用户名: 密码: 验证码:
不同形貌、不同组分氧化亚铜的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti02和ZnO是目前使用最普遍的半导体光催化剂。然而,这两种材料由于禁带宽度宽,只能被近紫外光和紫外光激活,而紫外光和近紫外光占太阳能总量不到5%。因此,寻找能充分利用太阳能、在可见光范围内具有高活性的光催化剂成为科研工作者近年来探索的主要方向。大约43%的太阳光位于可见光区,只有能够被可见光激发的光催化剂才能充分利用太阳能。Cu20的禁带宽度为2.17eV,可被波长为400-800nm的可见光激发,在太阳光的照射下能有效地产生光生载流子,因此,它有望应用于太阳能转换和可见光催化降解污染物。但是,单相光催化剂由于电子和空穴容易再复合,量子效率非常低,极大地限制了Cu20的开发利用。为了提高Cu20的光催化降解效率,本文先后制备了Cu/Cu2O纳米复合材料和不同形貌的Cu20纳米材料。本文的研究工作主要分为以下3个方面:
     1.采用一步液相溶剂热法以硝酸铜((Cu(NO3)2·3H2O)为原料,PVP为保护剂,EG为溶剂、还原剂,成功将Cu2+还原成一价Cu2O。在180℃条件下,通过改变反应时间得到不同形貌、不同组分Cu/Cu2O纳米复合材料,并结合光催化机理讨论了不同组分对复合材料光催化性能的影响。结果表明,随着反应时间的延长,Cu/Cu2O纳米复合材料中Cu的含量逐渐增多,这种组分的变化也引起了复合材料光催化性能的变化。在可见光下辐照20min后,低Cu含量样品(S2-S4:2.1-9.2%)对MO的光催化降解效率分别达到99.78%,99.77%和98.39%。在相同的条件下,与S2-S4相比,纯的Cu20和高Cu含量样品(S5,S6:68%和96%)对MO的光催化降解效率分别只达到了45.88%,73.03%和51.22%。即使在可见光下辐照50min后,降解效率也分别只有85.30%,94.67%和69.33%。此外,我们对Cu/Cu2O纳米复合材料的光催化机理也进行了探讨,并通过周期实验对样品的光稳定性也进行了检测。
     2.采用一步液相溶剂热法以Cu(NO3)2·3H2O为原料,PVP为保护剂、表面活性剂,EG为溶剂、还原剂,成功将Cu2+还原成一价Cu2O。通过改变PVP和EG的浓度分析了二者对Cu20纳米材料形貌的影响,并结合光催化机理讨论了二者对Cu20光催化性能的影响。结果表明,固定EG的量,可以通过改变PVP的浓度来控制Cu20纳米材料不同晶面的生长速率,实现形貌可控。当PVP/Cu(NO3)2·3H2O的质量比例为0.022时,得到形貌为球形表面覆盖纳米刺的Cu2O纳米材料,随着PVP/Cu(NO3)2·3H2O的质量比例上升为0.067时,得到形貌为球形表面覆盖方角的Cu20材料,将PVP/Cu(NO3)2·3H2O的质量比例从0.067继续上升为0.111时,得到形貌为球形表面覆盖纳米球形小颗粒的Cu20材料。固定PVP的量,可以通过改变EG的浓度得到形貌为球形表面覆盖纳米刺和纳米球形小颗粒的Cu2O。此外,通过对反应不同时间所制备样品的形貌进行观察发现,本体系所制备的球形Cu20均为空心球,当反应时间为20min时,球形为破裂、开口的空心球,当反应时间为30min时,Cu20生长为完整的球形。不同形貌的Cu20纳米材料,比表面积越大光催化性能越好。在可见光下辐照10min后,Cu20纳米材料(S1-S5)对MO的光降解效率分别达到97.69%,10.36%,42.44%,89.93%和99.67%。通过对比可知,在相同的条件下,形貌为球形表面覆盖纳米刺的Cu20纳米材料(S1,S5)表现出了最佳的光催化活性。
     3.采用一步液相溶剂热法以Cu(NO3)2·3H2O为原料,EG为溶剂、还原剂,分别添加PVP、葡萄糖和水合肼,在180℃条件下成功制得形貌为微米级球形表面覆盖花片、20-50nm小颗粒团聚成小球以及线形的Cu20纳米材料,并结合光催化机理讨论了形貌对Cu20光催化性能的影响。在可见光下辐照10min后,在添加PVP、葡萄糖和水合肼条件下制备的Cu20纳米材料对MO的光催化降解效率分别达到97.50%,61.61%和98.76%。
     由于高温条件不利于大批量生产,因此,我们在以上的实验基础之上,尝试在常温、无表面添加剂、无有机溶剂的条件下合成Cu20纳米材料。由于葡萄糖和水合肼具有还原性,在30℃强碱条件下,我们利用葡萄糖和水合肼还原Cu(NO3)2·3H2O,成功制得Cu20纳米材料。在该反应体系中,葡萄糖和水合肼不仅作为还原剂,而且作为形貌控制剂,通过影响Cu20不同晶面的生长速率,合成去角八面体和八面体Cu20,并结合光催化机理讨论了形貌对Cu20光催化性能的影响。在可见光下辐照30min,去角八面体和八面体Cu20的光催化降解效率分别为22.36%和11.30%。
     本文制备样品所采用的方法均能一次性合成不同形貌的Cu20纳米材料和不同组分的Cu/Cu2O复合材料,制备方法简单易行,且大大降低生产成本。所制得的材料对甲基橙具有很高的光催化降解率,有望在污水处理和空气净化方面获得应用。
TiO2and ZnO are the most commonly used photocatalysts. However, it is a pity that both of them can only be activated by ultraviolet light or near-ultraviolet light because of their broad band gap (3.0-3.2eV), hence only less than5%solar energy can be utilized. Therefore, finding a kind of photocatalysts which can make full use of solar energy and have high photocatalytic activity have been the main research direction. The majority of irradiation (about43%) of sunlight lies in the visible range, and only photocatalysts with corresponding band gap can make full use of the solar energy. Cuprous oxide (Cu2O) has a direct band gap of about2.17eV, can be inspired by the400-800nm visible-light and product electron hole pair under the irradiation of sunlight,which makes it a promising material for solar energy conversion and visible photocatalytic degradation of pollutants. The single phase photocatalysts exhibit very low quantum efficiency because of the easy recombination between photo-electrons and holes, the development and utilization of Cu2O is greatly limited. In order to improve the photocatalytic ability of Cu2O, Cu/Cu2O NCs and different morphology of Cu2O nanocrystals were synthesized. This thesis consists of three following aspects:
