用户名: 密码: 验证码:
Pt、Au、Cu_2O纳米材料的制备、分析及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本博士论文在前人相关研究的基础上,用新的制备方法,制备出高性能的金属单层修饰的Pt催化剂,高性能多孔Au纳米材料及新n-型氧化亚铜纳米材料,并扫描电镜(SEM)、透射电镜(TEM)研究其形貌结构。用X-Ray粉末衍射仪和X-ray光电子能谱测定其晶格结构和元素组成。用电化学方法研究了制备出的纳米材料的电催化性能及光电活性,并将其于燃料电池和环境污染物的处理研究。
     1.在含有氯铂酸和铜离子的溶液中,用循环伏安沉积将铂纳米微粒沉积在导电玻璃表面。铜离子作为助沉积,制备出高分散的Pt纳米微粒,并用Ru,Bi单层对Pt纳米微粒进行修饰,结果证实了纳米微粒及单层修饰后的纳米微粒具有很高的催化活性及稳定能力,经过欠电位沉积修饰的铂纳米微粒可能在燃料电池方面具有很高的应用前景。
     2.用聚苯乙烯作为模板,用电沉积铂方法制备出高度分散的二维铂纳米微粒。用循环伏安和即时电流研究铂纳米微粒和Sn修饰的铂纳米微粒的电化学性能。结果显示经过Sn-upd修饰后的Pt纳米微粒对甲醇的催化氧化具有很高的催化性能,可以用于直接甲醇燃料电池的阳极催化剂。
     3.以自组装在ITO电极上聚苯乙烯乳球为模板,用电沉积制备高度有序的多孔Pt。用欠电位沉积将铜单层沉积在多孔Pt电极表面,然后用Pd~(2+)通过置换反应将沉积在多孔Pt电极上的单层铜置换成单层Pd。研究结果显示Pd修饰的Pt大孔材料对O_2的催化起到明显的增强作用,但是Pd修饰的Pt大孔材料对甲醇的催化起到一个抑制作用。
     4.以Ag纳米线为模板制备高度有序的Au多孔纳米材料。用Ag纳米线为模板,用HAuCl_3与Ag纳米线反应成功制备出高度有序的多孔Au纳米材料。用激光拉曼散射研究了金多孔纳米材料对罗丹明的激光拉曼增强效应,研究结果表明了Au多孔纳米材料是一种很好的激光拉曼增强效应的纳米材料。
     5.用水热反应制备新型n-型氧化亚铜纳米材料,用亚甲基蓝和多菌灵研究氧化亚铜的光催化性能。结果显示新制备出的n-型半导体氧化亚铜材料对有机污染物具有很强的光催化降解能力。
It is human urgent choice to increasing energy using ratio and using regenerativesource instead of fossil energy. Fuel cells has been become a hot research point for hishigh ratio of energy conversion, little pollution and kind for surroundings. The solarfuels and hydrogen production by photolysis have a research point too. Great progresshas been made in the study and application of DMFCs in the world. However thecatalysts of DMFCs are still the hinder for commercial of DMFCs because of Pt ofhigh loading and poor activity. We use new methods to fabrication new catalyst forDMFCs.
     1.Platinum nanoparticles were successfully electrodeposited on indium tin oxide(ITO) surface in the solution with hexachloroplatinic acid and copper ion by cyclicvoltammogram method. The micrographs and structure of Pt nanoparticles werecharacterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD),respectively. The electrocatalytic properties of Pt nanoparticles/ITO or modified byRu, Bi underpotential deposition (UPD) for methanol oxidation have beeninvestigated by cyclic voltammetry (CV) and chronoamperometry (CA). Highelectroactivity and good long-term stability can be observed. These results indicatethat Pt nanoparticles modified by UPD may have potential applications in designingnoble metal catalysts of fuel cells with low loading and high activity at the atomiclevel
     2. With polystyrene latex spheres self-assembled on ITO glass as templates, highlyordered twodimensional(2D) Pt nanoparticles (PtNPs) were prepared byelectrochemical deposition. Themorphology and element composition of PtNPs werecharacterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) andX-ray photoelectron spectroscopy (XPS). The electrocatalyticproperties of PtNPs/ITOand Sn underpotential deposition (UPD) modified PtNPs/ITO for methanoloxidationhas been investigated by cyclic voltammetry (CV) and chronoamperometry (CA). Theexcellentelectrocatalytic activity can be observed for these catalytic systems.
     3. With polystyrene latex spheres self-assembled on ITO glass as templates,highly ordered macro-porous Pt was prepared by electrochemical deposition. Then themacro-porous Pt was modified by Pd monolayer involving the galvanic displacementof Cu monolayer formed by under-potential deposition on macro-porous Pt. Thecorresponding results showed that Pd-modified macro-porous Pt electrode hadnegative catalytic for methanol oxidation in compared with macro-porous Pt. ButPd-modified macro-porous Pt electrode had positive electro-catalytic activity to O_2reduction.
     4. A simple one step process for preparation of nanoporous Au materials has beendevelopment of sacrificial templates of Ag nanowires in a mixture solution of HAuCl_4at 100℃. The morphology and crystal structure of the product were characterized byscanning electron microscopy (SEM), XPS and XRD. The results indicated that thenano-porous gold had generally preserved the original orientation of Ag nanowires.The Au nanoporous materials consist of nanotubes, giving them a porous nature. Sucharrays of well oriented gold nano-materials are expected to show interestinganisotropic optical and electronic properties, and their hollow porous structures mightfind broad potential applications in catalysis and chemical sensing.
     5. Cuprous oxide nanoparticles were prepared by using hydrothermal methods andwere characterized by XRD, and TEM methods. The electrochemical properties ofnano-Cu_2O were studied. The experimental results indicate that nano-Cu_2O showshigh signal of photo-electricity. The photo-catalytic activity of the nanostructures wasevaluated by examine the degradation of methylene blue and fungicide carbendazim.
引文
[1]C.Lamy,J.-M.Leger,S.Srinivasan,Direct methanol fuel cells:from twentieth century electrochemist's dream to twenty-first century emerging technology,Kluwer Academic/Plenum publishers,New york,2001,34:53-138.
    [2]S.J.Kang,J.Y.Lee,J.K.Lee,S.Y.,Influence of bi modification of Pt anode catalyst in direct formic acid fuel cells,J.Phys.Chem.B,2006,110(14):7270-7274.
    [3]K.Y Chan,,J.R.Ding,J.W.Cheng,S.A.Tsang,Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells,J.Mater.Chem.,2004,14:505-516.
    [4]S.M Haile,D.A.Boysen,C.R.I Chisholm,R.B Merle,Solid acids as fuel cell electrolytes,Nature,2001,410(6831):910-913.
    [5]H.Liu,C.J.Wang,D.P.Wilkinson,A review of anode catalysis in the direct methanol fuel cell,Journal of Power sources,2006,155(2):95-110.
    [6]E.Reddington,A.Sapienza,B.Gurau,R.Viswanathan,S.Sarangapani,E.S Somtkin,T.E.Mallouk,Combinatorial electrochemistry:a highly parallel,optical screening method for discovery of better electrocatalysts,Science,1998,280:1735-1737.
    [7]P.N.Ross,Electrocatalysis,Wiley-VCH:New York,1998,4,34:243-290.
    [8]S.Wasmus,A.Kuver,Methanol oxidation and direct methanol fuel cells:a selective review,J.Electroanal.Chem.,1999,461(1-2):14-31.
    [9]A.S.Arico,S Srinivasan,V.Antonucci,DMFCs:From fundamental aspects to technology development,Fuel Cells,2001,1(2):133-161.
    [10]L.Carrette,K.A.Friedrich,U.Stimming,Fuel cells:principles types fuels and applications,Chem Phys Chem,2000,1(4):162-193.
    [11]L.Carrette,K.A.Friedrich,U.Stimming,Fundamentals and applications,Fuel Cells,2001,1(1):5-39.
    [12]P.S.Kauranen,E.Skou,J.Munk,Kinetics of methanol oxidation on carbon-supported Pt and Pt+Ru catalysts,J.Electroanal.Chem.,1996,404(1):1-13.
    [13]P.S Kauranen,E.Skou,Mixed methanol oxidation/oxygen reduction currents on a carbon supported Pt catalyst,J.Electroanal.Chem.,1996,408(1-2):189-198.
    [14]Janssen,M M P|Moolhuysen,J,Binary Systems of Pt and a Second Metal as Oxidation Catalysts for Methanol Fuel Cells.Electrochimica Acta.,1976,21(11)869-878.
    [15]E.S. Steigerwalt, G.A. Deluga, C.M. Lukehart, Pt-Ru/carbon fiber nanocomposites:synthesis,characterization,and performance as anode catalysts of direct methanol fuel cells.a search for exceptional performance,J.Phys.Chem.B,2002,106(4):760-766.
    [16]Y.C.Liu,X.P.Qiu,Y.-Q.Huang,W.T.Zhu,Mesocarbon microbeads supported Pt-Ru catalysts for electrochemical oxidation of methanol,Journal of Power Sources,2002:160-164.
    [17]N.Fujiwara,K.Yasuda,T.Ioroi,et a;,Preparation of platinum-ruthenium onto solid polymer electrolyte membrane and the application to a DMFC anode,Electrochim.Acta,2002,47(25):4079-4084.
    [18]C.W.Hills,N.H.Mack,R.G.Nuzzo,The size-dependent structural phase behaviors of supported bimetallic (Pt-Ru)nanoparticles,J.Phys.Chem.B,2003,107(12):2626-2636.
    [19]A.J.Dickinson,L.P.L.Carrette,J.A.Collins,K.A.Friedrich,U.Stimming,Preparation of a Pt---Ru/C catalyst from carbonyl complexes for fuel cell applications,Electrochim.Acta,2002,47(22-23):3733-3739.
    [20]A.M.C.Luna,G.A.Camara,V.A.Paganin,et al,Effect of thermal treatment on the performance of CO-tolerant anodes for polymer electrolyte fuel cells,Electrochem.Commun,2000,2(4):222-225.
    [21]H.Bonnemann,W.Brijoux,R.Brinkmann,E.Dinjus,T.Joussen,B.Korall,Production of colloidal transition metals in organic phase and their use as catalysts,Angew.Chem.,1991,103:1344-1346.
    [22]T.J.Schmidt,M.Noeske,H.A.Gasteiger,R.J.Behm,P.Britz,W.Brijoux,H.Bonnemann,Electrocatalytic activity of PtRu alloy colloids for CO and CO/H_2 electrooxidation:stripping voltammetry and rotating disk measurements,Langmuir,1997,13(10):2591-2595.
    [23]T.J.Schmidt,M.Noeske,H.A.Gasteiger,R.J.Behm,P.Britz,W.Brijoux,H.Bonnemann,PtRu alloy colloids as precursors for fuel cell catalysts,J.Electrochem.Soc,1998,145(3):925-931.
    [24]T.J.Schmidt,H.A.Gasteiger,R.J.Behm,Methanol electrooxidation on a colloidal PtRu-alloy fuel-cell catalyst,Electrochem.Commun,1999,1(1):1-49.
    [25]U.A.Paulus,U.Endruschat,G.J.Feldmeyer,T.J.Schmidt,H.Bonnemann,R.J.Behm,New PtRu alloy colloids as precursors for fuel cell catalysts,J.Catal,2000,195(2):383-393
    [26]X.Xue,T.Lu,C.Liu,W.Xing,Simple and controllable synthesis of highly dispersed Pt-Ru/C catalysts by a two-step spray pyrolysis process,Chem.Commun,2005,(12):1601-1603.
