气性研究[J].橡胶工业,2004,51(3):176-178.
    [51]马琳,姜蔚,赵崇洲.耐高温滑油丁腈橡胶胶料的研制[J].特种橡胶制品,2004,25(6):27-29.
    [52]汪济奎,郭卫红.高分子磁性材料[J].塑群技术,1990,3:22-26.
    [53]赖仕全.纳米粒子改性聚四氟乙烯和聚酰亚胺的摩擦学性能研究[D].复旦大学博士学位论文, 2005.
    [54]王军祥.填料改性尼龙复合材料的摩擦学机理及行为研究[D].中国矿业大学博士学位论文,2001.
    [55]陈耕,汪一麟.摩擦与磨损[M].同济大学出版社,1991.
    [56] Atkinson J R,Brown K J,Dowson D.The Weal of high molecular weight polyethylene. Part I:The Wear of isotropic polyethylene against dry stainless steel in unidirectional motion[J].Journal of Lubrication Techology,1978,100(2):208-218
    [57] Brown K J, Atkimon J R, Dowson D. The Wear of high molecular weight polyethylene. Part II:The effects of reciprocating motion, orientation ill the polyethylene, and a preliminary study of the wear of polyethylene against itself[J].Journal of Lubrication Technology, 1982, 104(1): 17-22.
    [58] Cooper J R, Dowson D, Fisher J. Macroscopic and microscopic wear mechanisms in ultrahigh-molecular-weight polyethylene[J]. Wear,1993, 162-164(A):378-384.
    [59] Marcus K, Allen C. The sliding wear of ultrahigh molecular weight polyethylene in an aqueous environment[J]. Wear, 1994, 178(1-2):17-28.
    [60]张邦维.纳米材料物理基础[M].北京化学工业出版社,2009.
    [61] Rohartgi P I, Blau P J, Yust C S. Tribology of composite materials[M]. ASM: Intemational Materials Park, 1990.
    [62] Lee S M.International Encyclopedia of composites[M]. New York:VCH Publishers, 1990.
    [63] Blanchet, Thierry-A. A model for polymer composite wear behavior including preferential load support and surface accumulation of filler particulate[J]. Tribology Transactions, 1995, 38:821-829.
    [64] S Bazhenov. The effect of particles on the failure modes of filler polymers[J]. Polym.Eng.Sci., 1995, 35:813-817.
    [65] A V Zhuk, N N Knunyants, V G Oshmyan. Debongding micropmcesses and interfacial strength in particle—filler polymer materials[J]. J.Mater.Sci., 1993, 28:4595-4603.
    [66] A E Bovari, S B Glenn. Selecting materials for weal"resistance[J] . Plastics Engineering,1995,51(12):31-36.
    [67]胡海霞,于思荣,刘兆政,等. SEBS-g-MA橡胶颗粒及有机纳米黏土增强尼龙66复合材料的摩擦磨损性能[J].吉林大学学报,2008,38:90-93.
    [68]德鲁.迈尔斯.表面、界面和胶体-原理及应用[M].北京:科学出版社,2005.
    [69]江晓红, Yarmolenko M A, Rogachev A V,等.聚合物复合薄膜改性橡胶表面结构及其摩擦性能研究[J].摩擦学学报,2007,27(2):106-111.
    [70]左雯雯.芳纶浆粕增强丁腈橡胶复合材料的摩擦磨损性能[J].化工学报, 2010, 61(5):1331-1336.
    [71]黄新武,王廷梅,田农,等.芳纶纤维增强丁腈橡胶的摩擦性能[J].合成橡胶工业, 2006, 29 (6): 451-453.
    [72]于晶,胡少坤,胡开放,等.干滑动下端羟基聚丁二烯液体橡胶-环氧树脂复合材料的摩擦性能[J].合成橡胶工业, 2007, 30 (4): 298-302.
    [73]罗颖.纳米粒子/环氧树脂复合材料的界面增强及其摩擦磨损性能的研究[D].中山大学博士学位论文, 2005.
    [74] Y Wang, N Herron. X-ray photoconductive nanocompositcs[J]. Science, 1996, 273(5275): 632-634.
    [75]廖梓瑁,晏华,陈勇,等.硅橡胶/有机橡胶共混改性的研究进展[J].有机硅材料,2005,19(6):25-27.
    [76]崔明,刘振东,李立平.橡胶纳米填料应用研究进展[J].橡胶工业,2004,51(4):249-252.
    [77]傅政.橡胶材料性能与设计应用[M].北京:化学工业出版社,2003.
    [78] Friedrieh K Karger K J. On the sliding wear performance of polyethernitrile composites [J]. Wear, 1992, 158:157-170.
    [79] Friedrich K(Ed).Advances in Composite Tribology[J].Composite Materials,1993, 8: 233-287.
    [80] Kukureka S N, Hooke C J, Rao M. The effect of fibre reinforcement on the friction and wear of polyamide 66 under dry rolling-sliding contact[J]. Tribology International, 1999,32(2):107-116.
    [81] D.R.保罗, C.B.巴克纳尔.聚合物共混物:组成与性能[M].北京:科学出版社,2003.
    [82] EI-Tayeb N S, Gadekab R M. Friction and weal properties of E-glass fiber reinforced epoxy composites under different sUding contact conditions[J]. Wear, 1996,192:112-117.
    [83]张立群,吴友平,王益庆,等.橡胶的纳米增强及纳米复合技术[J].合成橡胶工业,2000,23(2):71-77.
    [84] Gong D, Zhang B, Wang Q. Investigation of adhesive wear of filled polytetrafluoroethylene by SCA,AES and XRD[J]. Wear, 1990,137:25-39.
    [85]张招柱,薛群基,刘维明.几种金属氧化物填充聚四氟乙烯复合材料在干摩擦磨损条件下的摩擦磨损性能.摩擦学学报,1997,17(1):45-52.
    [86]丁军,马吉强,薛群基.纳米Al2O3填充端异氰酸酯基聚丁二烯橡胶-环氧树脂复合涂层的干滑动摩擦磨损性能研究[J].摩擦学学报,2006,26(4):314-320.
    [87]黄玉东.聚合物表面与界面技术[M].北京:化学工业出版社,2003.
    [88] Marcus K Allen C. Effect of fillers on the friction and wear behavior of ultrahigh molecular weight polyethylene during water-lubricated reeiprocating sliding wear[J].Wear, 1993, 162-164(B):1091-1097.
    [89]周坤麟,曹伟民,张勇.氮化钛超细粉末PTFE基复合材料的摩擦磨损性能.科学通报,1997, 42(16):1732-1736.
    [90]王洪涛,赳维民,杨生荣等. Cu粉及纳米Cu粉填充聚甲醛的摩擦学性能研究[J].高分子材料科学与工程, 1997, 13(1):79-82.
    [91]王银玲.橡胶基金属铁粒子复合材料的制备及其作为磁流变弹性体在安全工程中应用的研究[D].中国科学技术大学博士学位论文, 2006.
    [92]黄俊,赵宏声,吴宿松等. Fe_3O_4有机复合物的磁流变性质研究[J].武汉工业大学学报. 1996,18 (1):54-56.
    [93]林德明,张介立,杨华等.磁流体的磁效应和热效应.第十届全国磁学和磁性材料会议论文集,1999.557-558.
    [94] EI-Tantawy, A Bakry, AR E1-Gohary. Effect of iron oxide on the vulcanization and electrical properties of conductive butyl rubber composites[J]. Polymer International, 2000, 49:1670-1676.