     1. we synthesized Cu/Cu2O NCs by the simple one-pot solution-phase solvent route. In the experiment, we employed Cu(NO3)2·3H2O as the raw material, PVP as the protective agent and EG as the solvent and reducing agent. The phase compositions and morphology of Cu/Cu2O NCs are controlled by adjusting the reaction time. The photocatalytic mechanism of Cu/Cu2O NCs are also investigated. It can be concluded that the content of Cu in the final samples could be tuned by controlling the reaction time at180℃. Otherwise the content of Cu in the Cu/Cu2O NCs plays an important role on the photo-catalytic activity. At the first20min of irradiation, the photodegradation efficiency of MO solution in the presence of Cu/Cu2O NCs with low content of Cu (S2-S4:2.1-9.2%) reach up to99.78%,99.77%,98.39%, respectively. Compared with S2-S4, under the same conditions, the maximum degradation efficiency of MO with pure Cu2O (S1),Cu/Cu2O NCs with a high Cu content (S5, S6:68%and96%) are only45.88%,73.03%and51.22%, respectively, even though after visible light irradiation for50min, only the degradation efficiency of85.30%,94.67%and69.33%. Besides, the photostability of Cu/Cu2O NCs was studied by recycles.
     2. we synthesized Cu2O nanocrystals by the simple one-pot solution-phase solvent route. In the experiment, we employed Cu(NO3)2·3H2O as the raw material, PVP as the protective agent and surfactant, EG as the solvent and reducing agent. The morphology of Cu2O nanocrystals was influenced by the PEG concentrations and EG concentrations. The photocatalytic mechanism of Cu2O nanocrystals were also investigated. When the EG concentrations was the same, PVP kinetically controlled the growth rates of different crystalline faces of Cu2O by interacting with these faces through adsorption and desorption. when the radio of PVP/Cu(NO3)2·3H2O was0.022, it can be clearly seen that the surface of the spheres is covered with Cu2O crystal thorn. As the molar radio of PVP/Cu(NO3)2·3H2O increases from0.022to0.067, the surface of the spheres is covered with Cu2O crystal corner. Increasing the radio of PVP/Cu(NO3)2·3H2O from0.067to0.111, the surface of the spheres is made from an assembly of smaller spherical particles. When the composition of EG increases from50ml to90ml (S3), and other experimental conditions are kept the same, the morphology of the surface of the spheres change from Cu2O crystal thorn into spherical particles. When the reaction time increases from20min to30min (S3), and other experimental conditions are kept the same, the morphology of the obtained samples change from "open mouth" or broken hemispheres into perfect spheres without broken. At the first10min of irradiation, the photodegradation efficiency of MO solution in the presence of Cu2O NCs (S1-S5) reach up to97.69%,10.36%,42.44%,89.93%and99.67%respectively, the surface of the spheres covered with Cu2O crystal thorn show the optimal photocatalytic activity.
     3. we synthesized Cu2O nanocrystals by the simple one-pot solution-phase solvent route. In the experiment, we employed Cu(NO3)2·3H2O as the raw material, EG as the solvent and reducing agent. The morphology of Cu2O nanocrystals are controlled by adding PVP、 hydrazine hydrate or glucose. The photocatalytic mechanism of Cu2O nanocrystals are also investigated. At the first10min of irradiation, the photodegradation efficiency of MO solution in the presence of Cu2O NCs (S1-S3) reach up to97.50%,61.61%and98.76%respectively.