    [27]Z.Liu,J.Y.Lee,M.Han,W.Chen,L.M.Gan,Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions,J.Mater.Chem.,2002,12:2453-2458.
    [28]Y.Liu,X.Qiu,Z.Chen,W.Zhu,A new supported catalyst for methanol oxidation prepared by a reverse micelles method,Electrochem.Commun,2002,4(7):550-553.
    [29]X.Zhang,K.Chan,Water-in-oil microemulsion synthesis of platinumruthenium nanoparticles,their characterization and electrocatalytic properties,Chem.Mater,2003,15(2):451-459.
    [30]S.Rojas,F.J.Garcia,S.Jaras,M.V.Huerta,J.L.F.Fierro,M.Boutonnet,Preparation of carbon supported Pt and PtRu nanoparticles from microemulsion:electrocatalysts for fuel cell applications,Appl.Catal.A:Gen.,2005,285(1-2):24-35.
    [31]H.C.Ye,R.M.Crooks,Electrocatalytic O_2 reduction at glassy carbon electrodes modified with dendrimer-encapsulated Pt nanoparticles,J.Am.Chem.Soc,2005,127(13):4930-4934.
    [32]X.Y.Zhang,D.H.Dong,D.Li,T.Williams,H.Wang,P.A.Webley,Direct electrodeposition of Pt nanotube arrays and their enhanced electrocatalytic activities,Electrochemistry Communications,2009,11(1):190-193.
    [33]E.Scavetta,S.Stipa,D.Tonelli,Electrodeposition of a nickel-based hydrotalcite on Pt nanoparticles for ethanol and glucose sensing, Electrochemistry Communications,2007,9(12):2838-2842.
    [34]X.X.Chen,N.Li,K.Eckhard,L.Stoica,W.Xia,et al,Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes,Electrochemistry Communications,2007,9(6):1348-1354.
    [35]T.Y.M.Catacora,Y.Ishikawa,C.R.Cabrera,Sequential electrodeposition of Mo at Pt and PtRu methanol oxidation catalyst particles on HOPG surfaces,Journal of Electroanalytical Chemistry,2008,621(1):103-112.
    [36]S.R.Brankovi,J.X.Wang,New methods of controlled monolayer-to-multilayer depositionof Pt for designing electrocatalysts at an atomic level,J.Serb.Chem.Soc.2001,66(11-12):887-898.
    [37]J.Zhang,M.B.Vukmirovic,Y.Xu,M.Mavrikakis,R.R.Adzic,Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates,Angew.Chem.,Int.Ed,2005,44(14):2132-2135.
    [38]W.Z.Li,C.H.Liang,et al,Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell,Carbon,2002,40(5):791-794
    [39]M.Uchida,Y.Fukuoka,Y.Sugawara,H.Ohara,A.Ohta,Improved preparation process of very-low-platinum-loading electrodes for polymer electrolyte fuel cells,J.Electrochem.Soc,1998,145(11):3708-3713.
    [40]M.L.Anderson,R.M.Stroud,D.R.Rolison,Enhancing the activity of fuel-cell reactions by designing three-dimensional nanostructured architectures,Nano Lett,2002,2(3):235-240.
    [41]V.Rao,P.A.Simonov,E.R.Savinova,G.V.Plaksin,S.Cherepanova,G.Kryukova,U.Stimming,The influence of carbon support porosity on the activity of PtRu/Sibunit anode catalysts for methanol oxidation,J.Power Sources,2005,145(2):178-187.
    [42]Z.Liu,X.Lin,J.Y.Lee,W.S.Zhang,M.Han,L.M.Gan,Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells,Langmuir,2002,18(10):4054-4060.
    [43]C.Wang,M.Waje,X.Wang,J.M.Tang,R.C.Haddon,Y.Yan,Proton exchange membrane fuel cells with carbon nanotube based electrodes,Nano Lett,2004,4 (2):345-348.
    [44]Vincent M.Lobe,James L.White,An experimental study of the influence of carbon black on the rheological properties of a polystyrene melt,Polymer Engineering and Science,2004,19(9):617-624.
    [45]G.Park,T.Yang,Y.Yoon,W.Lee,C.Kim,Pore size effect of the DMFC catalyst supported on porous materials,Int.J.Hydrogen Energy,2003,28(6):645-650.
    [46]Z.Wang,G.Yin,P.Shi,Effects of ozone treatment of carbon support on Pt-Ru/C catalysts performance for direct methanol fuel cell,Carbon,2005,44(1):133-140.
    [47]C.A.Bessel,K.Laubernds,N.M.Rodriguez,R.T.K.Baker,Graphite nanofibers as an electrode for fuel cell applications,J.Phys.Chem.B,2001,105(6):1115-1118.
    [48]E.S.Steigerwalt,G.A.Deluga,D.E.Cliffel,C.M.Lukehart,A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst,J.Phys.Chem.B,2001,105(34):8097-8101.
    [49T.Matsumoto,T.Komatsu,K.Arai,T.Yamazaki,M.Kijima,H.Shimizu,Y.Takasawa,J.Nakamura,Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes,Chem.Commun,2004,7:840-841.
    [50]G.Che,B.B.Lakshmi,C.R.Martin,E.R.Fisher,Metal-nanocluster-filled carbon nanotubes:catalytic properties and possible applications in electrochemical energy storage and production,Langmuir,1999,15 (3):750-758.
    [51]K.S Novoselov,D Jiang,F.Schedin,T.J.Booth,V.V.Khotkevich,S.V Morozov,A.K Geim,Proc.Two-dimensional atomic crystals,Natl.Acad.Sci.U.S.A ,2005,102(30):10451-10453.
    [52]A.K Geim,K.S.Novoselov,The rise of graphene,Nat.Mater,2007,6:183-191.
    [53]S.Stankovich,D.A Dikin,G.H.B.Dommett,K.A Kohlhaas,E.J Zimney,E.A.Stach,R.D Piner,S.T Nguyen,R.S.Ruoff,Graphene-based composite materials,Nature,2006,442(7100):282-286.
    [54]R.Kou,Y.Y.Shao,D.H.Wang,M.H.Engelhard,J.H.Kwak,J.Wang,V.V.Viswanathan,Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction, Electrochemistry Communications,2009,11(5):954-957.
    [55]C.Xu,X.Wang,J.W.Zhu,Graphene-metal particle nanocomposites,J.Phys.Chem.C,2008,112(50):19841-19845.
    [56]M.P.Hogarth,T.R.Ralph,Catalysis for low temperature fuel cells,platinum,Met.Rev.,2002,46(1):3-14.
    [57]C.S.Cameron,G.A.Hards,D.Thompsett,In direct methanol-air fuel cells,Electrochemical society:pennington,NJ,1992,PV 92-14,p 10.
    [58]X.Ren,M.S.Wilson,S.Gottesfeld,High performance direct methanol polymer electrolyte fuel cells,J.Electrochem.Soc,1996,143(1):L12-L15.
    [59]S.Wasmus,W.Vielstich,Methanol oxidation at carbon supported Pt and Pt-Ru electrodes:an on line MS study using technical electrodes,J.Appl.Electrochem,1993,23(2):120-124.
    [60]B.Grgur,N.Markovic,P.N Ross,Electrooxidation of H_2,CO and H_2/CO mixtures on a well-characterized Pt-Re bulk alloy electrode and comparison with other Pt binary alloys,Electrochim.Acta,1998,43(24):3631-3635.
    [61]M.Gotz,H.Wendt,Binary and ternary anode catalyst formulations including the elements W,Sn and Mo for PEMFCs operated on methanol or reformate gas,Electrochim.Acta,1998,43(24):3637-3644.
    [62]J.T.Moore,J.D.Corn,D.Chu,R Jiang,D.L Boxall,E.A Kenik,C.M.Lukehart,Synthesis and characterization of a Pt_3Ru_1/Vulcan carbon powder nanocomposite and reactivity as a methanol electrooxidation catalyst,Chem.Mater,2003,15(17):3320-3325.
    [63]M Davies,B.Hayden,D.Pegg,M.Rendall,The electro-oxidation of carbon monoxide on ruthenium modified Pt(1 1 1),Surf.Sci,2002,496(1-2):110-120.
    [64]P.Lui,J.N(?)rshov,Kinetics of the anode processes in PEM fuel cells-the promoting effect of Ru in PtRu anodes,Fuel Cells,2001,1(3-4):192-201.
    [65]C.Lu,C.Rice,R.Masel,P.Babu,P.Waszczuk,H.Kim,E.Oldfield,A.wiechowski,UHV, electrochemical NMR, and electrochemical studies of platinum/ruthenium fuel cell catalysts,J.Phys.Chem.B,2002,106(37):9581-9589.
    [66]C.Korzeniewski,C.L.Childers,Formaldehyde yields from methanol electrochemical oxidation on platinum,J.Phys.Chem.,1998,102(3):489-492.
    [67]R.Parsons,T.VanderNoot,The oxidation of small organic molecules:A survey of recent fuel cell related research,J.Electroanal,Chem.,1988,257(1-2):9-45.
    [68]V.S.Bagotzky,Y.S.Vassilyev,Mechanism of electro-oxidation of methanol on the platinum electrode,Electrochim.Acta,1967,12(9):1323-1343.
    [69]]H.S.Wang,C.Wingender,H.Baltruschat,M.Lopez,M.T.Reetz,Methanol oxidation on Pt,PtRu,and colloidal Pt electrocatalysts:a DEMS study of product formation,J.Electroanal.Chem.,2001,509(2):163-169.
    [70]H.Wang,T.L(o|¨)ffler,H.Baltruschat,Formation of intermediates during methanol oxidation:A quantitative DEMS study,J.Appl.Electrochem,2001,31(7):759-765.
    [71]K.I.Ota,Y.Nakagawa,M.Takahashi,Reaction products of anodic oxidation of methanol in sulfuric acid solution,J.Electroanal.Chem.,1984,179 (1-2):179-186.
    [72]A.L.Zhu,Y.T.Mark,S.A.Kulinich,A novel improvement on nano-deposition of Ru on Pt for fuel cell applications,Applied Catalysis A,2009,352 (1-2):17-26.
    [73]T.J.Schmidt,H.A.Gasteiger,R.J.Behm,Rotating disk electrode measurements on the CO tolerance of a high-surface area Pt/Vulcan carbon fuel cell catalyst,J.Electrochem.Soc,1999,146(4):1296-1304.
    [74]S.R.Narayanan,W.Chun,T.I.Valdez,B.Jeffries-Nakamura,H.Frank,S.Surampudi,et al,Program and Abstracts,Fuel Cell Seminar,1996,17:525
    [75]M.Watanabe,S.Moto,Electrocatalysis by ad-atoms:Part Ⅲ.enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms,J.Electroanal.Chem.,1975,60(3):275-283.
    [76]N.M.Markovic,H.A.Gasteiger,P.N.Ross,et al,Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces,Electrochimica Acta,1995,40(1):91-98.
    [77]E.Herrero,K.Franaszczuk,A.Wieckowski,A voltammetric identification of the surface redox couple effective in methanol oxidation on a ruthenium-covered platinum (110)electrode,J.Electroanal.Chem.,1993,361 (1-2):269-273.
    [78]W.Chrzanowski,A.Wieckowski,Surface structure effects in platinum/ruthenium methanol oxidation electrocatalysis,Langmuir,1998,14(8):1967-1970.