    [95]魏珊珊.聚合物修饰纳米Fe_3O_4磁性复合材料的结构及性能研究[J].中山大学博士学位论文, 2006.
    [96]郝爱.橡胶纳米复合材料的研究进展[J].弹性体,2001,11(1):37-44.
    [97] R.C.奥汉德利.现代磁性材料原理和应用[M].北京:化学工业出版社,2002.
    [98] H. Ismai, S. T. Sam, A. F. Mohd Noor, et al. Properties of Ferrite-Filled Natural Rubber Composites[J]. Polymer-Plastics Technology and Engineering. 2007,46: 641–650,
    [99]刘力,贺磊,张婉.原位聚合制备氧化钆/丁腈橡胶复合材料的磁性能[J].合成橡胶工业, 2004, 27(6): 386.
    [100]吴兰峰,吴德峰,张明.聚苯硫醚/四氧化三铁复合材料的力学和磁性能[J].化工学报, 2008, 59(11): 2941-2945.
    [1] I. B. Shilov G. A. Khlebov R. L. Vesnin. 2-Sulphobenzoic acid imide as a rubber mixing ingredient[J]. International Polymer Science and Technology, 2009, 36 (4) :17-18.
    [2]刘勇.机械混炼插层法制备天然橡胶/高岭土纳米复合材料的研究[D].华南理工大学硕士学位论文,2007.
    [3] Maurizio Penco , Stefania Della Sciucca , Elisa Passaglia, et al. Effects of reactive melt mixing on the morphology and thermal behavior of linear low-density polyethylene /rubber blends[J]. Journal of Applied Polymer Science, 2008, 109(2): 1014- 1021.
    [4]邓峰.机械混炼反应插层法天然橡胶/蒙脱土纳米复合材料的制备、结构与性能的研究[D].华南理工大学硕士学位论文,2004.
    [5] Akinlabi A.K., Malomo D., Okieimen F.E. Influence of Mixing schemes on Aging and Permeability of Ketones ThroughVulcanizates from Low Molecular Weight Natural Rubber Blends[J]. Progress in Rubber, Plastics and Recycling Technology, 2007, 23(2): 135-152.
    [6]张长东,王立,宋国君,等.机械共混法制备丁腈橡胶/聚氯乙烯/有机蒙脱土纳米复合材料的结构及性能[J].合成橡胶工业, 2009, 32 (2):127-130.
    [7]蔡维婷.氢化丁腈橡胶/微-纳米短纤维复合材料的结构-性能[D].北京化工大学硕士学位论文,2008.
    [8] L. A. E. M. Reuvekamp, J. W. Ten Brinke, P. J. Van Swaaji, et al. Effects of time and temperature on the reaction of test silane couplingagent during mixing with silica filler and tire rubber[J]. Rubber Chemistry and Technology, 2002, 75(2):187-198.
    [9]齐兴国,李荣勋,王进,等.原位改性三元乙丙橡胶炭黑混炼胶与天然橡胶共混胶的性能[J].合成橡胶工业,2008,31(4):281-285.
    [10]周湘文,朱跃峰,熊国平,等.高填充量碳纳米管/丁苯粉末橡胶机械混炼的物理化学机制[J].高等学校化学学报,2009,30(3):601-606.
    [11]杨伟燕,成瑾,赵军霞.橡胶纳米复合材料研究进展及其发展前景[J].甘肃科技,2006,22(10):133-135.
    [12] Jurkowska B., Olkhov Y.A., Jurkowski B., et al. Study of butadiene rubber mastication and mixing with carbon black[J]. Journal of Applied Polymer Science, 1999, 71(5): 729-737.
    [13] Shigeyuki Ono, Masayoshi Ito. Structure development in silica-filled polyacrylate rubber composites during mixing[J]. Journal of Applied Polymer Science, 1999, 74(10): 2529-2538.
    [14] Hamed G R. Reinforcement of Rubber[J]. Rubber Chemistry and Technology, 2000, 73(2): 524-527.
    [15]程钢,赵国群,管延锦.纳米技术在橡胶复合材料改性中的应用[J].应用科技,2002,29(12):39-41 .
    [16]石璞,邓凌峰,谭美军. PP/纳米SiO2复合材料制备与结晶性能的研究[J].化工时刊,2007,21(2):11-13.
    [17]羊海棠,杨瑞成,冯辉霞.纳米二氧化硅粒子增韧聚丙烯的研究[J].兰州理工大学学报,2003,29(2):34—36
    [18]王冠中,吕柏源.橡胶连续混炼新技术研究[J].特种橡胶制品,2006,27(6):47-49
    [19]陈福林,岑兰,周彦豪.氯丁橡胶/三元乙丙橡胶共混胶的混炼工艺性能[J].合成橡胶工业,2007,30(3):1 96—1 99
    [20]欧阳星,罗远芳,贾德民,等天然橡胶机械混炼插层有机蒙脱土过程的研究[J]石油化工,2006,35(7):676-6 80
    [21]R.S. Popovic.丁苯橡胶/硅橡胶共混胶的机械性能、交联密度和表面形态[J].橡胶参考资料,1 998,28(12):8-14
    [22]马舒文.通过炭黑表面改性促进橡胶与填充剂之间相互作用的新颖途径[J].世界橡胶工业,2004,31(5):3-7
    [23]Haberstroh E.,Krusche A.,Kremers A. Analysis of rubber mixing process in the transfermix extruder[J].Journal ofPolymer Engineering,2001,21(2-3):251-261
    [24]Rachel Wenger More mixing Valley Rubber increases capacity[J].Rubber&Plastics News,2001,23(2):4
    [25]王霞,朱臣昌,陈玉祥,侯铎.纳米CaCO3与聚氯乙烯对采油螺杆泵定子橡胶材料(NBR)的改性研究[J].弹性体,2007,17(4):4-8.
    [26]贾红兵,陈跃红,刘卫东,等.白炭黑/N黑并用对NR/BR硫化胶磨耗性能及形态的影响[J].合成橡胶工业,2002,25(6):7-11
    [27]汪明笑陈晔顾伯勤表面处理对玻纤/碳纤增强橡胶基密封复合材料性能的影响[J].南京工业大学学报(自然科学版),2007,29(4):25-29
    [28]Toh M,Gondoh T,Mori T,et al.Mixing characteristics of an internal mixer:Uniformity of mixed rubber[J].Journal of Applied Polymer Scienc,2005,95(1):166-172
    [29]You—Ping Wu,Yong Ma Effects of Characteristics of Rubber,Mixing and Vulcanization on theStructure and Properties of Rubbery Clay Nanocomposites by Melt Blending[J] Macromolecular Materials and Engineering,2004,289(1 0):890—894
    [30]程丽君针状硅酸盐(FS)增强橡胶复合材料的界面设计与性能研究[D].北京化工大学硕士学位论文,2005
    [31]Ishiaku U.S,Ismail H,Ishak Z.A Mohd.Effect of mixing time on the rheological,mechanical,and morphologlcal properties of poly(vinyl chloride)一epoxidized natural rubber blends[J].Journal ofApplied Polymer Science,1999,73(1):75—83
    [32]Ono Yoshiki,Tanigaki Teruyuki,Tanino Kichiya Mixing effect on reinforcement of short ramie and linen flber/carhoxylated acrylonitrile—butadiene rubber composites[J] Kobunshi Ronbunshu/Japanese Journal of Polymer Science and Technology,1994,51(8):530-539
    [33]汪传生,李利,王海梅,等.橡胶混炼技术的现状与发展趋势[J].2007,54(5):305-309
    [34]于清溪.橡胶混炼设备使用现状与工艺发展[J].橡塑技术与装备,2007,33(5):6-16
    [35]张孟存,孟祥考,谷文军,等.氟橡胶/丁腈橡胶混炼胶的研制[J].特种橡胶制品,2009,30(3):59-61.