     Due to the high temperature adverse to mass production, herein, we put forward a convenient solution-phase method for the synthesis of Cu2O truncated octahedral and octahedral crystals. The Cu2O crystals were selectively synthesized without surfactant and organic solvent at room temperature, with Cu(NO3)2·3H2O and NaOH as starting reactants, and hydrazine hydrate or glucose as the reducer.At the30min of irradiation, the photodegradation efficiency of MO solution in the presence of Cu2O NCs (S4, S5)are22.36%and11.30%.
     The Cu/Cu2O CNs and different morphology of Cu2O nanocrystals are synthesized by the simple one-pot route.This method, simple and effective, may be helpful for the study on controlled synthesis of other materials. The high photocatalytic activity of Cu/Cu2O CNs and different morphology of Cu2O nanocrystals suggests they are promising materials for processing of waste water.
引文
[1]M. A. Behnajady, N. Modirshahla, N. Daneshvar, M. Rabbani. Photo catalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates. Chem. Eng. J.2007,127:167-176
    [2]T. Robinson, G. McMullan, R. Marchant, P. Nigam. Remediation of dyes in textile effluent:a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol.2001,77:247-255
    [3]P. A. Carneiro, R. F. P. Nogueira, M. V. B. Zanoni. Homogeneous photodegradation of C.I. Reactive Blue 4 using a photo-Fenton process under artificial and solar irradiation. Dyes and Pigments.2007,74:127-132
    [4]M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahneman. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev.1995,95:69-96
    [5]A. Hagfeldtt, M. Gratzel. Light-Induced Redox Reactions in Nanocrystalline Systems. Chem.Rev.1995,95:49-68
    [6]M. A. Fox, M T. Dulay. Heterogeneous Photocatalysis. Chem.Rev.1995,93:341-357
    [7]J. H. Lee, W. Namb, M. Kang, G. Y. Han, K. J. Yoon, M. S. Kim, K. Ogino, S. Miyata, S. Choung. Design of two types of fluidized photo reactors and their photo-catalytic performances for degradation of methyl orange. Appl. Catal. A.2007,244:49-57
    [8]A. K. Ray. Design, modelling and experimentation of a new large-scale photocatalytic reactor for water treatment. Chem. Eng. Sci.1999,54:3113-3125
    [9]A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature.1972,238:37-38
    [10]J. H. Carey, J. Lawrence, H. M. Tosine. Photodechlorination of PCB's in the presence of Titanium Dioxide in Aqueous Suspensions. Bull. Environ. Contam. Toxicol.1976,6: 697-700
    [11]R. Shapiro, S. Dubelman, A. M. Feinberg, P. F. Crain, J. A. McCloskey. Heterogeneous Photocatalytic Oxidation of Cyanide Ion in Aqueous Solut ions at TiO2 Powder. J. Am. Chem. Soc.1977,99:1
    [12]P. V. Kamat. Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces. Chem. Rev.1993,93:207-300
    [13]S. N. Frank, A. J. Bard. Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders. J. Phys. Chem.1977,81:1484-1488
    [14]T. W. Kim, S. Hwang, S. H. Jhung, J. Chang, H. Park, W. Choi, J. Choy. Bifunctional Heterogeneous Catalysts for Selective Epoxidation and Visible Light Driven Photolysis: Nickel Oxide-Containing Porous Nanocomposite.Adv. Mater.2008,20:539-542
    [15]J. Li, W. Ma, Y. Huang, X. Tao, J. Zhao, Y. Xu. Oxidative degradation of organic pollutants utilizing molecular oxygen and visible light over a supported catalyst of Fe(bpy)32+ in water. Appl. Catal. B.2004,48:17-24
    [16]J. Zhao, C. Chen, W. Ma. Photocatalytic degradation of organic pollutants under visible light irradiation. Top. Catal.2005,35:269-277
    [17]M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondoa, K. Domen.Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem.Commun.1998,357-358
    [18]刘小玲,陈金毅,周文涛,李家麟.纳米氧化亚铜太阳光催化氧化法处理印染废水.华中师范大学学报(自然科学版).2002,36:475-477
    [19]黄智,张爱茜,韩朔睽,魏钟波,王连生.Cu20光催化氧化降解对氯硝基苯.Environmental chemistry.2003,22:150-153
    [20]A. L. Linsebigler, G. Lu, J. T. Yates, Jr. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results. Chem.Rev.1995,95:735-758
    [21]A. F. Ma, T. N. Rao, D. A. Tryk. Titanium dioxide Photocatalysis. J.Photochem. Photobiol.C.2000,1-21
    [22]A. Fujishima, X. Zhang. Titanium dioxide photocatalysis:present situation and future approaches. C. R.Chimie.2006,9:750-760
    [23]Y. Nosaka, M. A. Fox. Kinetics for Electron Transfer from Laser-Pulse- Irradiated Colloidal Semiconductors to Adsorbed Methylviologen. Dependence of the Quantum Yield on Incident Pulse Width. J. Phys. Chem.1988,92:1893-1897
    [24]Gratzel, M. Heterogeneous Photochemical Electron Transfer; CRC Press:Boca Raton, FL,1989.