    [79]G.Tremiliosi-Filho,H.Kim,W.Chrzanowski,A.Wieckowski,B.Grzybowska,P.Kulesza,Reactivity and activation parameters in methanol oxidation on platinum single crystal electrodes 'decorated' by ruthenium adlayers,J.Electroanal.Chem.,1999,467(1-2):143-156.
    [80]W.F.Lin,M.S.Zei,M.Eiswirth,G.Ertl,T.Iwasita,W.Vielstich,Electrocatalytic activity of Ru-modified Pt(111)electrodes toward CO oxidation,J.Phys.Chem.B,1999,103 (33):6968-6977.
    [81]F.Maillard,F.Gloaguen,F.Hahn,J.-M.L(?)ger,Electrooxidation of Carbon Monoxide at Ruthenium-Modified Platinum Nano-particles:Evidence for CO Surface Mobility,Fuel Cells,2003,2 (3-4):143-152.
    [82]H.E.Hoster and H.A.Gasteiger,Ex-situ surface preparation and analysis:Transfer between UHV and electrochemical cell,Handbook of Fuel Cells-Fundamentals,Technology and Applications,2003,2(3):236-265.
    [83]K.A.Friedrich,K.P.Geyzers,U.Linke,U.Stimming,J.Stumper,CO adsorption and oxidation on a Pt(111)electrode modified by ruthenium deposition:an IR spectroscopic study,J.Electroanal.Chem.,1996,402 (1-2):123-128.
    [84]K.A.Friedrich,K.-P.Geyzers,A.J.Dickinson,U.Stimming,Fundamental aspects in electrocatalysis:from the reactivity of single-crystals to fuel cell electrocatalysts,J.Electroanal.Chem,2002,524 -525:261-272.
    [85]G.Samjeske,X.Y.Xiao,H.Baltruschat,Ru decoration of stepped Pt single crystals and the role of the terrace width on the electrocatalytic CO oxidation,Langmuir,2002,18(12):4659-4666.
    [86]M.Watanabe,Y.Genjima,K.Turumi,Direct methanol oxidation on platinum electrodes with ruthenium adatoms in hot phosphoricacid,J.Electrochem.Soc,1997,144 (2):423-428.
    [87F.Vigier,F.Gloaguen,J.M.Leger,C.Lamy,Electrochemical and spontaneous deposition of ruthenium at platinum electrodes for methanol oxidation:an electrochemical quartz crystal microbalance study,Electrochim.Acta,2001,46(28):4331-4337.
    [88]N.S.Marinkovic M.B.Vukmirovic and R.R.Adzic,Some Recent Studies in Ruthenium Electrochemistry and Electrocatalysis, Modern Aspects of Electrochemistry,2008,42:1-52.
    [89]T.Frelink,W.Visscher,J.A.R.van Veen,Measurement of the Ru surface content of electrocodeposited PtRu electrodes with the electrochemical quartz crystal microbalance:implications for methanol and CO electrooxidation,Langmuir,1996,12(15):3702-3708.
    [90]Radmilovic V.,Gasteiger H.A.and Ross P.N.Structure and Chemical Composition of a Supported Pt-Ru Electrocatalyst for Methanol Oxidation,Journal of Catalysis,1995,154,(1)98-106.
    [91]T.D.Jarvi,T.H.Madden,E.M.Stuve,Vacuum and electrochemical behavior of vapor deposited ruthenium on platinum(111),Electrochem.Solid State Lett.,1999,2(5):24-27.
    [92]T.Iwasita,H.Hoster,A.John-Anacker,W.F.Lin,W.Vielstich,Methanol oxidation on PtRu electrodes.Influence of surface structure and Pt-Ru atom distribution,Langmuir,2000,16(2):522-529.
    [93]A.J.Dickinson, L.P.L.Carrette,J.A.Collins,K.A.Friedrich,U.Stimming,Preparation of a Pt---Ru/C catalyst from carbonyl complexes for fuel cell applications,Electrochimica Acta,2002,47(22-23):3 733-3 739.
    [94]W.Chrzanowski,A.Wieckowski,Ultrathin films of ruthenium on low index platinum single crystal surfaces:an electrochemical study,Langmuir,1997,13(22):5974-5978.
    [95]W.Chrzanowski,A.Wieckowski,Enhancement in methanol oxidation by spontaneously deposited ruthenium on low-index platinum electrodes,CataL Lett,1998,50(1-2):67-69.
    [96]A.Oleg,Pt-Ru electrocatalysts for fuel cells:a representative review,J Solid State Electrochem,2008,12:609-642.
    [97]Z.Liu,X.Y.Ling,X.D.Su,J.Y.Lee,Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell,J.Phys.Chem.B,2004,108 (24):8234-8240.
    [98]Z.Jusys,J.Kaiser,R.J.Behm,Composition and activity of high surface area PtRu catalysts towards adsorbed CO and methanol electrooxidation:A DEMS study,Electrochimica Acta,2002,47(22-23):3693-3706.
    [99]F.Maillard,F.Gloaguen,J.M.Leger,Preparation of methanol oxidation electrocatalysts:ruthenium deposition on carbon-supported platinum nanoparticles,J.Appl.Electrochem.,2003,33(1):1-8.
    [100]W.Chrzanowski,A.Wieckowski,Enhancement in methanol oxidation by spontaneously deposited ruthenium on low-index platinum electrodes, Catal.Lett,1998,50(1-2):69-75.
    [101]F.Vigier,F.Gloaguen,J.Leger,M,C.Lamy,Electrochemical and spontaneous deposition of ruthenium at platinum electrodes for methanol oxidation:an electrochemical quartz crystal microbalance study,Electrochim.Acta,2001,46(28):4331-4337.
    [102]Wenzhen Li,Xin Wang,Zhongwei Chen,Mahesh,Pt-Ru Supported on Double-Walled Carbon Nanotubes as High-Performance Anode Catalysts for Direct Methanol Fuel Cells,J.Phys.Chem.B,2006,110 (31):15353-15358
    [103]S.Cramm,K.A.Fiedrich,K.P.Geyzers,U.Stimming,R.Vogel,Surface structural and chemical characterization of Pt/Ru composite electrodes.A combined study by XPS,STM,and IR spectroscopy,J.Fresen.Anal.Chem.,1997,358(1-2):189-192
    [104]K.A Friedrich,K.P.Geyzers,A.Marmann, U.Stimming,R.Vogel,Bulk metal electrodeposition in the sub-monolayer regime.Ru on Pt(111),Z.Phys.Chem.,1999,208(1/2):137-150
    [105]Z.D.Wei,L.L.Li,Y.H.Luo,C.Yan,C.X.Sun,G.Z.Yin,P.K.Shen,Electrooxidation of methanol on upd-Ru and upd-Sn modified Pt electrodes,J.Phys.Chem.B,2006,110(51):26055-26061.
    [106]V.Del Colle,A.Berna,G.Tremiliosi-Filho,E.Herrero,J.M.Feliu,Ethanol electrooxidation onto stepped surfaces modified by Ru deposition:electrochemical and spectroscopic studies,Phys.Chem.Chem.Phys,2008,10(25):3766-3773.
    [107]M.M.P Janssen,J.Moolhuysen,Platinum—tin catalysts for methanol fuel cells prepared by a novel immersion technique by electrocodeposition and by altoying,Electrochim.Aeta,1976,21(11):861-868.
    [108]P.Waszczuk,J Solla-Gullon.,H.S Kim,Methanol electrooxidation on platinum/ruthenium nanoparticle catalysts.,J.Catal,2001,203(1):1-6.
    [109]W Chrzanowski,A Wieckowski,Scanning tunneling microscopy images of ruthenium submonolayers spontaneously deposited on a Pt(111)electrode,Langmuir,1999,15(15):4944-4948.
    [110]A.Crown,C.M Johnston,Growth of ruthenium islands on Pt(hkl)electrodes obtained via repetitive spontaneous deposition,Surf.Sci,2002,506(1-2):L268-L274.
    [111]V.Mehta,J.S.Cooper,Review and analysis of PEM fuel cell design and manufacturing,Journal of Power Sources,2003,114(1):32-53.
    [112]W.Chrzanowski.,A.Wieckowski.,Interfacial Electrochemistry.ED,Marcel Dekker,New York,1999,P937
    [113]H.Hoster,T Iwasita,H.Baumgartner,W.Vielstich,Current-time behavior of smooth and porous PtRu surfaces for methanol oxidation,J.Electrochem.Soc,2001,148(5)A496-A501.
    [114]T.D.Jarvi,T.H Madden,E.M.Stuve,Vacuum and electrochemical behavior of vapor deposited ruthenium on platinum (111),Electrochem.Solid State Lett.,1999,2(5):224-227
    [115]R.Davda,J.W.Shabaker,G.W.Huber,et al,Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts,Applied Catalysis B,2003,43(1):13-26.
    [116]J.C.Davies,B.E Hayden,D.J.Pegg,M.E Rendall,The electro-oxidation of carbon monoxide on ruthenium modified Pt(1 1 1),Surf.Sci,2002,496(1-2):110-120.
    [117]Z.B.He,J.H.Chen,D.Y.Liu,H.H.Zhou,Y.F.Kuang,Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation,Diamond and Related Materials,2004,13(10):1764-1770
    [118]D.X.Cao,S.H.Bergens,An organometallic deposition of ruthenium adatoms on platinum that self poisons at a specific surface composition.:A direct methanol fuel cell using a platinum-ruthenium adatom anode catalyst,J.Electroanal.Chem.,2002,533(1-2):91-100.
    [119]C.E.Lee,S.H.Bergens,Deposition of Ru adatoms on Pt using organometallic chemistry:catalysts for electrooxidation of MeOH and adsorbed carbon monoxide,J.Phys.Chem.B,1998,102(1):193-199.
    [120]K.Jambunathan,S.Jayaraman,A.C.Hillier,A Multielectrode Electrochemical and Scanning Differential Electrochemical Mass Spectrometry Study of Methanol Oxidation on Electrodeposited Pt_xRu_y,Langmuir,2004,20 (5):1856-1863
    [121]J.McBreen,S.Mukerjee,in situ X-ray adbsorption studies of a Pt-Ru electrocatalyst,J.Electrochem.Soc,1995,142(10)3399-3404
    [122]K.Koczkur,Q.F.Yi,A.C.Chen,Nanoporous Pt-Ru networks and their electrocatalytical properties, Adv. Mater, 2007, 19(18):2648-2652.
    [123] A.H.Gasteiger, N.Mariovic, P.N.Ross, et al. Temperature dependent methanol electrooxidation on well characterized Pt-Ru alloys,S Kauranen,J.Electrochem.Soc.l994,141(7):1795-1803.
    [124] L. Liu, C. Pu, R.Viswanathan, Q.B. Fan, Renxuan Liu and E. S.Smotkin,Carbon supported and unsupported Pt-Ru anodes for liquid feed direct methanol fuel cells, Electrochimica Acta, 1998,43 (24):3657-3663.
    [125] H. Hoster, T. Iwasita, H. Baumga., Wolf Vielstich, Pt-Ru model catalysts for anodic methanol oxidation: influence of structure and composition on the reactivity,Phys. Chem. Chem. Phys, 2001,3(3): 337-346.
    [126] Y. Ishikawa, M.S. Liao, C.R.Cabrera, Oxidation of methanol on platinum,ruthenium and mixed Pt-M metals (M=Ru, Sn): a theoretical study, surface science,2000,463(1):66-80.
    [127] J.C. Davies, J.Bonde, A.Logadottir, et al, The ligand effect: CO desorption from Pt/Ru catalysts, fuel cells, 2005, 5(4):429-435.