    [36]张德伟.短纤维一橡胶复合材料混炼机理及实验研究[D].青岛科技大学硕士学位论文,2009
    [37]李颖妮.磁性橡胶胶料的混炼工艺与性能[J].世界橡胶工业,2005,32(4):26-31
    [38]都有为.铁氧体[M].南京:江苏科学技术出版社,1996
    [39]君轩.磁性橡胶[J].世界橡胶工业,2007,34(6):45-46.
    [40]Zhuh L,Tangn. Ganxm. Synthesisand characterization flight lanthanideplperldnocarbodlthloate complexes[J]Polyhedron,1 993,8(12):945—948
    [41]Yasuda H.rgano—rare—earth—metal initiated living polymerizations of polar andnonpolar monomers[J].Journal of Organometallic Chemistry,2002,647(122):128-138
    [42]洪少颖.稀土化合物对NR硫化胶的补强作用[D].广州:华南理工大学,2002
    [43]敬安晋,陈彪.第四届全国磁性材料及元器件应用技术交流会论文集,1999,66~671
    [44]魏延志,陈彦模,张瑜等.稀土在高聚物改性中的应用[J].高分子材料科学与工程,2005,21(1):52-55.
    [45]崔永安.磁性优良的橡胶永磁的制法[J].磁性材料及器件,1986,17(1):66-67
    [46]Mishima C,Hamada N,Mitarai H,et al. Proc 16th Int Workshop on Rare Earth MagnAppl Sendai[J]Jpn,2000,873~874
    [47]刁春丽,娄广辉.铁氧体磁性材料的研究现状与展望[J].山东陶瓷,2006 29(1):18-1 9.
    [48]康鸿业.影响Fe304超微粒子性能因素的研究[J].高等学校化学学报,1991,12(5)684—685
    [49]刘德贤,张冬梅,王建华.掺硅Fe304超微粒子的研究[J].功能材料,1998,10:297
    [50]徐爱菊,刘世昌,张强,等.平炉尘合成超细Fe_3O_4的磁性研究[J].内蒙古师范大学学报(自然科学汉文版),2002,31(2):141—144
    [51]R.C奥汉德利.现代磁性材料原理与应用[M].北京:化学工业出版社,2004
    [52]严密,彭晓领.磁学基础与磁性材料[M].浙江大学出版社,2006
    [53]Chen YZ,Sun JR,Han YN,et al. Microstructure and magnetic properties of strainedFe304 films[J].Journal of Applied Physics,2008,103(7):D7703-1-D7703-3
    [54]Shouhu Xuan,Mingwei Chen,Lingyun Hao,et al. Preparation and characterization ofmicrosized FeCO3,Fe304 and Fe203Magnetism and Magnetic Materials,2008with ellipsoidal morPhology[J].Journal of320(3-)4:1 64-170
    [55]王芸,马季玫,沈新元.强磁性N1掺杂Fe304纳米磁粉的研制[J].纳米加工工艺,2005,2(5):50-53
    [56]屈晓田,卫剑霞.钕掺杂对M型锶铁氧体结构和磁性能的影响[J].磁性材料及器件,2008,39(5):9-12
    [57]王晓瑞,金鸣林,李元,等.烧结工艺对锶铁氧体永磁材料性能及结构的影响[J]材料导报,2008,22(2):105-107
    [58]余红雅,刘正义,曾德长,等.各向异性永磁锶铁氧体的晶粒取向与磁性[J].北京科技大学学报,2008,30(5):537-540
    [59]Christopher J.Kent. Rubber mixing guidelines for proper control and tracking—part 1[J]Rubber World,2006,235(2):14-3 8
    [60]N. Rezlescu,C. Doroftei,E.Rezlescu,et al. The influence of heat-treatment on microstructure and magnetic properties of rare—earth substituted SrFel2019[J].Journal of Alloys and Compounds,200 8,45 1(1—2):492—496
    [61]Zaitsev DD,Kazin PE,Gravchikova EA,et al. Synthesis of magnetic glass ceramics containing fine SrFel2019 particles[J].Mendeleev Communications,2004,14(4):171- 173
    [62]田明,程丽君,梁文利,等.针状硅酸盐的表面改性及其橡胶复合材料的力学性能[J].合成橡胶工业,2005,28(1):48-51
    [63]周扬波,古菊,贾德民.纳米碳酸钙的表面改性及其在橡胶中的应用[J].特种橡胶制品,2004,25(3):54-58
    [64]陈锦波。橡胶混炼[J].世界胶工业2004,31(7):26-30
    [65]王作龄.丁腈橡胶的最新动向[J].橡胶参考资料,2006,36(1):6-9
    [66]Li SM,Cui YM,Yang H,et al.Syntheses and properties of the Fe-Co/Fe304 ferrites[J]Journal of Physics and Chemistry of Solids,2008,69(10):2471-2475
    [67]Tao Yang,Xiao-Dong Wen,Chun-Fang Huo. Structure and energetics of hydrogenadsorption on Fe304[J].Journal of Molecular Catalysis A:Chemical,2009,302(1-2):129—136
    [68]Suzuki M,Fullem SI,Suzuki IS,et al. Observation of superspin—glass behavior inFe304 nanopartlcles[J].Physical Review-B:Condensed Matter and Materials Physics,2009,79(2):02441 8—1—02441 8—7
    [69]S.L.AGRAWAL,S BANDYOPADHYAY,S.DASGUPTA. Processlng and Performance Characteristic Study of Polybutadlene Rubber(BR)in Different Mixing Techniques[J] Journal of Elastomers&Plastlcs.2007(39):335-345
    [70]A.K. Akinlab,F.E. Okielmen,F Egharevba,et al.Investlgation of the effect of mixing schemes on rheological and physico—mechanical properties of modified naturalru b ber blends[J]. Materials & Desi gn, 2006, 27(9):783-788.
    [1] D.R.保罗,C.B.巴克纳尔.聚合物共混物:组成与性能上卷[M].北京:科学出版社,2003.
    [2] D.R.保罗,C.B.巴克纳尔.聚合物共混物:组成与性能下卷[M].北京:科学出版社,2003.
    [3] Teng-Kai Shih, Chia-Fu Chen, Jeng-Rong Ho, et al. Study of leading factors in formation of surface wavy structures on a rubber material[J]. Applied Surface Science, 2006, 253 (4):2043-2049.
    [4] Soo-Jin Park, Ki-Sook Cho, Seung-Kon Ryu. Filler–elastomer interactions: influence of oxygen plasma treatment on surface and mechanical properties of carbon black/rubber composites[J]. Carbon, 2003, 41(7): 1437-1442.
    [5] A.D. Roberts, A.G. Thomas. The adhesion and friction of smooth rubber surfaces[J]. Wear, 1975,33(1): 45-64.
    [6] M.K. Gopalan. Determination of the squeeze film thickness between sliding rubber and rough surfaces[J]. Wear, 1981,69(3): 383-391.