    [25]T. E. Agustina, H. M. Ang, V. K. Vareek. A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J. Photochem. Photobiol. C.2005, 6:264-273
    [26]D. D. Dionysiou, A. P. Khodadoust, A. M. Kern, M. T. Suidan, I. Baudin, J. M. Laine. Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor. Appl. Catal. B:Environmenta. 2000,24:139-155
    [27]范少华,崔玉民.光催化技术在污水处理方面的应用.化工进展.2002,21(5):345-348
    [28]D. E. Scaife, Oxide Semiconductors in photoelectrochemical conversion of solar energy. Solar Energy.1980,25:41-54
    [29]A. V. Emeline, V. K. Ryabchuk, N. Serpone, Dependencies of the Quantum Yield of Photochemical Processes on the Surface of Nano-/Microparticulates of Wide-Band-Gap Metal Oxides.1. Theoretical Approach. J. Phys. Chem. B.1999,103:1316-1324
    [30]A. Haarstrick, O. M. Kut, E. Heinzle. TiO2-Assisted Degradation of Environmentally Relevant Organic Compounds in Wastewater Using a Novel Fluidized Bed Photoreactor.Environ. Sci. Technol.1996,30:817-824
    [31]A. Heller, Y. Degani, D. W. Johnson, Jr., P. K. Gallagher. Controlled Suppression and Enhancement of the Photoactivlty of Titanium Dioxide(Rutile) Pigment. J. Phys. Chem. 1987,91:5987-5991
    [32]葛素香.新型半导体光催化剂的低温制备及其可见光光催化性能调控.华中师范大学,博士学位论文.2012,9-10
    [33]B. Obtani', S. Nishimoto. Surface Adsorptions of Aliphatic Alcohols and Silver Ion on the Photocatalytic Activity of TiO2 Suspended in Aqueous Solutions. J. Phys. Chem. 1993,97:920-926
    [34]J. Moser, S. Punchihewa, P. P. Infelta, M. Gratzel. Surface Complexation of Colloidal Semiconductors Strongly Enhances Interfacial Electron-Transfer Rates. Langmuir.1991, 7:3012-3018
    [35]C. Kormann, D. W. Bahnemann, M. R. Hoffmann. Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions. Environ. Sci. Technol.1991,25: 494-500
    [36]L. Li, Y. Chu, Y. Liu, L. Dong. Template-Free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres. J. Phys. Chem. C.2007,111:2123-2127
    [37]Y. Huang, Z. Ai, W. Ho, M. Chen, S. Lee. Ultrasonic spray pyrolysis synthesis of porous Bi2WO6 microspheres and their Visible-Light-Induced photocatalytic rRemoval of NO. J. Phys. Chem. C.2010,114:6342-6349
    [38]H. Xu, W. Wang, W. Zhu. Shape Evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. J. Phys. Chem. B. 2006,110:13829-13834
    [39]Z. Zheng, B. Huang, Z. Wang, M. Guo, X. Qin, X. Zhang, P. Wang, Y. Dai. Crystal faces of Cu2O and their stabilities in photocatalytic reactions. J. Phys. Chem. C.2009, 113:1448-14453
    [40]Y. Liu, C. Zheng, W. Wang, C. Yin, G. Wang. Synthesis and characterization of rutile SnO2 nanorods. Adv. Mater.2001,13:1883-1887
    [41]Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, S. Q. Feng.Ultraviolet-emitting ZnO nanowires synthesized by a physical vapordeposition approach. Appl. Phys. Lett.2001, 78:22
    [42]C. Xu, X. W. Sun, B. J. Chen, Z. Dong, M. B. Yu, X. H. Zhang, S. J. Chu. Network array of zinc oxide whiskers. DR-NTU, Nanyang Technological University Library, Singapore.2005,16:70-73.