    [128] T. Frelink, W. Visscher, et al, On the role of Ru and Sn as promoters of methanol electro-oxidation over Pt, surface scienc, 1995,335:353-360.
    [129] J.S. Spendelow, P.K. Babu, A. Wieckowski, Electrocatalytic oxidation of carbon monoxide and methanol on platinum surfaces decorated with ruthenium, Curr. Opin.Solid State Mater. Sci, 2006, 9(1-2): 37-38.
    [130] CM. Johnston, S. Strbac,A. Lewera, E. Sibert,A. Wieckowski, Characterization and methanol electrooxidation studies of Pt(111)/Os surfaces prepared by spontaneous deposition, Langmuir, 2006,22(19): 8229-8240.
    [131] S. Daniele, S. Bergamin, Preparation and voltammetric characterisation of bismuth-modified mesoporous platinum microelectrodes: application to the electrooxidation of formic acid, Electrochem. Commun, 2007, 9(6): 1388-1393.
    [132] X.H. Xia, New insights into the influence of upd Sn on the oxidation of formic acid on platinum in acidic solution, Electrochim. Acta, 1999,45(7): 1057-1066.
    [133] A. Oliveira Neto, E.G. Franco, E. Arico, M. Linardi, E.R. Gonzalez,Electro-oxidation of methanol and ethanol on Pt-Ru/C and Pt-Ru-Mo/C electrocatalysts prepared by B(o|¨)nnemann's method,J.Eur.Ceram.Soc,2003,23(15):2987-2992.
    [134]Ermete Antolini,Formation of carbon-supported PtM alloys for low temperature fuel cells:a review,Materials Chemistry and Physics,2003,78(3):563-573.
    [135]S.Strbac,C.M.Johnston,G.Q.Lu,A.Crown,In situ STM study of nanosized Ru and Os islands spontaneously deposited on Pt(111)and Au(111)electrodes,Surface Science,2004,573 (1):80-99.
    [136]D.X.Cao,S.H.Bergens,Pt-Ru_(adatom)nanoparticles as anode catalysts for direct methanol fuel cells,Journal of Power Sources,2004,134(2):170-180.
    [137]B.Hammer,Y.Morikawa,J.K.Nerskov, CO chemisorption at metal surfaces and overlayers,Phys.ReV.Lett.,1996,76(12):2141-2144.
    [138]Y.Y Tong,H.S.Kim,P.K.Babu,P.Waszczuk,A.Wieckowski,E Oldfield,An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst,J.Am.Chem.Soc,2002,124(3):468-473.
    [139]A.Matthew,W.P.Zhou,et al,Experiment and theory of fuel cell catalysis:methanol and formic acid decomposition on nanoparticle Pt/Ru,J.Phys.Chem.C,2008,112(39):15595-15601.
    [140]F.Vigier,C.Coutanceau,A.Perrard,E.M.Belgsir,C.Lamy,Development of anode catalysts for a direct ethanol fuel cell,J.Appl.Electrochem,2004,34(4):439-446.
    [141]C.Lamy,S.Rousseau,E.M.Belgsir,C.Counteceau,J.-M.Leger,Recent progress in the direct ethanol fuel cell:development of new platinum-tin electrocatalysts,Electrochim.Acta,2004,49(22-23):3901-3908.
    [142]F.Delime,J.M.Leger,C.Lamy,Enhancement of the electrooxidation of ethanol on a Pt-PEM electrode modified by tin.Part I:Half cell study,J.Appl,Electrochem,1999,29 (11):1249-1254.
    [143]K.W.Park,J.H.Choi,B.K.Kwon,S.A.Lee,Y.E.Sung,et al,Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation,J.Phys.Chem.B,2002,106 (8):1869-1877.
    [144]W.J.Zhou,B.Zhou,W.Z.Li,Z.H.Zhou,Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts,J.Power Sources,2004,126(1-2):16-22.
    [145]I.Honma,T.Toda,Family of high-temperature polymer-electrolyte membranes synthesized from amphiphilic nanostructured macromolecules,J.Electrochem.Soc,2003,150 (5):A616-A619.
    [146]S.Q.Song,W.J.Zhou,Z.H.Zhou L.H.Jiang,G.Q.Sun,Q.Xia,V.Leontidis,S.Kontou,P.Tsiakaras,Direct ethanol PEM fuel cells:The case of platinum based anodes,International Journal of Hydrogen Energy,2005,30(9):995-1001.
    [147]M.A.A.Rahim,M.W.Khalil,Platinum-tin alloy electrodes for direct methanol fuel cells,J.Appl.Electrochem,2000,30(10):1151-1155.
    [148]M.J.Gonzalez,C.H.Peters,et al,Pt-Sn microfabricated surfaces as catalysts for organic electro-oxidation,J.Phys.Chem.B,2001,105(23):5470-5476.
    [149]E.Casado-Rivera,D.J.Volpe,et al,Electrocatalytic activity of ordered intermetallic phases for fuel cell applications,J.Am.Chem.Soc,2004,126(12):4043-4049.
    [150]A.Katayama,Electrooxidation of methanol on a platinum-tin oxide catalyst,J.Phys.Chem,1980,84(4):376-381.
    [151]R.Holze,B.Bittins-Cattaneo,The oxidation state of upd-tin on a platinum electrode studied with surface raman spectroscopy,Electrochim.Acta,1988,33(3):353-358.
    [152]M. Seruga, M. Metikos-Hukovic, et al, Electrochemical and X-ray photoelectron spectroscopy studies of passive film on tin in citrate buffer solution,J.Electroanal.Chem,1996,407(1-2):83-89.
    [153]J.Clavilier,A.Fernandez-Vega,et al,Heterogeneous electrocatalysis on well defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms:Part Ⅰ.Formic acid oxidation on the Pt(111)-Bi system,J.Electroanal.Chem.,1989,258 (1):89-100.
    [154]E.Herrero, J.M.Feliu,A.Aldaz,Poison formation reaction from formic acid and methanol on Pt(111)electrodes modified by irreversibly adsorbed Bi and As,J.Electroanal.Chem,1993,350 (1-2):73-88.
    [155]R.Adzic,A.Tripkovic,V.Vesovic,Structural effects in electrocatalysis:oxidation of formic acid and hydrogen adsorption on platinum single-crystal stepped surfaces,J.Electroanal.Chem,1986,204 (1-2):329-341.
    [156]M.D.Macia,E.Herrero,J.M.Feliu,et al,Formic acid self-poisoning on bismuth-modified stepped electrodes, J. Electroanal. Chem, 2001, 500(1-2):498-509.
    [157]A.V.Tripkovic,K.Popovic,R.R.Adzic,Structural effects in electrocatalysis:oxidation of formic acid on single-crystal platinum electrodes and evidence for oscillatory behavior,J.Chim.Phys,1991,88(7-8):1635-1647.
    [158]P.Waszczuk,T.M.Barnard,C.Rice,et al,A nanoparticle catalyst with superior activity for electrooxidation of formic acid,Electrochemistry Communications,2002,4(7):599-603.
    [159]J.Clavilier,A.Fernandez-Vega,J.M.Feliu,A.Aldaz,Heterogeneous electrocatalysis on well defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms:Part Ⅰ.Formic acid oxidation on the Pt (111)-Bi system,J.Electroanal,Chem.,1989,258(1):89-100.
    [160]J.Clavilier,J.M.Feliu,A.Aldaz,Heterogeneous electrocatalysis on well-defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms:Part Ⅲ.Formic acid oxidation on the Pt (100)-Bi system,J.Electroanal.Chem,1989,261(1):113-125.
    [161]S.C.Chang,Y.Ho,M.Weaver,Applications of real-time infrared spectroscopy to electrocatalysis at bimetallic surfaces:I.electrooxidation of formic acid and methanol on bismuth-modified Pt(111)and Pt(100),Surf.Sci,1992,265(1-3):81-94.
    [162]B.J.Kim,K.J.Kwon,Choong Kyun Rhee,Jonghee Han,Tae-Hoon Lim,Modification of Pt nanoelectrodes dispersed on carbon support using irreversible adsorption of Bi to enhance formic acid oxidation.,Electrochimica Acta,2008,3(26):7744-7750
    [163]S.Gottesfeld,T.A.Zawodzinski,Advances in Electrochemical Science and Engineering,Polymer Electrolyte Fuel Cells,2008,5:195-301.
    [164]F.Besenbacher et al.,Design of a surface alloy catalyst for steam reforming, Science,1998,279(5358):1913-1915.
    [165]N.M.Markovic,P.N.Ross,Measurement of the growth of sub-microscopic fatigue cracks by ellipsometry,Surf.Sci.Rep,2002,45 (1):117-127.
    [166]W.Vielstich,A.Lamm,H.A.Gasteiger,Handbook of Fuel Cells:Fundamentals,Technology,and Applications (Wiley,West Sussex,UK,ed.1,2003,2:555.
    [167]J.K.Norskov,C.H.Christensen,Toward efficient hydrogen production at surfaces,Science,2006,312(5778):1322-1323.
    [168]H.A.Gasteiger,S.Kocha,B.Sompalli,F.T.Wagner,Activity benchmarks and requirements for Pt,Pt-alloy,and non-Pt oxygen reduction catalysts for PEMFCs,Appl.Catal.B,2005,56(1-2):9-35.
    [169]Ahmad Nozad Golikand,Leila Irannej ad,Electroreduction of oxygen and electrooxidation of methanol at carbon and single wall carbon nanotube supported platinum electrodes,Electroanalysis,2008,20(10):1121-1127.
    [170]M. Neergat, A.K. Shukla, K.S. Grandhi, Platinum-based alloys as oxygen-reduction catalysts for solid-polymer-electrolyte direct methanol fuel cells,J.Appl.Electrochem,2001,31(4):373-378.
    [171]T.Toda,H.Igarashi,H.Uchida,et al,Enhancement of the electroreduction of oxygen on Pt alloys with Fe,Ni,and Co,J.Electrochem.Soc,1999,146(10):3750-3756.
    [172]V.Stamencovic,T.J. Schmidt,et al,Surface segregation effects in electrocatalysis:kinetics of oxygen reduction reaction on polycrystalline Pt_3Ni alloy surfaces,J.Electroanal.Chem,2003,554-555:191-199.
    [173]T.Frelink,W.Visscher,J.A.R.van Veen,Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol,J.Electroanal.Chem.,1995,382,(1-2):65-72.
    [174]J.L.Zhang,M.B.Vukmirovic,et al,Mixed-Metal Pt Monolayer Electrocatalysts for Enhanced Oxygen Reduction Kinetics,J.Am.Chem.Soc,2005,127(36):12480-12481.
    [175]K.Sasaki,Y.Mo,J.X. Wang,et al,Pt submonolayers on metal nanoparticles—novel electrocatalysts for H_2 oxidation and O_2 reduction,Electrochim.Acta,2003,48(25-26):3841-3849.
    [176]Y.Mizukoshi,K.Okitsu,Y.Maeda,et al,Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution,J.Phys.Chem.B,1997,101(36):7033-7037.
    [177]J.L.Zhang,M.B Vukmirovic,Y.Xu,et al,Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates,Angew.Chem,2005,44(14):2132-2135
    [178]J.Zhang,Y.Mo,M.B.Vukmirovic,R.Klie,K.Sasaki,and R.R.Adzic,Platinum monolayer electrocatalysts for O_2 reduction:Pt monolayer on Pd(111)and on carbon-supported Pd nanoparticles,J.Phys.Chem.B,2004,108 (30):10955-10964.