    [7]德鲁·迈尔斯.表面、界面和胶体-原理及应用[M].北京:化学化学工业出版社,2005.
    [8]吴人洁.复合材料[M].天津:天津大学出版社,2002.
    [9]傅政.橡胶材料性能与设计应用[M].北京:化学工业出版社,2003.
    [10]徐志锋,张坚,郑海忠,等. SLS制备PS/Al2O3纳米复合材料中无机纳米粒子的行为特征[J].高分子材料科学与工程,2007, 23(4):230-233.
    [11] Artit Sruanganurak, Pramuan Tangboriboonrat. Surface modification of sulphur prevulcanized natural rubber latex sheet via layer-by-layer assembled PMMA particles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301(1-3):147-152.
    [12] Hiroshi Tsuji, Masayoshi Izukawa, Ryosuke Ikeguchi, et al. Surface treatment of silicone rubber by carbon negative-ion implantation for nerve regeneration[J]. Applied Surface Science, 2004, 235(1-2):182-187.
    [13] María D. Romero-Sánchez, M.J. Walzak, Rosa Torregrosa-Maciá, et al. Surfacemodifications and adhesion of SBS rubber containing calcium carbonate filler by treatment with UV radiation[J]. International Journal of Adhesion and Adhesives, 2007, 27(6): 434-445.
    [14]汪明笑,陈晔,顾伯勤.表面处理对玻纤/碳纤增强橡胶基密封复合材料性能的影响[J].南京工业大学学报,2007, 29(4):25-29.
    [15]张静,何春霞,路琴.不同纳米粒子填充PA6/GF复合材料摩擦磨损性能[J].材料科学与工程学报,2009, 27(3):480-483.
    [16] R.S. Whitehouse, P.J.C. Counsell, G. Lewis. Composition of rubber/resin adhesive films: Surface composition as determined by ATR spectroscopy[J]. Polymer,1976, 17(8): 699- 704.
    [17] Ming Tian, Wenli Liang, Guoying Rao, et al. Surface modification of fibrillar silicate and its reinforcing mechanism on FS/rubber composites[J]. Composites Science and Technology, 2005, 65(7-8): 1129-1138.
    [18]游长江,段晓霞,丁奎,等.丁腈橡胶/聚氯乙烯/有机蒙脱土纳米复合材料的结构与性能[J].合成橡胶工业,2005, 28(6):465-469.
    [19]张嗣伟.橡胶磨损原理[M].北京:石油工业出版社,1998.
    [20] Papiya Sen Majumder, Anil K. Bhowmick. Friction behaviour of electron beam modified ethylene–propylene diene monomer rubber surface[J].Wear,1998, 221(1):15-23.
    [21] Nadia Segre, Paulo J. M. Monteiro, Garrison Sposito. Surface Characterization of Recycled Tire Rubber to Be Used in Cement Paste Matrix[J]. Journal of Colloid and Interface Science, 2002, 248(2): 521-523.
    [22]黄玉东.聚合物表面与界面技术[M].北京:化学工业出版社,2003
    [23]罗颖.纳米粒子/环氧树脂复合材料的界面增强及其摩擦磨损性能的研究[D].中山大学博士学位论文,2005.
    [24] Derek P. Manning, Carla Jones, Frederick James Rowland, et al. The Surface Roughness of a Rubber Soling Material Determines the Coefficient of Friction on Water-Lubricated Surfaces[J]. Journal of Safety Research,1998, 29(4): 275-283.
    [1]傅政.橡胶材料性能与设计应用[M].北京:化学工业出版社,2003.
    [2]方胜阳,殷守华,章于川,等.表面改性纳米氮化硅/丙烯酸酯橡胶复合材料的性能[J].合成橡胶工业,2009, 32(5): 409-411.
    [3] Erwan Verron. Study of the simple extension tear test sample for rubber withConfigurational Mechanics[J]. International Journal of Fracture. 2007, 147(1-4):219-225.
    [4]段宏基,魏刚,杨雅琦,等.丁腈橡胶的改性在密封材料中的应用研究进展[J].弹性体,2008,18(6):66-71.
    [5]杨国栋,朱世根,李山山,等.丁腈橡胶增韧改性环氧树脂的研究进展[J].材料导报,2009, 23(9):67-71.
    [6]胡少坤,胡开放,潘广勤,等.端羟基液体丁腈橡胶改性环氧树脂的结构与性能[J].合成橡胶工业,2010,33(2):139-141.
    [7]赵洪国,胡海华,宋中勤,等.改性纳米二氧化硅对丁腈橡胶的补强作用[J].世界橡胶工业,2010, 37(2): 13~15.
    [8]李晓银,翟月勤,丛日新.改性纳米粒子增强三元乙丙橡胶研究进展[J].化工新型材料,2008,36(10):42-45.
    [9]杨子芹,刘卫卫,杨小兵,等.纳米填料改性丁基橡胶复合材料的力学性能、芥子气防护性能和燃烧性能[J].复合材料学报,2009,26(6):25-30.
    [10] Ataur Rahman, Azmi Yahya, Mohd. Zohadie, et al. Traction mechanics of the designed and developed segmented rubber trackvehicle for Sepang peat terrain in Malaysia during turning motion: theoretical and experiment alanalysis[J]. Heavy vehicle systems, 2006, 13(4):324-350.
    [11] J. S. Bergstrom, M. C. Boyce. Deformation of Elastomeric Networks: Relation between Molecular Level Deformation and Classical Statistical Mechanics Models of Rubber Elasticity[J]. Macromolecules / American Chemical Society, 2001, 34(3):614-626.
    [12]方庆红,张凤鹏,黄宝宗.不同温度条件下硫化橡胶拉伸特性的研究[J].建筑材料学报, 2005, 8(4):383-387.
    [13]袁小红.短纤维增强发泡橡胶复合材料高低温拉伸性能[J].复合材料学报, 2009, 26(5):47-53.
    [14]袁新横,张隐西,张勇,等.甲基丙烯酸镁补强丁腈橡胶的拉伸应力-应变行为[J].上海交通大学学报,2000,34(11):1516-1519.
    [15] Selden, R. Fracture mechanics analysis of fatigue of rubber - a review[J]. Progress in Rubber and Plastics Technology, 1995, 11(1): 56-83.
    [16] A. P. Meera, Sylvre Said, Yves Grohens, et al. Tensile Stress Relaxation Studies of TiO2 and Natural Rubber Composites[J]. Industrial & Engineering Chemistry Research, 2009, 48(7): 3410-3416.
    [17]王韶晖,张隐西,张勇,等.顺丁橡胶/有机蒙脱土纳米复合材料的拉伸应力-应变行为[J].合成橡胶工业,2005, 28(4): 279-283.
    [18] Jacob M, Thomas S, Varughese KT. Novel woven sisal fabric reinforced natural rubber composites: Tensile andswelling characteristics[J]. Journal of Composite Materials, 2006, 40, (16): 1471-1485
    [19]王韶晖,张隐西,张勇,等.顺丁橡胶/有机蒙脱土纳米复合材料的拉伸应力-应变行为[J].合成橡胶工业,2005,28(5):378-383.
    [20]吕明哲,李普旺,黄茂芳,等.用动态热机械分析仪研究橡胶的低温动态力学性能[J].中国测试技术,2007, 33(3):27-29.