    [43]G. Shen, Y. Bando, C. Lee. Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process. J. Phys. Chem. B.2005,109:10578-10583
    [44]梁喜珍,黄国林,周跃明.光催化降解乐采的动力学研究.材料科学与丁程学报.2003.21:60-63
    [45]H. C. Yatmaz, C. Wallis, C. R. Howarth. The spinning disc reactor-studies on a novel TiO2 photocatalytic reactor. Chemosphere.2001,42:397-403
    [46]D. Bahnemann, D. Bockelmann, R. Goslich. Mechanistic studies of water detoxification in illuminated TiO2 suspensiolis. Sol. Energy Mater. Sol. Cells.1991,24:564-58.1
    [47]S. W. Lam, K. Chiang, T. M. Lim, R. Amal, G. K-C. Lowe. The effect of platinum and silver deposits in the photocatalytic oxidation of resorcinol. Appl. Catal. B: Environmental.2007,72:363-372
    [48]W. Zhao, C. Chen, X. Li, J. Zhao. Photodegradation of Sulforhodamine-B Dye in Platinized Titania Dispersions under Visible Light Irradiation:Influence of Platinum as a Functional Co-catalyst. J. Phys. Chem. B.2002,106:5022-5028
    [49]A. Sasahara, K. Hiehata, H. Onishi. Metal-to-Oxide charge transfer observed by a kelvin probe force microscope. Catal Surv Asia.2009,13:9-15
    [50]Y. Tian, T. Tatsuma. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc.2005,127: 7632-7637
    [51]V. Subramanian, E. Wolf, P. V. Kamat. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films. J. Phys. Chem. B.2001,105:11439-11446
    [52]L. Du, A. Furube, K. Yamamoto, K. Hara, R. Katoh, M. Tachiya. Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: dependence on TiO2 particle size. J. Phys. Chem. C.2009,113:6454-6462
    [53]P. V. Kamat. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B.2002,106:7729-7744
    [54]Y. Nosaka, K. Norimatsu, H. Mnama.The function of metals in metal-compounded semiconductor photocatalysts. Chem. Phys. Lett.1984,106:127-131
    [55]赵春,钟顺和.Cu/ZnO-TiO2复合半导体光催化材料的制备与表征.无机化学学报.2004,20:1131-1136
    [56]V. Subramanian, E. E. Wolf, P. V. Kamat. Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration. J. Am. Chem. Soc.2004, 126:4943-4950
    [57]S. T. Martin, C. L. Morrison, M. R. Hoffmann. Photochemical mechanism of size-quantized vanadium-doped TiO2 particles. J. Phys. Chem.1994,98:13695-13704
    [58]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga Visible-light photocatalysis in nitrogen-doped Titanium Oxides. Science.2001,293:263-271
    [59]H. Ozaki, S. Iwamoto, M. Inoue. Effect of the addition of a small amount of vanadium on the photocatalytic activities of N-and Si-co-doped titanias under visible-light irradiation Catal. Lett.2007,113:95-97
    [60]J. Z. Zhang. Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. J. Phys. Chem. B.2000,104:7239-7253
    [61]Q. Dai and J. Rabani. Photosensitization of nanocrystalline TiO2 films by pomegranate pigments with unusually high efficiency in aqueous medium. Chem. Commun.2001, 2142-2143
    [62]G. A. Epling, C. Lin. Photoassisted bleaching of dyes utilizing TiO2 and visible light. Chemosphere.2002,46:561-570
    [63]沈玉香.T-ZnOw光催化特性及其活性中心研究.西南交通大学,硕士毕业论文.2007,20
    [64]孔令仁,陈曦,杨曦.附着态半导体光催化剂光解可溶性染料的研究.环境科学学报.1996,16:406-411
    [65]L. Song, R. Qiu, Y. Mo, D. Zhang. H.Wei.Y. Xiong. Photodegradation of phenol in a polymer-modified TiO2 semiconductor particulate system under the irradiation of visible light. Catal. Commun.2007,8:429-433
    [66]O. Madelung, U. ROssler, M. Schulz. Non-Tetrahedrally bonded elements and binary compounds. New York:Springer-Verlag,1998:1-3
    [67]孙芳.电沉积制备氧化亚铜薄膜及其性能研究.吉林大学,博士学位论文.2008,
    [68]J. Katayama, K. Ito, M. Matsuoka and J. Tamaki. Performance of Cu2O/ZnO solar cell prepared by two-step electrodeposition. J. Appl. Electrochem.2004,34:687-692
    [69]L. C. Olsen and R. C. Sohara. Explanation for low-efficiency Cu2O Schottky-barrier solar cells. Appl. Phys. Lett.1979,34:47-49
    [70]L. C. Olsen, F. W. Addis and W. Miller. Experimental and theoretical studies of Cu2O solar cells. Solar Cells.1982,7:247-279
    [71]X. Hong, G. Wang, W.Zhu, X. Shen, Y. Wang. Synthesis of sub-10 nm Cu2O nanowires by Poly(vinyl pyrrolidone)-Assisted electrodeposition. J. Phys. Chem. C. 2009,113:14172-14175