    [179]S.R.Brankovic,J.McBreen,R.R.Adzic,Spontaneous deposition of Pt on the Ru (0001)surface,J.Electroanal.Chem,2001,503 (1-2):99-104.
    [180]S.R.Brankovic,J.Wang,R.R.Adzic,Metal monolayer deposition by replacement of metal adlayers on electrode surfaces,Surf.Sci,2001,474(1-3):L173-L179.
    [181]W.C.Choi,S.I.Woo,Bimetallic Pt-Ru nanowire network for anode material in a direct-methanol fuel cell,J.Power Sources,2003,124(2):420-425.
    [182]F.Liu,J.Y.Lee,W.Zhou,Multisegment PtRu nanorods:electrocatalysts with adjustable bimetallic pair sites,Adv.Funct.Mater,2005,15(9):1459-1464.
    [183]G.Y.Zhao,C.L.Xu,D.J.Guo,H.Li,H.L.Li,Template preparation of Pt-Ru and Pt nanowire array electrodes on a Ti/Si substrate for methanol electro-oxidation,J.Power Sources,2006,162(1):492-496.
    [184]Shaojun Guo,Shaojun Dong,Erkang Wang,a general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology,Chem.Eur.J,2008,14(15):4689-4695.
    [185]E.Mathiowitz,J.S.Jacob,Y.S.Jon,G.P.Carino,et al,Biologically erodable microspheres as potential oral drug delivery systems,Nature,1997,386(6623):410-414.
    [186]J.Chen,F.Saeki,B.Wiley,H.Cang,et al,Gold nanocages:bioconjugation and their potential use as optical imaging contrast agents. Nano Lett, 2005, 5 (3):473-477.
    [187] J. Chen, D. Wang, J. Xi, et al, Immuno gold nanocages with tailored optical properties for targetedphotothermal destruction of cancercells, Nano Lett, 2007,7(5):1318-1322.
    [188] F. Caruso, M. Spasova, et al, Multilayer assemblies of silica-encapsulated gold ganoparticles on decomposable colloid templates, Adv. Mater, 2001,13(14):1090-1094.
    [189] H. T. Schmidt, A. E. Ostafin, Liposome directed growth of calcium phosphate nanoshells,Adv. Mater, 2002, 14(7):532-535.
    [190] J.Huang, Y. Xie, B. Li, Y. Liu, et al, In-situ source-template-tnterface reaction route to remiconductor CdS rubmicrometer hollow spheres, Adv.Mater, 2000,12(11):808-811.
    [191] M. H. Chen, L. Gao, Synthesis and characterization of Ag nanoshells by a facile sacrificial template route through in situ replacement reaction, Inorg. Chem, 2006,45(13):5145-5149.
    [192] H. Liang, Y. Guo, H. Zhang, J. Hu, et al, Controllable AuPt bimetallic hollow nanostructures, Cftem.Commun, 2004, (13):1496-1497.
    [193] B. Mayers, X. Jiang, Y. Xia, et al, Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids, J.Am. ChemSoc, 2003,125(44):13364-13365.
    [194] S. Robert, R.Kilkson, D. Trivich, Electrical Conductivity of Single-Crystal Cuprous Oxide at High Temperatures, Phys. Rev. 1961,122: 482 - 488
    [195] S.T. Shishiyanu, T. S. Shishiyanu, O. I. Lupan, Novel NO_2 gas sensor based on cuprous oxide thin films, Sensors and Actuators B: Chemical,2006, 113: 468-476
    [196] J.S. Xu, D.F. Xue, Five branching growth patterns in the cubic crystal system: A direct observation of cuprous oxide microcrystals, Acta Materialia,2007, 55(7):2397-2406.
    [197] T. Kosugi, S.Kaneko, Novel Spray-Pyrolysis Deposition of Cuprous Oxide Thin Films, Journal of the American Ceramic Society 1998, 81 (12):3117 - 3124.
    [198]Y.Yu,Y.Shi,C.H.Chenl,Nanoporous cuprous oxide/Lithia composite anode with capacity increasing characteristic and high rate capability,Nanotechnology,2007,18 (055706):1-5.
    [199]J.Y.Hwang,Y.Y.Wang,C.C.Wan,Electrolytic oxidation of cuprocyanide electroplating waste waters under different pH conditions,Journal of Applied Electrochemistry,1987,17:684-694.
    [200]J.Eastoe,M.J.Hollamby,L.Hudson,Recent advances in nanoparticle synthesis with reversed micelles,Advances in Colloid and Interface Science,2006,128-130:5-15.
    [201]A.L.Daltin,A.Addad,J.P.Chopart, Potentiostatic deposition and characterization of cuprous oxide films and nanowires,Journal of Crystal Growth,2005,282,3-4:414-420.
    [202]P.He,X.H.Shen,H.C.Gao,Size-controlled preparation of Cu_2O octahedron nanocrystals and studies on their optical absorption,Journal of Colloid and Interface Science,2005,284(2):510-515.
    [202]Z.W.Liu,Y.S.Bando,Oxidation behaviour of copper nanorods,Chemical Physics Letters,2003,378(1-2):85-88.
    [203]J.W.Zhu,Y.P.Wang,X.Wang,X.J.Yang,L.Lu,A convenient method for preparing shape-controlled nanocrystalline Cu_2O in a polyol or water/polyol system,Powder Technology ,2008,181:249-254.
    [205]J.B.Pangbom,J.C.Sharer,R.H.Elkins,Process for producing hydrogen and oxygen from water,Patent number:3998942(AM),1976.
    [206]J.Y.Chen,P.J.Zhou,J.L.Li,Su-Qin Li,Depositing Cu_2O of different morphology on chitosan nanoparticles by an electrochemical method, Carbohydrate,2007,67:623-629.
    [207]R.Memming,Solar Energy Conversion by Photoelectrochemical Processes,Electrochimica Acta.,1980,25:77-88.
    [208]K.Honda,Fujishima,Electrochemical photolysis of water at a semiconductor electrode,nature,1972,238:37-38
    [209]S.Kaneco,Y.Shimizu,K.Ohta,T.Mizuno,Photocatalytic reduction of high pressure carbon dioxide using TiO_2 powders with a positive hole scavenger,Journal of Photochemistry and PhotobiologyA:Chemistry,1998,115(3):223-226.
    [210]J.C.S.Wu,H.M.Lin,C.L.Lai,Photo reduction of CO2 to methanol using optical-fiber Photoreacto,photoreactor, Applied Catalysis A:General,2005,296:194-200.
    [211]B.White,M.Yin,A.Hall,D.Le,S.Stolbov,T.Rahman,et al,Complete CO Oxidation over Cu_2O Nanoparticles Supported on Silica Gel,Nano Lett.,2006,6(9):2095-2098
    [212]H.Akimoto,R.Kaji,H.Kikuchi,Y.Hishinuma,Y.Arikawa,Process for making nitrogen oxides contained in flue gas harmless,Patent number:4031185(JP)1976
    [213]Y.I.M.Meytal,M.Sheintuch,Catalytic Abatement of Water Pollutants,Ind.Eng.Chem.Res.,1998,37 (2):309-326.
    [1]M.Winter,R.J.Brodd,What are batteries,fuel cells,and supercapacitors, Chem.Rev.2004,104 (10):4245-4270.
    [2]M.Rosenhbaum,U.Schroder,F.Scholz,Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions,J.Solid State Electrochem,2006,10:872-878.
    [3]G.-Q.Lu,A.Crown,A.Wieckowski,Formic acid decomposition on polycrystalline platinum and palladized platinum electrodes,J.Phys.Chem.B,1999,103 (44):9700-9711.
    [4]S.Park,Y.Xie,M.J.Weaver,Electrocatalytic pathways on carbon-supported platinum nanoparticles:comparison of particle-size-dependent rates of methanol,formic acid,and formaldehyde electrooxidation,Langmuir,2002, 18(15):5792-5798.
    [5]H.Okamoto,W.Kon,Y.Mukouyama,Stationary voltammogram for oxidation of formic acid on polycrystalline platinum,J.Phys.Chem.B,2004,108 (14):4432-4438.
    [6]J.S.Spendelow,P.K.Babu,A.Wieckowski,Electrocatalytic oxidation of carbon monoxide and methanol on platinum surfaces decorated with ruthenium,Current Opinion in Solid State and Materials Science,2005,9(1-2):37-48.
    [7]C.M,Johnston,S.Strbac,A.Lewera,E Sibert,A.Wieckowski,Characterization and methanol electrooxidation studies of Pt(111)/Os surfaces prepared by spontaneousdeposition,Langmuir,2006,22 (19):8229-8240.
    [8]S.Daniele,S.Bergamin,et al,Preparation and voltammetric characterisation of bismuth-modified mesoporous platinum microelectrodes:Application to the electrooxidation of formic acid,Electrochemistry communication,2007,9(6):1388-1393.
    [9]X.H.Xia,et al,New insights into the influence of upd Sn on the oxidation of formic acid on platinum in acidic solution,Electrochimica Acta ,1999,45,(7):057-1066.
    [10]A.Oliveira Neto,E.G.Franco,E.Arico,M.Linardi,R.Gonzalez,Electro-oxidation of methanol and ethanol on Pt-Ru/C and Pt-Ru-Mo/C electrocatalysts prepared by B(o|¨)nnemann's method,Journal of the European Ceramic Society,2003,23(15):2987-2992
    [11]M.Watanabe,S.Motoo,Electrocatalysis by ad-atoms part Ⅱ:ehancement of the oxidation of methanol on platinum by ruthenium ad-atoms,J.Electroanal.Chem,1975,60 (3):267-273.
    [12]J.A.R.Van Veen,T.Frelink,On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt,Surf.Sci.1995,335:353-360.
    [13]K.W.Park,K.S.Ahn,Y.C.Nah,Electrocatalytic enhancement of methanol oxidation at Pt-WO_x nanophase electrodes and In-Situ Observation of Hydrogen Spillover Using Electrochromism,J.Phys.Chem.B,2003,107 (18):4352-4355.
    [14]D.X.Cao,S.H.Bergens,Pt-Ru_(adatom)nanoparticles as anode catalysts for direct methanol fuel cells,Journal of Power Sources,2004,134 (2):170-180.
    [15]B.Lanoval,H.Wang,H.Baltruschat,Methanol oxidation on carbon supported Pt and Ru-modified Pt nanoparticles:a comparison with single crystal and polycrystalline electrodes,Fuel Cells,2006,6 (3-4):214-224.
    [16]X. Zhang, K.Y. Chan, water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles,their characterization and electrocatalytic properties,Chem.Mater,2003,15 (2):451-459.
    [17]S.P.E.Smith,H.D.Abru-na,Structural effects on the oxidation of HCOOH by bismuth modified Pt(111)electrodes with (110)monatomic steps, J.Electroanal.Chem.,1999,467(1-2):43-49.
    [18]F.Maillard,F Gloguen,F.Hahn,Electrooxidation of Carbon Monoxide at Ruthenium-Modified Platinum Nano-particles:Evidence for CO surface mobility, Fuel cells,2003,2(3-4):143-152.
    [19]S.J.Kang,J.Y.Lee,J.K.Lee,et al, Influence of Bi modification of Pt anode catalyst in direct formic acid fuel cells,J.Phys.Chem.B,2006,110 (14):7270-7274.
    [20]J.Zhang,M.B.Vukmirovic,K.Sasaki,et al,Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction Kinetics,J.Am.Chem.Soc,2005,127 (36):12480-12481.