    [21] Nozomu Suzuki, Fumito Yatsuyanagi. Effects of surface chemistry of silica particles on secondary structure and tensile properties of silica-filled rubber systems[J]. Journal of Applied Polymer Science, 2002, 86(7): 1622-1629.
    [22] Z. H. Liu, L. X. Wu, K. W. Kwok. Effects of interfacial adhesion on the rubber toughening of poly(vinyl chloride) Part 2. Low-speed tensile tests[J]. Polymer, 2001, 42(4):1719-1724.
    [23] Ismail Hanafi, Nurdin Hasliza Isa. Tensile properties and scanning electron microscopy examination of the fracture surface of oil palm wood flour/natural rubber composites[J]. Iranian Polymer Journal (English Edition), 1998, 7(1):53-58.
    [24] Abe T., Hashizume M., Takesue K. Tensile deformation behaviour of rubber composite plate[J]. Zairyo/Journal of the Society of Materials Science, Japan, 1996, 45(6): 650-655.
    [25] Nakajima N., Yamaguchi Y. Effect of fillers and rubber structures on tensile behavior of filled, unvulcanized compounds of cis-1,4-polybutadienes[J]. Journal of Applied Polymer Science, 1997, 66(8):1445-1453.
    [26]王作龄.橡胶复合体的力学性能(一)[J].世界橡胶工业,2006,33(9):20-25.
    [27]那洪东.橡胶的力学行为和拉伸结晶化[J].世界橡胶工业,2009,36(3):20-26.
    [28]吴鹏,郭晓军,刘景梅.橡胶弹性车轮用橡胶材料的动态力学性能试验[J].机车车辆工艺,2005, 6: 33-35.
    [29]叶卫东,杜秀华,宋玉杰,等.橡胶材料力学参数对螺杆泵密封性能的影响[J].润滑与密封,2008,33(10):70-72.
    [30]古菊,贾德民,罗远芳,等.天然橡胶/固相法改性纳米碳酸钙复合材料的微观形态与力学性能[J].合成橡胶工业,2005, 28(5): 374-377.
    [31]危银涛,杨挺青,马六成,等.炭黑填充橡胶复合材料动态力学性能和生热预报[J].橡胶工业,2000,47(2): 67-73.
    [32] L i Tie, Zou Hua1, Zhang Liqun. Mechanical properties and springrate ratio of ethylene propylene diene monomer vulcanizate[J].合成橡胶工业,2005,28(2):105-109.
    [33]高乃奎,陈志勇,张少锋,等.三元乙丙橡胶聚集态结构对其复合材料动态力学性能的影响[J].绝缘材料,2003,6:28-30.
    [34]周剑锋,顾伯勤.机械密封端面摩擦热与热变形的耦合分析[J].核动力工程, 2007, 28 (2):77-81.
    [35]张恒.各向异性热粘弹性流体动力润滑理论[J].复合材料学报,1997,14(2):120-125.
    [36]郑健龙,钱国平,应荣华.沥青混合料热粘弹性本构关系试验测定及其力学应用[J].工程力学,2008,25(1):34-41.
    [37]王宝珍,胡时胜,周相荣.不同温度下橡胶的动态力学性能及本构模型研究[J].实验力学,2007,22(1):1-6.
    [38]黄筑平,陈建康,王文标.有限变形热粘弹性本构关系的内变量理论[J].中国科学(A辑), 1999, 29(10):941-945.
    [39]张能辉.热载荷作用下功能梯度材料梁的热粘弹性弯曲[J].力学季刊, 2007, 28 (2):240-245.
    [40] Arthur.R. Johnson, Tzi Kang Chen. Approximating thermo-viscoelastic heating of largely strained solid rubber components[J]. Computer Methods in Applied Mechanics and Engineering,2005,194(2):313-325.
    [41] Jacob Aboudi. Micromechanics-based thermoviscoelastic constitutive equations for rubber-like matrix composites at finite strains[J]. International Journal of Solids and Structures,2004,41(20):5611-5629.
    [42]李为民,许金余,沈刘军,等.Φ100mm SHPB应力均匀及恒应变率加载试验技术研究[J].振动与冲击,2008,27(2):129-134.
    [43]宋长江,张伟,林振荣,等.基于SHPB实验对橡胶材料研究力学性能的方法[J].河南建材,2010,1:54-55.
    [44]张祖根,李英雷,李英华,等.压杆/试样表面接触变形对SHPB实验应变测量的影响[J].2009, 29(6):573-578.
    [45]王金鹏,曾攀,雷丽萍. 2024Al高温高应变率下动态塑性本构关系的实验研究[J].塑性工程学报,2008,15(3):101-105.
    [46]毛勇建,李玉龙. SHPB试验中试件的轴向应力均匀性[J].爆炸与冲击, 2008,25(5):448-454.
    [47]孙紫建,魏纲,王礼立.共混高聚物三种不同动态损伤量化方法的比较[J].实验力学, 2008,23(2):180-185.
    [48]周国才,胡时胜,付峥.用于测量材料高温动态力学性能的SHPB技术[J].实验力学,2010,25(1):9-15.
    [49]周相荣,胡荣华,王宝珍,等.一种描述温度与应变率效应的大应变非线性热粘超弹本构模型[J].振动与冲击, 2007,26(10):11-17.
    [50]翟毅,许金余,王鹏辉.纤维混凝土动态压缩力学性能的SHPB试验研究[J].西安建筑科技大学学报, 2009, 41(1):141-148.
    [51] S. P. Mahapatra, V. Sridhar, D. K. Tripathy, et al. Dynamic mechanical and dielectric relaxation characteristics of microcellular rubber composites[J]. Polymers for Advanced Technologies, 2008, 19(9 ):1311-1322.
    [52] Micheli L. Celestino, Marlucy de Oliveira, Alex S. Sirqueira, et al. Acrylic rubber/nitrile rubber blends: The effect of curatives on the mechanical, morphological, and dynamic mechanical properties[J]. Journal of Applied Polymer Science, 2009, 113(2):721-729.
    [53] Najidha S., Predeep P., Saxena N. S. Dynamic Mechanical Properties of Natural Rubber/Polyaniline Composites[J]. AIP Conference Proceedings, 2008, 1004(1): 259-263.
    [54] T. Muraleedharan Nair, M. G. Kumaran, G. Unnikrishnan, et al. Dynamic mechanical analysis of ethylene-propylene-diene monomer rubber and styrene-butadiene rubber blends[J]. Journal of Applied Polymer Science, 2009, 112(1):72-81.
    [55] Caiyun Wu, Chunyan Wei, Weihong Guo, et al. Dynamic mechanical properties of acrylic rubber blended with phenolic resin[J]. Journal of Applied Polymer Science, 2008, 109(4):2065-2070.
    [1]丁占来,岑玮,于旭光.磁性材料的研究进展及其发展方向[J].河北冶金, 2005, 5: 15-19.
    [2]文耀化,刘廷华.磁性高分子材料的研究进展[J].现代塑料加工应用,2005,17(5):53-57.
    [3]王凤平,薛行华,吴耀辉,等.磁性纳米高分子复合材料发展现状[J].化工文摘, 2009, 5: 52-54.
    [4] M.H. Makled, T. Matsui, H. Tsuda, et al. Magnetic and dynamic mechanical properties of barium ferrite–natural rubber composites[J]. Journal of Materials Processing Technology, 2005, 160(2): 229-233
    [5]吕丽,白书欣,张虹,等.玻璃纤维增强铅网/橡胶阻尼复合材料研究[J].材料科学与工艺,2008,16(6):748-750.