    [72]M. J. Siegfried, K. S. Choi. Electrochemical crystallization of cuprous oxide with systematic shape evolution. Adv.Mater.2004,16:1743-1745
    [73]W. Z. Wang, G. G. Wang, X. S. Wang, Y. J. Zhan, Y. K. Liu, C. L. Zheng. Synthesis and Characterization of Cu2O Nanowires by a Novel Reduction Route. Adv. Mater. 2002,14:67-69
    [74]Y. Yu, F. P. Du, L. L. Ma, J. L. Li, Y. Y. Zhuang, X. H. Qi. Synthesis of Cu2O nanowhiskers with CTAB as a template in water-in-oil microemulsion system. Rare Metals.2005,24
    [75]张万忠,乔学亮,陈建国.微乳液法合成纳米材料的进展.石油化工.2005,34:84-88
    [76]Y. Chang, H. C. Zeng. Manipulative synthesis of multipod frameworks for self-organization and self-amplification of Cu2O microcrystals. Cryst. Growth Des.2004, 4:283-287
    [77]H. Zhang, Z. L. Cui. Solution-phase synthesis of smaller cuprous oxide nanocubes. Materials Research Bulletin.2008,43:1583-1589
    [78]S. Xu, X. Song, C. Fan, G. Chen, W.Zhao, T. You, S. Sun. Kinetically controlled synthesis of Cu2O microcrystals with various morphologies by adjusting pH value. J. Cryst. Growth.2007,305:3-7
    [79]H. Yu. J. Yu, S. Liu, S. Mann. Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres. Chem.Mater.2007,19:4327-4334
    [80]J. J. Teo, Y. Chang, H. C. Zeng, Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir.2006,22:7369-7377
    [81]Y. Xu, X. Jiao, D. Chen. PEG-Assisted preparation of single-crystalline Cu2O hollow nanocubes. J. Phys. Chem. C.2008,112:16769-16773
    [82]H. Zhang, Q. Zhu, Y. Zhang, Y. Wang, L.Zhao, B. Yu. One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv. Funct. Mater.2007,17: 2766-2771
    [83]Z. Ai, H. Xiao, T. Mei, J. Liu, L. Zhang, K. Deng, J. Qiu. Electro-Fenton degradation of rhodamine B based on a composite cathode of Cu2O nanocubes and carbon nanotubes. J. Phys. Chem. C.2008,112:11929-11935
    [84]M. H. Kim, B. Lim, E. P. Lee, Y. Xia. Polyol synthesis of Cu2O nanoparticles:use of chloride to promote the formation of a cubic morphology. J. Med. Chem.2008,18: 4069-4073
    [85]刘洪禄,张爱茜,吴海锁,黄智,王连生.氧化亚铜光催化降解对硝基苯酚.环境化学.2004,23:490-494
    [86]梁宇宁,黄智,覃思晗,甘庆华.Cu20光催化降解水中对硝基苯酚的研究.环境污染治理技术与设备.2003,4:36-39
    [87]J. Li, L. Liu, Y. Yu, Y. Tang, H. Li, F. Du. Preparation of highly photocatalytic active nano-size TiO2-Cu2O particle composites with a novel electrochemical method. Electrochem. Commun.2004,6:940-943
    [88]朱俊武,陈海群,谢波,杨绪杰, 陆路德,汪信.纳米Cu20的制备及其对高氯酸铵热分解的催化性能.催化学报.2004,25:637-640
    [89]刘静峰, 田德余,邓鹏图.超微细Cu20对RDX/AP/HTPB推进剂组分热分解特性影响的研究.火炸药学报.1998,2:1-4
    [90]A. Mittiga, E. Salza, F. Sarto, M. Tucci. R. Vasanthi. Heterojunction solar cell with 2% efficiency based on a Cu2O substrate. Appl. Phys. Lett.2006,88:163502
    [91]T. Fu. Novel NO2 gas sensor based on Cr(III) complex thin film. Electroanalysis.2008, 20:68-74
    [92]J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li. Nearly monodisperse Ou2O and CuO nanospheres:preparation and applications for sensitive gas sensors. Chem. Mater.2006, 18:867-871
    [93]J. Liu, S. Wang, Q. Wang, B. Geng. Microwave chemical route to self-assembled quasi-spherical Cu2O microarchitectures and their gas-sensing properties. Sens. Actuators, B.2009,143:253-260
    [94]周玉华,黄熙怀.氧化亚铜在玻璃中的着色.硅酸盐学报.1965,4:66-69
    [95]邵文柱,沙德生,V.V.伊万诺夫,杨德庄.氧化亚铜基金属陶瓷导电性的试验研究.材料科学与工艺.1999,7:109-112
    [96]王学峰,张勇,高同春,井冈霉素与氧化亚铜复配制剂对水稻稻曲病防效测定,安徽农业科学,2005,33(9):1601-1622.
    [97]陈琰,褚万学,一种耐极压重负荷润滑脂,中国专利,94118783,1996-06-12.
    [98]近藤保夫,金田润也,青野泰久,阿部辉宜,复合材料及其应用,中国专利,02119923.X,2003一03-12
    [99]近藤保夫,金田润也,青野泰久,阿部辉宜,稻垣正寿,斋藤隆一,小池义彦,荒川英夫,复合材料及其应用,中国专利,02119922.1,2002-10-30
    [100]G. Kavei, A. M. Gheidari. The effects of surface roughness and nanostructure on the properties of indium tin oxide (ITO) designated for novel optoelectronic devices fabrication. J.Mater.Process.Tech. In Press, Corrected Proof,2008
    [101]S. M. Tadayyon, K. Griffiths, P. R. Norton, C. Tripp, Z. Popovic. Work function modification of indium-tin-oxide used in organic light emitting devices. J.Vac.Sci.Technol.A.1999,17(4):1773-1778.