    [21]E.Herrero,J.M.Feliu,Scanning tunneling microscopy images of ruthenium submonolayers spontaneously deposited on a Pt(111)electrode,Langmuir,1999,15(15):4944-4948.
    [22]T.Magel,N.Bogolowski,Towards a determination of the active surface area of polycrystalline and nanoparticle electrodes by Cu upd and CO oxidation,Appl.Electrochem.,2006,36:1297-1306.
    [23]S.H.Park,M.J Weaver,A versatile surface modification scheme for attaching metal nanoparticles onto Gold:characterization by electrochemical infrared spectroscopy,J.Phys.Chem.B,2002,106 (34):8667-8670.
    [24]H.Tong,C.M.Wang,Application study of open circuit potential-time technology and atomic force microscopy on Si (100)/solution interface in Ag electroless deposition,Acta Chimica Sinica.,2002,60:1923-1928.
    [25]K.Sieradzk,S.R.Brankovic,N.Dimitrov,Electrochemical defect-mediated thin-film growth,Science,1999,284:138-141.
    [26]S.Uhm,Y.Yun,et al,EQCM analysis of Bi oxidation mechanism on a Pt electrode,Electrochem.Commun.,2005,7(12):1375-1379.
    [27]S.H.Cadle,S.Bruckenstein,Ring-disk electrode study of the reduction of bismuth on platinum,Anal.Chem.,1972,44 (12):1993-2001.
    [28]A.Vaskevich,E.Gileadi,Underpotential-overpotential transition of a Ag overlayer on Pt:Part 3.Influence of the rearrangement of the overlayer structure on the blocking of hydrogen upd,J.Electroanal.Chem,1998,442(1-2):147-150.
    [29]Z.D.Wei,L.Li,Y.H.Luo,C.Yan,et al,ectrooxidation of methanol on upd-Ru and upd-Sn modified Pt electrodes,J.Phys.Chem.B,2006,110 (51):26055-26061.
    [30]J.Clavilier,J.M.Feliu,An irreversible structure sensitive adsorption step in bismuth underpotential deposition at platinum electrodes,J.Electroanal.Chem.,1988,243(2):419-433
    [31]S.-G.Sun;J.M.Feliu,Chemical states of bismuth and sulfur adatoms on the polycrystalline Pt electrode surface towards HCOOH oxidation—combined studies of cyclic voltammetry,in situ FTIRS and XPS on the origin of electrocatalytic activity of adatoms,Colloid Surface A:Physiochem.Eng.Aspect,1998,134:207-220.
    [32]Y.H.Lin,X.L.Cui,C.Yen,C.M.Wai,Platinum/carbon nanotube nanocomposite Synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells,J.Phys.Chem.B,2005,109 (30):14410-14415.
    [33]J.Prabhuram,T.S.Zhao,Z.K.Tang,R.Chen,Z.X.Liang,Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells,J.Phys.Chem.B,2006,110 (11):5245-5252.
    [34]W.Z.Li,W.J.Zhou,H.Q.Li,et al.,Nano-stuctured Pt-Fe/C as cathode catalyst in direct methanol fuel cell.Electrochim.Acta.2004,49 (7):1045-1055.
    [1]N.A.Hampson,M.J.Willars,B.D.McNicol,The methanol-air fuel cell:A selective review of methanol oxidation mechanisms at platinum electrodes in acid electrolytes,J.Power Sources,1979,4 (3):191-201.
    [2]C.Lamy,A.Lima,V.LeRhun,F.Delime,C.Coutanceau,J.M.Leger,Recent advances in the development of direct alcohol fuel cells (DAFC),J.Power Sources,2002,105 (2):283-296.
    [3]M.P.Hogarth,G.A.Hards,Direct Methanol Fuel Cells technological advances and further Requirements,Platinum Met.Rev.,1996,40 (4):150-159.
    [4]J.S.Yu,S.Kanf,S.B.Yoon,G.Chai,Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter,J.Am.Chem.Soc.,2002,124 (32):9382-9383.
    [5]K.Vinodgopal,M.Haria,D.Meisel,P.Kamat,Fullerene-Based Carbon Nanostructures for Methanol Oxidation,Nano Lett.,2004,4 (3):415-418.
    [6]R.Dillon,S.Srinivasan,A.S.Arico,V.Antonucci,International activities in DMFC R&D:status of technologies and potential applications,J.Power Sources,2004,127(1-2)10:112-126.
    [7]F.Maillard,G.Q.Lu,A.Wieckowski,U.Stimming,Ru-Decorated Pt Surfaces as Model Fuel Cell Electrocatalysts for CO Electrooxidation,J.Phys.Chem.B,2005,109 (34):16230-16243.
    [8]R.Bashyam,P.Zelenay,A class of non-precious metal composite catalysts for fuel cells,Nature,2006,443:63-66.
    [9]J.L.Fernandez,V.Raghuveer,A.Manthiram,A.J.Bard,Pd-Ti and Pd-Co-Au Electrocatalysts as a Replacement for Platinum for Oxygen Reduction in Proton Exchange Membrane Fuel Cells,J.Am.Chem.Soc.,2005,127 (38):13100-13101.
    [10]F.Montilla,E.Morallon,I.Duo,C.Comninellis,J.L.Vazquez,Platinum particles deposited on synthetic boron-doped diamond surfaces.Application to methanol oxidation,Electrochim.Acta,2003,48 (25-26):3891-3897.
    [11]G.Chang,M.Oyama,K.Hirao,In Situ Chemical Reductive Growth of Platinum Nanoparticles on Indium Tin Oxide Surfaces and Their Electrochemical Applications,J.Phys.Chem.B,2006,110 (4):860-1865.
    [12]A.Stein,R.C.Schroden,Colloidal crystal templating of three-dimensionally ordered macroporous solids:materials for photonics and beyond,Current Opinion in Solid State and Materials Science,2001,5(6):553-564.
    [13]P.Jiang,J.Cizeron,J.F.Bertone,V.L.Colvin,Preparation of Macroporous Metal Films from Colloidal Crystals,J.Am.Chem.Soc.,1999,121 (34):7957-7958.
    [14]O.D.Velev,P.M.Tessier,A.M.Lenhoff,E.W.Kaler,Materials:A class of porous metallic nanostructures,Nature,1999,401:548-548.
    [15]F.Liu,Q.F.Yan,W.J.Zhou,X.S.Zhao,and J.Y.Lee,High Regularity Porous Oxophilic Metal Films on Pt as Model Bifunctional Catalysts for Methanol Oxidation,Chem.Mater.,2006,18 (18),pp 4328-4335.
    [16]A.Kongkanand,K.Vinodgopal,Highly Dispersed Pt Catalysts on Single-Walled Carbon Nanotubes and Their Role in Methanol Oxidation,J.Phys.Chem.B,2006,110 (33):16185-16188.
    [17]G.Kokkinidis,Underpotential deposition and electrocatalysis,J.Electroanal.Chem.1986,201,2:217-236.
    [18]X.H.Xia,T.Iwasita,Influence of Underpotential Deposited Lead upon the Oxidation of HCOOH in HClO_4 at Platinum Electrodes,J.Electrochem.Soc.,1993,140(9):2559-2565.
    [19]M.Zhang,C.P.Wilde,The influence of organic adsorbates on the UPD process.Oxidation of formic acid at UPD lead-modified platinum electrodes, J.Electroanal.Chem.,1995,390(1-2):59-68.
    [20]W.Watanabe,S.Motoo,Electrocatalysis by ad-atoms:Part Ⅲ.Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms, J.Electroanal.Chem.,1975 60(3):275-283.
    [21]M.P.Janssen,J.Moolhuysen,State and action of the tin atoms in platinum-tin catalysts for methanol fuel cells,J.Catal.,1977,46(3):289-296.
    [22]X.Y.Xiao,H.Baltruschat,Scanning tunneling microscopy of Sn coadsorbed with Cu and CO on Pt(111)electrodes,Phys.Chem.Chem.Phys.,2002,4: 4044-4050.
    [23]G.S.Attard,S.A.Leclerc,S.Maniguet,A.E.Russell,I.Nandhakumar,P.N.Bartlett,Mesoporous Pt/Ru Alloy from the Hexagonal Lyotropic Liquid Crystalline Phase of a Nonionic Surfactant,Chem.Mater.,2001,13 (5):1444-1446.
    [24]F.Sun,Y.P.Guo,W.B.Song,J.Z.Zhao,L.Q.Tang,Z.C.Wang,Morphological control of Cu_2O micro-nanostructure film by electrodeposition,J.Cryst.Growth,2007,304:425-429.
    [25]C.T.J.Low,F.C.Walsh,Linear sweep voltammetry of the electrodeposition of copper from a methanesulfonic acid bath containing a perfluorinated cationic surfactant,Surf.Coat.Technol.,2008,202 (13):3050-3057.
    [26]M.C.Xu a,H.J.Qian,F.Q.Liu,K.Ibrahim,W.Y.Lai,H.J.Gao,Surface alloying of Pb as a surfactant during epitaxial growth on Cu(1 1 1),Surf.Sci.,2005,589(1-3):1-7.
    [27]K.Umezawa,T.Tatsuta,S.Nakanishi,K.Ojima,M.Yoshimura,K.Ueda,W.M.Gibson,Layer-by-layer surfactant-induced growth of Ag on Cu (1 1 1):an impact collision ion scattering spectroscopy and scanning tunnelling microscopy study,Surf.Sci.2003,529 (1-2):95-106.
    [28]S.Sieradzki,S.R.Brankovic,N.Dimitrov,Electrochemical Defect-Mediated Thin-Film Growth,Science,1999,284:138-141.
    [29]H.A. van der Vegt, H.M. van Pinxteren, M. Lohmeier, E. Vlieg,Surfactant-induced layer-by-layer growth of Ag on Ag,Phys.Rev.Lett.,1992,68:3335-3338.
    [30]M.Agrawal,A.Pich,N.E.Zafeiropoulos,S.Gupta,J.Pionteck,F.Simon,M.Stamm,Polystyrene-ZnO Composite Particles with Controlled Morphology,Chem.Mater.,2007,19:1845-1852.
    [31]S.L.Kuai,X.F.Hu,A.Hache,V.V.Truong,High-quality colloidal photonic crystals obtained by optimizing growth parameters in a vertical deposition technique,J.Cryst.Growth,2004,267 (1-2):317-324
    [32]H.Tong,C.M.Wang,Application Study of Open Circuit Potential-Time Technology and Atomic Force Microscopy on Si(100)/Solution Interface in Ag Electroless Deposition,Acta Chimica Sinica.,2002,60:1923-1928.
    [33]J.M.Zen, C.C.Yang,A.S. Kumar, Potential scan rate dependence of underpotential and bulk depositions of lead on screen-printed silver electrodes,Electrochim.Acta,2001,47 (6):899-904.
    [34]M.H.Huang,Y.D.Jin,H.Q.Jiang,X.P.Sun,H.G.Chen,B.F.Liu,E.K.Wang,S.J.Dong,Designed Nanostructured Pt Film for Electrocatalytic Activities by Underpotential Deposition Combined Chemical Replacement Techniques,J.Phys.Chem.B,2005,109 (32):15264-15271.
    [35]E.Lamy-Pitara,J.Barvier,Platinum modified by electrochemical deposition of adatoms,Appl.Catal.A,1997,149 (1):49-87.