    [6]袁华,陈卢松.聚合物基磁性功能复合材料研究进展[J].玻璃钢/复合材料,2006,6:38-41.
    [7] Dwi Puryanti, Sahrim Hj Ahmad, Mustaffa Hj.Abdullah. Effect of Nickel-Cobalt-Zinc Ferrite Filler on Magnetic and ThermalProperties of Thermoplastic Natural Rubber Composites[J]. International Journal of Polymeric Materials, 2007, 56(1-3): 327-338.
    [8] The Electrodyne Company. Rubber Magnets - Allow Magnetic Drain Plug Redesign[J]. Fluid Power Journal, 2007, 14(8):28-29.
    [9] Wang YL, Hu YA, Chen L, et al. Effects of rubber/magnetic particle interactions on the performance ofmagnetorheological elastomers[J]. Polymer Testing, 2006, 25(2):262-267.
    [10] Akihiko SAITO, Atsuhiro NISHIKATA. Complex Permeability and Complex Permittivity Measurement of AnisotropicLossy Sheets Composed of Soft Magnetic Metal Powder and Rubber by Waveguide S-Parameter Method[J]. IEICE Transactions on Electronics, 2002, 85(9):1684-1691.
    [11] Anantharaman M.R., Jagatheesan S., Sindhu S., et al. Investigation on cure characteristics and magnetic properties of rubber ferrite composites[J]. Plastics, Rubber and Composites Processing and Applications, 1998, 27(2): 77-81.
    [12]üR?GIOVA E, HUDEC I, BELLUSOVA D. Magnetic and mechanical properties of strontium ferrite-rubber composites. KGK. Kautschuk, Gummi, Kunststoffe. 2006, 59(5): 224-228.
    [13] K. A. Malini, E. M. Mohammed, S. Sindhu, et al. Magnetic and processability studies on rubber ferrite composites based on natural rubber and mixed ferrite. Journal of Materials Science.2001,36(23): 5551-5557.
    [14] M. A. Solomon, Philip Kurian, P. A. Joy,et al. Processability and magnetic properties of rubber ferrite composites containing barium ferrite. International Journal of Polymeric Materials. 2004, 53(7): 565-575.
    [15] Yinling Wang, Yuan Hu, Lin Chen, et al. Effects of rubber/magnetic particle interactions on the performance of magnetorheological elastomers. Polymer Testing. 2006, 25(2): 262-267.
    [1] Peterson M B,Winer W O.磨损控制手册.北京:机械工业出版社,1994.
    [2] Glaeser W A. Materials for Tribology. Amsterdam: Elsevier,1992.
    [3]张嗣伟.摩擦学的进展与展望[J]摩擦学学报,1994,14(1):84-88.
    [4] Margam Chandrasekaran, Andrew William Batchelor. In situ observation of sliding wear tests of butyl rubber in the presence of lubricants in an x-ray microfocus instrument[J]. Wear, 211(1): 35-43.
    [5] K. G. Gatos, K. Kameo, J. Karger-Kocsis. On the friction and sliding wear of rubber/layered silicate Nano -composites [J].Express Polymer Letters, 2007, 1(1): 27-31
    [6]张嗣伟,王德国.几种高分子材料的磨粒侵蚀机理[J].摩擦学学报,1993,12(2):105-112.
    [7] J. Karger-Kocsis, A. Mousa, Z. Major, et al. Dry friction and sliding wear of EPDM rubbers against steel as a function of carbon black content[J]. Wear, 2008, 264(3-4):359-367.
    [8] J. Karger-Kocsis, D. Felh?s, D. Xu. Mechanical and tribological properties of rubber blends composed of HNBR and in situ produced polyurethane[J]. Wear, 2010, 268(3-4):464-472.
    [9] Mithun Bhattacharya, Anil K. Bhowmick. Analysis of wear characteristics of naturalrubber nanocomposites[J].Wear, 2010, 269(1-2): 152-166.
    [10]何仁洋,张嗣伟.塑料与橡胶材料磨损金属的研究进展[J].摩擦学学报, 2000, 20(3):232-235.
    [11] D.F.摩尔著,黄文治等译.摩擦学原理与应用[M].北京:机械工业出版社,1982.
    [12]何仁洋,张嗣伟,王德国.干摩擦条件下天然橡胶/钢的磨损机理研究[J].摩擦学学报,2001,21(4):260-265.
    [13] M Mofidi, B Prakash, B N J Persson, et al. Rubber friction on (apparently) smooth lubricated surfaces[J].Journal of Physics C: Solid State Physics, 2008, 20(8):085223-085230.
    [14] A Le Gal, M Klüppel. Investigation and modelling of rubber stationary friction on rough surfaces[J]. Journal of Physics, F: Metal Physics, 2008, 20(1):015007-015018.
    [15]何仁洋,张嗣伟,王德国,等.边界润滑条件下天然橡胶-钢磨损机理的研究[J].摩擦学学报, 2001,21(6):
    [16]左雯雯,李锦春,尤秀兰,等.芳纶浆粕增强丁腈橡胶复合材料的摩擦磨损性能[J].化工学报,2010,61(5):1331-1336.
    [17]王其磊,杨逢瑜,杨倩,等.纳米Fe3 O4与纳米SrO·6Fe2 O3填充丁腈橡胶复合材料的摩擦磨损性能比较[J].摩擦学学报,2010,30(2):128-134.
    [18]刘伟,胡以强.基于两种丁腈橡胶复合填料的高性能离合器摩擦材料[J].化工中间体,2009,3:67-72.
    [19]何世权,安晓英,刘潇,等.Fe_3O_4复合丁腈橡胶的力学和摩擦学性能[J].兰州大学学报(自然科学版),2008,44(2):132-136.
    [20] Kaang S., Cho J., Kim S., et al. Friction and wear of rubber compounds containing powdered polynorbornene vulcanizate[J]. Journal of Polymer Engineering , 1998, 18(1/2): 83-100.
    [21]何世权,刘明海,杨逢瑜,等.磁性丁腈橡胶摩擦性能研究[J].甘肃科学学报,2007,19(4):46-49.
    [22] Junji Furukawa. Chemical Aspects Concerning the Friction and Abrasion of Rubber[J]. Bulletin of the Chemical Society of Japan, 1996, 69(10): 2999-3006.
    [23]王作龄.橡胶的摩擦与磨耗[J].世界橡胶工业,2007,34(6):19-27.
    [24]黄凯兵,高琳,周久红.BMI改性丁腈橡胶在聚合物基摩擦材料中应用研究[J].非金属矿,2007,30(3):58-60.
    [25]于晶,胡少坤,胡开放,等.干滑动下端羟基聚丁二烯液体橡胶-环氧树脂复合材料的摩擦性能[J].合成橡胶工业,2007,30(4):298-302.
    [26] K. Hofstetter, J. Eberhardsteiner, H. A. Mang. Efficient treatment of rubber friction problems in industrial applications[J]. Structural Engineering and Mechanics, 2006,22( 5):517-539.
    [27]管迪华,宋聪慧,范成建.轮胎橡胶摩擦特性的试验研究[J].汽车工程, 2008 ,30(4):357-360.
    [28] S.J. Jerrams. Friction and adhesion in rigid surface indentation of nitrile rubber[J]. Materials and Design, 2005, 26(3): 251-258.