    [102]C. Lu, L. Qi, J. Yang, X. Wang,D. Zhang, J. Xie, J. Ma. One-pot synthesis of octahedral Cu2O nanocages via a catalytic solution route. Adv. Mater.2005,17: 2562-2567
    [103]W. Siripala, A. Ivanovskaya, T. F. Jaramillo, S. Baeck, E. W. McFarland. A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Sol. Energy Mater. Sol. Cells.2003,77:229-237
    [104]H. Yang, J. Ouyang, A. Tang, Y. Xiao, X. Li, X. Dong, Y. Yu. Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles. Mater. Res. Bull. 2006,41:1310-1318
    [105]魏明真,霍建振,伦宁,马西驰,温树林.一种新型的半导体光催化剂-纳米氧化亚铜.材料导报.2007,21(6):130-133
    [106]隆金桥,黎远成,杨汉雁,曾剑,陈莎兰,谭芳芬.Cu20光催化降解苯酚.化工设计.2004,14(6):42-44
    [107]H. Wu, L. Wang. Shape effect of microstructured CeO2 with various morphologies on CO catalytic oxidation. Catal. Commun.2011,12:1374-1379
    [108]S. Sakthivela, B. Neppolianb, M.V. Shankarb, B. Arabindoob, M. Palanichamyb, V. Murugesan. Solar photocatalytic degradation of azo dye:comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energy Mater.Sol.Cells.2003,77:65-82
    [109]A. A. Khodja, T. Sehili, J. Pilichowski, P. Boule. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J. Photochem. Photobiol. A. 2001,141:231-233
    [110]C. Gu, C. Cheng, H. Huang, T. Wong, N. Wang, T. Zhang. Growth and photocatalytic activity of dendrite-like ZnO@Ag heterostructure nanocrystals. Crystal Growth & Design.2009,9:3278-3285
    [111]Z. Ai, L. Zhang, S. Lee, W. Ho. Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity. J. Phys. Chem. C.2009,113:20896-20902
    [112]H. Goto, Y. Hanada, T, Ohno, M. Matsumura. Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO2 particles. J. Catal.2004,225:223-229
    [113]Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J.Zhu, Y. Zhu. Luminescence and photocatalytic activity of ZnO nanocrystals:correlation between structure and property. Inorg. Chem.2007,46:6675-6682
    [114]G. Yuan, J. Zhu, F. Xie, X. Chang. Shape-controlled synthesis of cuprous oxide nanocrystals via the electrochemical route with H20-Polyol mix-solvent and their behaviors of adsorption. J. Nanosci. Nanotechnol.2010,10:5258-5264
    [115]R. N. Briskman. A study of electrodeposited cuprous oxide photovoltaic cells. Sol. Energy Mater. Sol. Cells.1992,27:361-368
    [116]A. Mittiga, E. Salza, F. Sarto, M. Tucci, R. Vasanthi. Heterojunction solar cell with 2% efficiency based on a Cu2O substrate. Appl. Phys. Lett.2006,88:163502
    [117]C. Hu, J. Nian, H. Teng. Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3. Sol. Energy Mater. Sol. Cells. 2008,92:1071-1076
    [118]J. R. Ortiz, T. Ogura, J. M. Valtierra, S. E. A. Oriyz, P. B. J. A. Reyes,V. H. Lara. A catalytic application of Cu2O and CuO films deposited over fiberglass. Appl. Surf. Sci. 2001,174:177-184
    [119]C. Shifu, Z. Sujuan, L. Wei, Z. Wei. Study on the photocatalytic activity of p-n junction photocatalyst Cu2O/TiO2. J. Nanosci. Nanotechnol.2009,9:4397-4403
    [120]J. Wu, C. H. Tseng. Photocatalytic properties of nc-Au/ZnO nanorod composites. Appl. Catal. B.2006,66:51-57
    [121]J. Wang, X. M. Fan, K. Tian, Z. W. Zhou, Y. Wang. Largely improved photocatalytic properties of Ag/tetrapod-like ZnO nanocompounds prepared with different PEG contents. Appl. Surf. Sci.2011,8:1-8
    [122]B. Zhou, H. Wang, Z. Liu, Y. Yang, X. Huang, Z. Lii,Y. Sui, W. Su. Enhanced photocatalytic activity of flowerlike Cu2O/Cu prepared using solvent-thermal route. Mater. Chem. Phys.2011,126:847-852
    [123]Y. Zhao, J. J. Zhu, J. M. Hong, N. Bian, H. Y. Chen. Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with controllable morphology. Eur. J. Inorg. Chem.2004,4072-4080
    [124]R. C. Wang, C. H. Li. Cu, Cu-Cu2O core-shell, and hollow Cu2O nanodendrites: structural evolution and reverse surface-enhanced raman scattering. Acta Materialia. 2011,59:822-829
    [125]C. Y. Wang, Y. Zhou, Z. Y. Chen, B. Cheng, H. J. Liu, X. Mo. Preparation of shell-core Cu2O-Cu nanocomposite particles and Cu nanoparticles in a new microemulsion system. J. Colloid Interface Sci.1999,220:468-470
    [126]Y. Wu, X. Liu, J. Zhang, J. Qin, C. Li. In situ formation of nano-scale Cu-Cu2O composites.Mater. Sci. Eng. A.2010,527:1544-1547