    [36]Y.H. Lin, X.L. Cui,C.H. Yen,C.M. Wai, PtRu/Carbon Nanotube Nanocomposite Synthesized in Supercritical Fluid:A Novel Electrocatalyst for Direct Methanol Fuel Cells,Langmuir ,2005,21(24):11474-11479.
    [37]X.Teng,X.Liang,S.Rahman,H.Yang,Porous Nanoparticle Membranes:Synthesis and Application as Fuel-Cell Catalysts,Adv.Mater.,2005,17:2237-2241.
    [38]M.Seruga,M.Metikos-Hukovic,T.Valla,M.Milun,H.Hoffschultz,K.
    Wandelt,Electrochemical and X-ray photoelectron spectroscopy studies of passive film on tin in citrate buffer solution,J.Electroanal.Chem.,1996,407 (1-2):83-89.
    [39]T.Frelink,W.Visscher,A.P.Cox,J.A.R.van Veen,Ellipsometry and dems study of the electrooxidation of methanol at Pt and Ru-and Sn-promoted Pt,Electrochim.Acta,1995,40(10):1537-1543.
    [1]J.X.Wang,N.M.Markovic,R.R.Adzic,Kinetic Analysis of Oxygen Reduction on Pt(111)in Acid Solutions:Intrinsic kinetic parameters and anion adsorption effects,J.Phys.Chem.B.,2004,108 (13):4127-4133.
    [2]N.M.Markovic,P.N.Ross,Electrocatalysts by design:from the tailored surface to a commercial catalyst,Electrochim.Acta,20004,5(25-26):4101-4115.
    [3]T.Toda,H.Igarashi,M.Watanabe,Enhancement of the electrocatalytic O_2 reduction on Pt-Fe alloys,J.Electroanal.Chem.,1999,460(1-2):258-262.
    [4]E.Antolini,R.R.Passos,E.A.Ticianelli,Electrocatalysis of oxygen reduction on a carbon supported platinum-vanadium alloy in polymer electrolyte fuel cells,Electrochim.Acta,2002,48 (3):263-270.
    [5]S.Kumar,S.H.Zou,Electroreduction of O_2 on uniform arrays of Pt and PtCo nanoparticles,Electrochem.Comm.,2006,8,(7):1151-1157.
    [6]V.R.Stamenkovic,B.Fowler,B.S.Mum,G.F.Wang,P.N.Ross,C.A.Lucas,M.M.Markovic,Improved oxygen eeduction activity on Pt_3Ni(111)via increased surface site availability,Science,2007,315:493-497.
    [7]M.Seminario,L.A.Agapito,L.Yan,P.B.Balbuena,Density functional theory study of adsorption of OOH on Pt-based bimetallic clusters alloyed with Cr,Co,and Ni,Chem.Phy.Let.,2005,410 (4-6):275-281.
    [8]J.K.Lee,J.Choi,S.J.Kang,J.M.Lee,Y.Tak,J.Y.Lee,Influence of copper oxide modification of a platinum cathode on the activity of direct methanol fuel cell,Electrochim.Acta,2007,52 (6):2272-2276.
    [9]M .Valden,X.Lai,D.W.Goodman,Onset of catalytic activity of Gold clusters on titania with the appearance of nonmetallic properties,Science,1998 281:1647-1650.
    [10]B.Rajesh,K.R.Thampi,J.M.Bonard,N.Xanthopoulos,H.J.Mathieu,B. Viswanathan, Carbon nanotubes generated from template carbonization of polyphenyl acetylene as the support for electrooxidation of methanol, J. Phys. Chem. B, 2003,107 (12): 2701-2708.
    [11] H. J. Salavagione, C. Sanchis, E, Morallon, Friendly conditions synthesis of platinum nanoparticles supported on a conducting Polymer: methanol electrooxidation,J. Phys. Chem. C, 2007, 111 (33): 12454-12460.
    [12] H.C. Ye, R. M. Crooks, Electrocatalytic O_2 reduction at glassy carbon electrodes modified with dendrimer-encapsulated Pt nanoparticles, J. Am. Chem. Soc., 2005,127(13):4930-4934.
    [13] G.S. Attard, P.N. Bartlett, N. R. B. Coleman, J. M. Elliott, J.R. Owen, J. H.i Wang, Mesoporous platinum films from lyotropic liquid crystalline phases, Science,1997,278: 838-840.
    [14] Y. Liu ,J. Chen, V. Misoska, G. F. Swiegers, G. G. Wallace, Preparation of platinum inverse opals using self-assembled templates and their application in methanol oxidation, Materials Letters ,2007,61 2887-2890.
    [15] A. S. Arico, S. Srinivasan, V. Antonucci, DMFCs: From fundamental aspects to technology development, fuel cells, 2001,l(2):133-161.
    [16] Y.H. Lin, X. L. Cui, C. Yen, CM. Wai, Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells, J. Phys. Chem. B, 2005, 109 (30): 14410-14415.
    [17] J. Prabhuram, T.S. Zhao, Z.K. Tang, R. Chen, Z.X. Liang, Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells, J. Phys.Chem. B, 2006, 110(11): 5245-5252
    [18] M. C. Tsai, T. K. Yeh, C. H. Tsai, An improved electrodeposition technique for preparing platinum and platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation, Electrochem. Comm., 2006, 8,(9)1445-1452
    [19] G. Tremiliosi-Filho, H. Kim, W. Chrzanowski, A. Wieckowski, B. Grzybowska, P. Kulesza, Reactivity and activation parameters in methanol oxidation on platinum single crystal electrodes 'decorated' by ruthenium adlayers,J.Electroanal.Chem,.1999,467 (1-2):143-156.
    [20]C.E.Lee,S.H.Bergens,Deposition of Ru adatoms on Pt using organometallic chemistry:catalysts for electrooxidation of MeOH and adsorbed Carbon monoxide,J.Phys.Chem.B,1998,102:193-199.
    [21]M.Watanabe,S.Motoo,Electrocatalysis by ad-atoms:Part Ⅱ.Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms,J.Electroanal.Chem.,1975,60(3):267-273
    [22]J. Zhang, M.B. Vukmirovic., K. Sasaki, Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics,J.Am.Chem.Soc.,2005,127 (36):12480-12481.
    [23]S.Kang,J.Lee,J.K.Lee,S.Y.Chung,Y.Tak,Influence of Bi modification of Pt anode catalyst in direct formic acid fuel cells,J.Phys.Chem.B,2006,110 (14):7270-7274.
    [24]C.M.Johnston,S.Strbac,A.Lewera,E.Sibert,A.Wieckowski,Characterization and methanol electrooxidation studies of Pt(111)/Os surfaces prepared by spontaneous deposition,Langmuir,2006,22 (19):8229-8240
    [25]A.S.Eppler,G..Rupprechter,E.A.Anderson,G..A.Somorjai,Preparation of silver-latex composites,J.Phys.Chem.B,2000,104 (31):7278-7285
    [26]M.H.Huang,Y.Y.Jin,H.Q.Jiang,X.P.Sun,H.J.Chen,B.F.Liu,E.R.Wang,S.J.Dong,Designed nanostructured Pt film for electrocatalytic activities by underpotential deposition combined chemical replacement techniques,designed nanostructured Pt Film for electrocatalytic activities by underpotential deposition combined chemical replacement techniques,J.Phys.Chem.B,2005,109:15264-15271
    [27]Y.Yang,H.W.Yan,Z.P.Fu,B.F.Yang,J.Zuo,S.Q.Fu,Enhanced photoluminescence from three-dimensional ZnO photonic crystals,Solid State Communications,2006,139:218-221
    [28]P.N.Bartlett,J.J.Baumberg,Peter R.Birkin,M.A.Ghanem,M.C.Netti,Highly ordered macroporous gold and Platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,Chem.Mater.,2002,14:2199-2208
    [29]Y.L.Du,B.Q.Su,N.Zhang,C.M.Wang,A novel preparation method of Sn-modified Pt nanoparticles and application for methanol oxidation,App.Sur.Sci.,2008,255(5):2641-2645.
    [30]J.Zhang,K.Sasaki,E.Sutter,R.R.Adzic,Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters,Science,2007,315:220-222
    [31]M.Q.Zhao,R.M.Crooks,Dendrimer-Encapsulated Pt Nanoparticles:Synthesis,characterization, and applications to catalysis, Advanced materials 1999:11(3)117-220
    [32]M.B.Vukmirovic,J.Zhang,K.Sasaki,A.U.Nilekar,F.Uribe,M.Mavrikakis,R.R.Adzi,Platinum monolayer electrocatalysts for oxygen reduction,Electrochimica Acta,2007,52 (6):2257-2263.
    [33]H.Liu,C.J.Songa,L.Zhang,J.J.Zhang,H.J.Wang,D.P.Wilkinson,A review of anode catalysis in the direct methanol fuel cell,Journal of Power Sources,2006,155 (2):95-110
    [34]T.Yajima,H.Uchida,M.Watanabe,In-Situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru Alloy,J.Phys.Chem.B,2004,108(8):2654-2659
    [35]J.C.Huang,Z.L.Liu,C.B.He,L.M.Gan,Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for Direct Methanol Fuel Cell,J.Phys.Chem.B,2005,109 (35):16644-16649
    [36]F.Liu,Q.F.Yan,W.J.Zhou,X.S.Zhao,J.Y.Lee,High regularity porous oxophilic metal Films on Pt as model bifunctional catalysts for methanol oxidation,Chem.Mater.,2006,18 (18):4328-4335
    [1]W.P.Halperin,Quantum size effects in metal particles,ReV.Mod.Phys ,1986,58:533-606.
    [2]A.C.Templeton,W.P.Wuelfing,R.W.Murray,Monolayer-protected cluster molecules,Acc.Chem.Res,2000,33(1):27-36.
    [3]J.P.Novak,L.C.Brousseau,F.W.Vance,R.C.Johnson,B.I.Lemon,J.T Hupp,D.L.Feldheim,Nonlinear optical properties of molecularly bridged gold nanoparticle arrays,J.Am.Chem.Soc.,2000,122(48):12029-12030.
    [4]C.J.Murphy.N.R.Jana,Controlling the aspect ratio of inorganic nanorods and nanowires, Adv.Mater.,2002,14 (1):80-82.
    [5]F Kim,J.H.Song,P.Yang,Photochemical synthesis of gold nanorods, J.Am.Chem.Soc.,2002,124 (48):14316.-14317.
    [6]S.R.Nicewarner-Pena,R G.Freeman,B.D.Reiss,L.He,D.J.Pena,I.D.Walton,R.Cromer,C.D.Keating,M.J.Natan,Submicrometer metallic barcodes,Science,2001,294:137-141.
    [7]S.W Chen,Y.Yang,Magnetoelectrochemistry of gold nanoparticle quantized capacitance charging,J.Am.Chem.Soc.,2002,124(19):5280-5281,
    [8]M.A.E-1Sayed,Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes,Acc.Chem.Re,.2001,344(4):257 -264
    [9]S A Maier,M.L.Brongersma,P.G.Kik,S.Meltzer,et al,Plasmonics-a route to nanoscale opticaldevices,Adv.Mater.,2001,13(19):1501-1505
    [10]A.G.Tkachenko, H Xie, D.Coleman,W.Glomm,J.Ryan,M.F.Anderson,S.Franzen,D.L.Feldheim,Multifunctional gold nanoparticle-peptide complexes for nuclear targeting, J.Am.Chem.Soc.,2003,125(16):4700-4701.
    [11]T.A Taton,C.A.Mirkin,R.L.Letsinger,Scanometric DNA array detection with nanoparticle probes,Science,2000,289:1757-1760.