    [29]黄新武,王廷梅,田农,等.芳纶纤维增强丁腈橡胶的摩擦性能[J].合成橡胶工业,2006,29(6):451-453.
    [30]李勇.橡胶的摩擦性能对其加工的影响[J].特种橡胶制品,2004,25(1):33-36.
    [31] Vladimir V. Tsukruk. Nanocomposite polymer layers for molecular tribology[J]. Tribology Letters, 2001, 10(1-2): 127-132.
    [32] J.M. Degrange, M. Thomine, Ph. Kapsa, et al. Influence of viscoelasticity on the tribological behaviour of carbon black filled nitrile rubber (NBR) for lip seal application[J]. Wear, 2005, 259(1-6): 684-692.
    [33]郭孔辉,庄晔,Chen Shih-Ken,等.汽车轮胎橡胶摩擦试验研究[J].机械工程学报,2004,40(10):175-180.
    [34]王进文.减小橡胶摩擦因数的表面改性方法[J].橡胶工业,2002,49(12):761-766.
    [35]陈国定,徐华,虞烈.基于粗糙接触理论的橡胶-金属摩擦副的摩擦分析[J].西安交通大学学报,2002,36(3):322-324.
    [36] M. Sohail Khan, R. Franke, D. Lehmann, et al. Physical and tribological properties of PTFE micropowder-filled EPDM rubber[J]. Tribology International, 2009, 42(6): 890- 896.
    [37] Sirong Yu, Haixia Hu, Jun Ma ,et al. Tribological properties of epoxy/rubber nanocomposites[J] Tribology International, 2008, 41(12): 1205-1211.
    [38] D. M. Bieliński, J. Grams, T. Paryjczak, et al. Tribological modification of metal counterface by rubber[J]. Tribology Letters [J], 2006, 24(2): 115-118.
    [39]吕仁国,李同生,黄新武.不同速度下丁腈橡胶摩擦特性[J].合成橡胶工业,2002, 25(2):101-103.
    [40]陈海燕,王成国,王海庆,等.树脂-橡胶共混体系对摩擦材料性能的影响[J].非金属矿,2002,25(3):57-59.
    [41]毕莲英.改变橡胶摩擦性能的综合方法[J].世界橡胶工业,2001,28(1):36-39.
    [42] Xinwu Huang, Nong Tian , Tingmei Wang , et al. Friction and wear properties of NBR/PVC composites[J]. Journal of Applied Polymer Science, 2007, 106(4): 2565-257.
    [43]何仁洋,张嗣伟,樊启蕴,等.天然橡胶磨粒侵蚀过程中的表面化学效应[J].摩擦学学报,1997,17(1):60-66.
    [44] A.M.Samy , M.M.Mahmoud , M.I.Khashaba. Friction of Rubber Sliding AgainstCeramics Part I[J]. Kautschuk + Gummi Kunststoffe, 2007, 60(6):322-327. 93-696.
    [45] A.M.Samy , M.M.Mahmoud , M.I.Khashaba. Friction of Rubber Sliding Against Ceramics Part II[J]. Kautschuk + Gummi Kunststoffe, 2007, 60(12):6
    [46]吕仁国,李同生,刘旭军.橡胶摩擦磨损特性的研究进展[J].高分子材料科学与工程,2002,18(5):12-15.
    [47] George Palasantzas. Influence of self-affine roughness on the adhesive friction coefficient of a rubber body sliding on a solid substrate[J]. Surface Science, 2004, 565(2-3): 191-196.
    [48] T. Iwai, Y. Uchiyama, K. Shimosaka, et al. Study on the formation of periodic ridges on the rubber surface by friction and wear monitoring[J]. Wear, 2005, 259(1-6): 669-675.
    [49]赵红娟.在橡胶典型磨损中滑动速度对摩擦和磨耗性能的影响[J].橡胶参考资料,2000,31(10):53-56.
    [50]张文刚.橡胶摩擦与摩擦系数的测定[J].世界橡胶工业,1998,1(1):52-57.
    [51] A.M.Samy, M.M.Mahmoud, M.I.Khashaba. Friction of Rubber Sliding Against Ceramics Part III[J]. Kautschuk + Gummi Kunststoffe, 2008, 61(1-2): 43-48.
    [52] Yusaku Fujii. Method for measuring transient friction coefficients for rubber wiper bladeson glass surface[J]. Tribology International, 2008, 41(1): 17-23.
    [53] Kaneko D, Oshikawa M, Yamaguchi T, et al. Friction coefficient between rubber and solid substrate - Effect of rubber thickness[J]. Journal of the Physical Society of Japan, 2007, 76(4): 043601-1-043601-3.
    [54] T. Iwai, Y. Uchiyama, K. Shimosaka, et al. Study on the formation of periodic ridges on the rubber surface by friction and wear monitoring[J]. Wear, 2005, 259(1-6): 669-675.
    [55] B.N.J.Persson Julich, U.Tartaglino, E.Tosatti Trieste(Italy), et al. Rubber Friction on Wet Rough Substrates at Low Sliding Velocity:The Sealing Effect[J]. Kautschuk + Gummi, Kunststoffe, 2004, 57(10): 532-537.
    [56] David P. Gerrard, Joe Padovan. The friction and wear of rubber - Part 2: micro-mechanical description ofintrinsic wear[J]. Rubber Chemistry and Technology, 2003, 76(1):101-121.
    [57] J.Kingston, A.Muhr, I.Stephens. The effects of surface texture on natural rubber/metal friction at highpressures[J]. Plastics, Rubber and Composites, 2003, 32(10): 431-438.
    [58] A. P. Krasnov, O. V. Afonicheva, Yu. N. Studnev, et al. Friction of rubber containing organofluoric modifier[J]. Journal of Friction and Wear, 2000, 21(3):100-103.
    [59]张嗣伟.橡胶磨损机理[M].北京:石油工业出版社,1998.
    [60] B. N. J. Persson. Qualitative theory of rubber friction and wear[J]. The Journal ofchemical physics, 2000, 112(4):2021-2029.
    [61] Derek P.Manning, Carla Jones, Frederick James Rowland. The surface roughness of a rubber soling material determines the coefficientof friction on water-lubricated surfaces[J]. Journal of Safety Research, 1998, 29(4):275-283.
    [62] Kaushik Pal, Tanya Das, R. Rajasekar, et al. Wear characteristics of styrene butadiene rubber/natural rubber blends with varying carbon blacks by DIN abrader and mining rock surfaces[J]. Journal of Applied Polymer Science, 2009, 111(1):348-357.
    [63] P. Gabriel, A.G. Thomas, J.J.C. Busfield. Influence of interface geometry on rubber friction[J]. Wear 2010, 268(5-6):747-750.
    [64] J.M. Bielsa, M. Canales, F.J. Martínez, et al. Application of finite element simulations for data reduction of experimental friction tests on rubber–metal contacts[J]. Tribology International, 2010, 43(4): 785-795.
    [65] Yiqun Liu, Zhongqing Fan, Hengyi Ma, et al. Application of nano powdered rubber in friction materials[J]. Wear, 2006,261(2): 225-229.
    [66] R.J. Pinnington. Rubber friction on rough and smooth surfaces[J]. Wear, 2009, 267 (9-10): 1653-1664.
    [67] E.L. Deladi, M.B. de Rooij, D.J. Schipper. Modelling of static friction in rubber– metal contact[J]. Tribology International, 2007, 40(4): 588-594.
    [1]李振环,班玉红,孔建.机械密封用橡胶材料的技术进展[J].特种橡胶制品, 2009, 30(1): 60-64.
    [2]陈跟平,王亚利,张翠兰.橡胶密封垫圈断口形貌及破坏机理分析[J].甘肃科技, 2008,24(12):30-32.
    [3]王建军,高新陵. O形橡胶密封圈尺寸公差对密封性能的影响[J].机电产品开发与创新,2008,21(5):78-80.
    [4]刘玉强.橡胶密封制品材料配合与加工技术进展[J].橡胶科技市场,2008,12:4-8.
    [5] Burenin, V.V. Rubber-fabric cups for sealing the rotary shafts of machines, mechanisms, and apparatuses[J] Kauchuk i Rezina, 1996, 5,:40-44.
    [6] Richter B. Difficult sealing problems under control. Proven applications of O-rings made of perchlorinated rubber[J]. Chemie-Technik (Heidelberg), 1995, 24(2): 62.
    [7]谢忠麟.汽车用橡胶密封制品的技术进展[J].橡胶工业,2007,54(6):367-377.
    [8]沈锋钢,颜永年,吴任东,等. O形橡胶密封圈静密封应力分析及密封性能研究[J].新技术新工艺,2007,1:21-24.
    [9]王江.橡胶密封圈在回弹过程中的密封性能分析[J].强度与环境,2006,33(3):37-42.
    [10]彭宽平.大直径橡胶伸缩节法兰密封优化设计[J].液压气动,2006,4:65-66.
    [11]王伟,赵树高.橡胶O形密封圈的接触变形及应力分析[J].弹性体, 2005, 15(4):28-31.
    [12] Ahmadian H., Mottershead J.E., Friswell M.I. Parameterization and identification of a rubber seal[J].Proceedings of the International Modal Analysis Conference - IMAC, 1997, 1:142-146.
    [13] Khuri, Michel F. Design of rectangular rubber seals on the basis of Von Mises stress[J]. Transportation Research Record, 1993,1392: 53-63.
    [14]王伟,赵树高.结构参数对橡胶O形密封圈性能的影响[J].润滑与密封,2010,35(1):71-74.
    [15]刘桂明,张伯洪. O形橡胶密封圈及其模具[J].世界橡胶工业,2010,37(1):29-32.
    [16]张洪雁,曹寿德,王景鹤主编.高性能橡胶密封材料[M].北京化学工业出版社, 2007.
    [17] Farid AS. Evaluation of compounding techniques for optimising sealingperformance of nitrile rubber vulcanisates[J]. PLASTICS RUBBER AND COMPOSITES, 2000, 29:187-198.
    [18]史平安,符春渝,牛伟,等.丁基橡胶密封环形状和材料黏弹性对结构密封性能的影响[J].计算机辅助教程,2009,18(4):57-62.
    [19]陈鑫,吴福迪,王立峰.大缝隙密封的几种异型截面橡胶密封结构的有限元分析[J].强度与环境,2008,36(4):1-5.
    [20] Persson BNJ, Albohr O, Tartaglino U, et al.On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion[J].JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17:R1-R62.
    [21]高鹏,陈晔.纳米改性对短纤维橡胶基密封复合材料性能的影响[J].润滑与密封,2009, 34(8):66-70.
    [22] Reh BD, Fajen JM. Worker exposures to nitrosamines in a rubber vehicle sealing plant[J]. AMERICAN INDUSTRIAL HYGIENE ASSOCIATION JOURNAL 1996, 57:918-923.
    [23]刘永祥.压电密封纳米橡胶及其制备方法[P].中国专利.CN101029171,2007.
    [24]张忠.液压系统橡胶密封及其失效分析[J].同煤科技,2009,3:28-29.
    [25] Otingün Y., AndréMarkus, Bartel D. An axisymmetric hydrodynamic interface element for finite-element computations of mixed lubrication in rubber seals[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2008, 222(3): 471-481.
    [26] Wang L.R., Lu Z.H., Hagiwara I. Integration of experiment and hydrostatic fluid-structure finite element analysis into dynamic characteristic prediction of a hydraulically damped rubber mount[J].International Journal of Automotive Technology, 2010, 11(2): 245-255.
    [27]刘印文.橡胶密封制品实用加工技术[M].北京:化学工业出版社,2002.
    [28] B.X.阿弗鲁辛科.橡胶密封[M].北京:机械工业出版社,1983.
    [29] Gracia L.A.,Liarte E., Pelegay J.L., et al.Finite element simulation of the hysteretic behaviour of an industrial rubbe: Application to design of rubber components[J]. Finite Elements in Analysis and Design, 2010, 46(4): 357-368.
    [30]段宏基,魏刚,杨雅琦,等.丁腈橡胶的改性在密封材料中的应用研究进展[J].弹性体,2008,18(6):66-71.
    [31]徐忠丽.橡胶密封制品的有限元模拟[D].青岛科技大学硕士学位论文,2006.
    [32]周志鸿,张康雷,李静,等. O形橡胶密封圈应力与接触压力的有限元分析[J].润滑与密封, 2006, 4:86-89.
    [33]刘占军,邓忠林. X形变截面橡胶密封圈应力有限元分析[J].润滑与密封,2007,32(2):127-129.
    [34]尚付成,饶建华,沈钦凤,等.超高液压下O形橡胶密封圈的有限元分析[J].液压与气动,2010,1:67-70.
    [35]刘占军,王哲峰. X形变截面优化橡胶密封圈比较应力有限元分析[J].润滑与密封,2010,35(1):56-59.
    [36] Wang L.-R.,Wang J.-C., Lu Z.-H., et al. Investigation into the fluid-structure interaction of a hydraulically damped rubber mount on the basis of finite element analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2009, 223(3): 327-342.
    [37]王伟,赵树高.橡胶O形密封圈的非线性有限元分析[J].润滑与密封, 2005,4:106-108.
    [38] Jian Xie, Gui Tian, Jun Chen. Finite element analysis of the rubber sealing Yx-ring in hydraulic cylinder[J]. 2009 International Conference on Measuring Technology and Mechatronics Automation, ICMTMA, 2009, 2:806-809.
    [39] Georgantzinos S.K., Giannopoulos G.I., Anifantis N.K.Investigation of stress-strain behavior of single walled carbon nanotube/rubber composites by a multi-scale finite element method[J]. Theoretical and Applied Fracture Mechanics, 2009, 52(3):158-164.
    [40]乔世林.隔膜泵橡胶隔膜头部密封结构的有限元分析与优化[J].分析研究,2009,6:5-8.
    [41]刘声,盛选禹.油井套管橡胶密封的有限元分析[J].科技导报,2007,25(4):49-52.
    [42]陈宏,左正兴,廖日东.橡胶密封圈三维接触问题的有限元分析[J].兵工学报,1999,4:30-33..
    [43]谭晶,杨卫民,丁玉梅,等.矩形橡胶密封圈的有限元分析[J].润滑与密封, 2007,32(2):36-39.
    [44] Nozaki Takashi, Noritsugu Toshiro. Motion analysis of mckibben type of pneumatic rubber artificial muscle with finite element method (model without friction between plastics fibers)[J].Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2009, 75,(754):1755-1762.
    [45] Li Qian, Zhao Jiancai, Zhao Bo, et al. Parameter optimization of rubber mounts based on finite element analysis and genetic neural network[J]. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2009, 46(2):186-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700