    [12]P.M Tessier, O.D.Velev, A.T.Kalambur,J.F.Rabolt,A.M.Lenhoff,E.W.Kaler,Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced raman spectroscopy,J.Am.Chem.Soc.,2000,122(39):9554-9555.
    [13]S.Nie,S.R.Emory,Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,Science,1997,275(5303):1102-1106.
    [14]L.A.Dick,A.D.McFarland,C.L.Haynes,R.P.Van Duyne,Metal film over nanosphere electrodes for surface-enhanced raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss, J. Phys. Chem. B, 2002,106(4):853-860.
    [15] J. P Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, Plasmon resonances of silver nanowires with a nonregular cross section, Phys. ReV.B,2001,64(23):235402/1-235402/10.
    [16] S. R. Sershen, S. L. Westcott, N. J. Halas, J. L West, Independent optically addressable nanoparticle-polymer optomechanical composites, AppL Phys. Lett,2002,80:4609-4611.
    [17] Y. N Xia, P. D Yang, Y. G Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F.Kim, Y. Q. Yan, One-dimensional nanostructures: Synthesis, characterization, and applications,Adv. Mater., 2003, 15(5): 353-389.
    [18] Y.G. Sun, Y. D Yin, B. T. Mayers, T. Herricks, Y. N Xia, Uniform silver nanowires synthesis by reducing AgNO_3 with ethylene glycol in the presence of Seeds and poly(vinyl pyrrolidone), Chem. Mater.,2002,14(11):4736-4745.
    [19] Y. G, Sun, Y. N Xia, Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process, Adv. Mater., 2002, 14(11):833-837.
    [20] B. H. Hong, S. C. Bae, C. et al, Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase, Science, 2001, 294(5571):348.-351.
    [21] Y. Kondo, K. Takayanagi, Synthesis and characterization of helical multi-shell gold nanowires, Science, 2000, 289:606-608
    [22] B. D Busbee, S. O. Obare, C. J. Murphy, An improved synthesis of high-aspect-ratio gold nanorods, Adv. Mater., 2003, 15(5): 414-416
    [23] Y. G. Sun, B. Wiley, Z Y. Li, Y. N, Xia, Synthesis and optical properties of nanorattles and multiple-walled nanoshells / nanotubes made of metal alloys, J. Am.Chem. Soc., 2004, 126(30):9399-9406.
    [24] P. R. Selvakannan, M. Sastry, Hollow gold and platinum nanoparticles by a transmetallation reaction in an organic solution, Chem. Commun.,2005,13:1684-1686.
    [25] A. M. Schwartzber, T. Y. Oshiro, J. Z. Zhang, T.Huser, C. E. Talley, Improving nanoprobes using surface-enhanced raman scattering from 30-nm hollow gold Particles,Anal Chem.,2006,78(13):4732-4736.
    [26]C.Loo,A.Lin,L Hirsch,M.H.Lee,J.Barton,N.Halas,J.West,R.Drezek,Nanoshell-enabled photonics-based imaging and therapy of cancer,Technol.Cancer Res.Treat,2004,3(1):33-40.
    [27]S.Shukla,A.Priscilla,M.Banerjee,R.R.Bhonde,J.Ghatak,P.V.Satyam,M.Sastry,Porous gold nanospheres by controlled transmetalation reaction:A Novel material for application in Cell imaging.Chem.Mater.,2005,17(20):5000-5005.
    [28]J.Chen,F.Saeki,B.Wiley,H.Cang,M.J.Cobb,Z.Y.Li,L.Au,H Zhang,M.B.Kimmey,D.X,Li,Y.Xia,Gold nanocages:bioconjugation and their potential use as optical imaging contrast agents,Nano Lett.,2005,5(3):473-477
    [29]J Chen,B.Wiley,Z.-Y.Li,D.Campbell,F.Saeki,H.Cang,L.Au,J. Lee,X.D.Li,Y.Xia,Gold nanocages:Engineering their structure for biomedical applications Adv.Mater.,2005,17(18):2255-2261.
    [30]J.Chen,J.M.McLellan,A.Siekkinen,Y.Xiong,Z.Y.Li,Y.Xia,Facile synthesis of gold-silver nanocages with controllable pores on the surface,J.Am.Chem.Soc.,2006,128(46):14776-14777.
    [31]Y.G.Sun,B.T.Mayers,Y.Xia,Template-engaged replacement Reaction:A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors,Nano Lett.,2002,2 (5):481-485.
    [32]Y.G.Sun,Y.N.Xia,Multiple-walled nanotubes made of metals,Adv.Mater.,2004,16(3):264-268.
    [33]A.R.Roosen,W.C Carter,Simulations of microstructural evolution:anisotropic growth and coarsening,Physica A,1998,261 (1-2):232-247.
    [34]Y.Cao,J.H.He,J.L.Sun,Fabrication of oriented arrays of porous gold microsheaths using aligned silver nanowires as sacrificial template,Materials Letters,2009,63 (1):148-150.
    [1]F.Yi,S.Chen,C.Yuan,Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater,J.Hazard.Mater,2008,157 (1):79-87.
    [2]Y.Liu,D.Z.Sun,Development of Fe_2O_3-CeO_2-TiO_2/γ-Al_2O_3 as catalyst for catalytic wet air oxidation of methyl orange azo dye under room condition,Appl.Catal.B:Environ.,2007,72 (3-4):205-211.
    [3]H.X.Li,Z.F.Bian,J.Zhu,Y.N.Huo,H.Li, Y.F.Lu,Mesoporous Au/TiO_2nanocomposites with enhanced photocatalytic activity,J.Am.Chem.Soc.,2007,129(15):4538-4539.
    [4]S.Yamazaki,T.Tanimura,A.Yoshida,Reaction mechanism of photocatalytic degradation of chlorinated ethylenes on porous TiO2 Pellets:Cl radical-initiated mechanism,J.Phys.Chem.A,2004,108 (24):5183-5188.
    [5]H.Park,W.Choi,Photocatalytic reactivities of Nafion-coated TiO_2 for the degradation of charged organic compounds under UV or Visible Light,J.Phys.Chem.B,2005,109(23):11667-11674.
    [6]Z.Liu,X.T.Zhang,S.Nishimoto,M.Jin,D.A.Tryk,T.Murakami, A.Fujishima,Highly ordered TiO_2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol,J.Phys.Chem.C,2008,112(1):253-259.
    [7]C.Lizama,J.Freer,J.Baeza et al,Optimized photodegradation of reactive blue on TiO_2 and ZnO suspensions,Catalysis Today,2002,76(2-4):235-246.
    [8]M.Cho,H.Chung,W.Y.Choi,J.Y.Yoon,Linear correlation between inactivation of E.coli and OH radical concentration in TiO_2 photocatalytic disinfection,Water Research,2004,38(4):1069-1077.
    [9]H.Yoneyama,Y.Yamashita,H.Tamura,Heterogeneous photocatalytic reduction of dichromate on n-type semiconductor catalysts,Nature,1979,282:20-27.
    [10]J.Munaz,X.Domenech,Titania catalyzed reduction of chromium(Ⅵ)in aqueous solutions under ultraviolet illumination, J.Appl.Electrochem.,1990,20(3):518-521.
    [11]K.Akimoto,S.Ishizuka,M.Yanagita,et al,Thin film deposition of Cu_2O and application for solar cells,Sol.Energy,2006,80(6):715-722.
    [12]P.B.Rai,Cuprous oxide solar cells:a review,Sol,Cells,1998,25(3):265-267
    [13]L.C.Olsen,F.W.Addis,W.Miller,Experimental and theoretical studies of Cu_2O solar cells,Sol.Cells,1982,7(3):247-279.
    [14]M.Hara,T.Kondo,M.Komoda,S.Ikeda,et al,Cu_2O as a photocatalyst for overall water splitting under visible light irradiation,Chem.Commun.,1998,3:357-358.
    [15]P.E.de Jongh,D.Vanmaekelbergh,J.J.Kelly,Cu_2O:a catalyst for the photochemical decomposition of water,Chem Commun.,1999,12:1069-1070.
    [16]J.-N Nian,C.-C Hu,H.Teng,Int.J,Electrodeposited p-type Cu_2O for H_2 evolution from photoelectrolysis of water under visible light illumination,Hydrogen Energy,2008,33(12):2897-2903.
    [17]A.E.Rakhshani,Preparation,characteristics and photovoltaic properties of cuprous oxide-a review,Solid-State Electron,1986,29 (1):7-17.
    [18]W.Siripala,J.R.P.Jayakody,Observation of n-type photoconductivity in electrodeposited copper oxide film electrodes in a photoelectrochemical cell,Sol.Energy Mater,1986,14 (1):23-27.
    [19]C.A.N.Fernando,T.M.W.J.Bandara,et al,H_2 evolution from a photoelectrochemical cell with n-Cu2O photoelectrode under visible light irradiatio,Sol.Energy Mater,2001,70 (2):121-129.
    [20]B.Balamurugan,I.Aruna,et al,Size-dependent conductivity-type inversion in Cu2O nanoparticles,Phys.ReV.B,2004,69(16):1654791/1-165419/5.
    [21]L.C Olsen,F.W Addis,W.Miller,Experimental and theoretical studies of copper(I)oxide solar cells,Sol,Cells,1982,7(3):247-279.
    [22]C.M.McShane,K.S.Choi,Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth,J.Am. Chem.Soc.,2009,131(7):2561-2569.
    [23]R.Garutharaa,W.Siripala,Photoluminescence characterization of polycrystalline n-type Cu2O films,Journal of Luminescence,2006,121(1):173-178.
    [24]L.Wang,M.Tao,Fabrication and Characterization of p-n Homojunctions in Cuprous Oxide by Electrochemical Deposition,Electrochemical and Solid-State Letters,2007,10(9):H248-H250.
    [25]H.P.Maruska,A.K.Ghosh,Transition-metal dopants for extending the response of titanate photoelectrolysis anodes,Sol.Energy Mater.,1979,1(3-4):237-247.
    [26]J.L.Li,L.Liu,Y.Yu,Y.W.Tang,H.L.Li,F.P.Du,Preparation of highly photocatalytic active nano-size TiO_2-Cu_2O particle composites with a novel electrochemical method,Electrochem.Commun.,2004,6(9):940-943.
    [28]H.Zhang,X.Ren,Z.L.Cui,Shape-controlled synthesis of Cu_2O nanocrystals assisted by PVP and application as catalyst for synthesis of carbon nanofibers,Journal of Crystal Growth,2007,304 :206-207
    [29]P.R.Besser,D.M.Erb,S.Lopatin,Selective deposition process for forming damascene-type copper interconnect lines,Patent,2004,No.:US6689689B 1.
    [30]H.Zollinger,,Synthesis Properties and Applications of Organics dyes and pigments,Color Chemistry,2nd revised ed.,VCH,Weinheim,1991:108
    [31]C.Galindo,P.Jacques,A.Kalt,Photooxidation of the phenylazonaphthol AO20 on TIO_2:kinetic and mechanistic investigations,Chemosphere,2001,45 (6-7):997-1005.
    [32]J.H.Xu,D.F.Xue,Five branching growth patterns in the cubic crystal system:A direct observation of cuprous oxide microcrystals,Acta Materialia,2007,55:2397-2406.
    [33]L.Huang,F.Peng,H.Yu,H.J.Wang,Preparation of cuprous oxides with different sizes and their behaviors of adsorption,visible-light driven photocatalysis and photocorrosion,Solid State Sciences,2009,11:129-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700