    [127]A. Katsifaras, N. Spanos. Effect of inorganic phosphate ions on the spontaneous precipitation of vaterite and on the transformation of vaterite to calcite. J. Cryst. Growth. 1999,204:183-190
    [128]T. Chen, Y. Zheng, J. M. Lin, G. Chena. Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry. J.Am. Soc. Mass. Spectrom 2008,19:997-1003
    [129]X. Zhang, J. Song, J. Jiao, X. Mei. Preparation and photocatalytic activity of cuprous oxides. Solid State Sciences.2010,1-5
    [130]Y. Xiong, Z. Li,X. Li, B. Hu, Y. Xie. Thermally stable hematite hollow nanowires. Inorg. Chem.2004,43:6540-6542
    [131]Y. H. Zheng, C. Q. Chen, Y. Y. Zhan, X. Y. Lin, Q. Zheng, K. Wei, J. F. Zhu. Photocatalytic of Ag/ZnO heterostructure nanocatalyst:correlation between structure and property. J. Phys. Chem. C 2008,112:10773-10777
    [132]A. Hameed, T. Montini, V. Gombac, P. Fornasiero. Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4-x nanocomposite. J. Am. Chem. Soc.2008,130: 9658-9659
    [133]E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts,2nd edn. Oxford University Press, New York,1988
    [134]L. Ren, Y. Zeng, D. Jiang. Preparation, characterization and photocatalytic activities of Ag-deposited porous TiO2 sheets. Catal. Commun.2009,10:645-649
    [135]H. C. Yatmaz, A. Akyol, M. Bayramoglu. Photocatalytic decolorization of an azo reactive dye in aqueous ZnO suspensions. Ind. Eng. Chem. Res.2004,43:6035-6039
    [136]B. Zhou, Z. Liu, H. Wang, Y. Yang, W. Su. Experimental study on photocatalytic activity of Cu2O/Cu nanocomposites under visible light. Catal Lett.2009,132:75-80
    [137]T. L. Barr, Modern ESCA:The Principles and Practice of X-ray Photoelectron Spectroscopy, CRC Press:Boca Raton,1994
    [138]H. Chen, J. Lee, Y. H. Kim, D. W. Shin, S. C. Park, X. Meng, J. B. Yoo. Copper nanostructures synthesized by a facile hydrothermal method. J. Nanosci. Nanotechnol. 2010,10:629-636
    [139]T. Du, D. Tamboli, V. Desai, S. Seal. Mechanism of copper removal during CMP in acidic H2O2 slurry. J. Electroanal. Chem.2004,151:G230-G235
    [140]G. Schon, Surf. Sci. H 1973,35:96
    [141]T. Novakov and R. Prins, Solid State Commun.1971,9:1975
    [142]D. C. Frost, A. Ishitani, C. A. McDowell. X-ray photoelectron spectroscopy of copper compounds. Molecular Physics.1972,24:861-877
    [143]T. Ghodselahi, M. A. Vesaghi, A. Shafiekhani, A. Baghizadeh, M. Lameii. XPS study of the Cu@Cu2O core-shell nanoparticles. Appl. Surf. Sci.2008,255:2730-2734
    [144]W. Jia, E. Reitz, H. Sun, B. Li, H. Zhang. From Cu2(OH)3Cl to nanostructured sisal-like Cu(OH)2 and CuO:synthesis and characterization. J. Appl. Phys.2009,105: 1-6
    [145]B. Balamurugan, B. R. Mehta. Surface-modified CuO layer in size-stabilized single-phase Cu2O nanoparticles. Appl. Phys. Lett.2001,79:3176-3178
    [146]K. Robert, H. Ian and G. Mark. Nanoscale Sci. Technol., Science press, Beijing (2007), 2:57-58
    [147]J. P. Espino's,J. Morales, A. Barranco, A. Caballero, J. P. Holgado, and A. R. Gonza'lez-Elipe. Effects for Cu, CuO, and Cu2O Deposited on SiO2 and ZrO2. XPS Determination of the Valence State of Copper in Cu/SiO2 and Cu/ZrO2 Catalysts. J. Phys. Chem. B.2002,106:6921-6929
    [148]M. A. Brookshier, C. C. Chusuei, and D. W. Goodman. Control of CuO particle size on SiO2 by spin coating. Langmuir.1999,15:2043-2046
    [149]W. Wang, Y. Zhan, X. Wang, Y. Liu, C. Zheng, G. Wang. Synthesis and characterization of CuO nanowhiskers by a novel one-step, solid-state reaction in the presence of a nonionic surfactant. Mater. Res. Bull.2002,37:1093-1100
    [150]H. Wang, J. Z. Xu, J. J. Zhu, H. Y. Chen. Preparation of CuO nanoparticles by microwave irradiation. J. Cryst. Growth.2002,244:88-94
    [151]C. Wagner, W. Riggs, L. Davis, and J. Moulder, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Eden Prairie,1979
    [152]C. A. N. Fernando, P. H. C. de Silva, S. K. Wethasinha, I. M. Dharmadasa, T. Delsol, M. C. Simmonds. Investigation of n-type Cu2O layers prepared by a low cost chemical method for use in photovoltaic thin film solar cells. Renewable Energy.2002,26: 521-529
    [153]J. Zhu, Y. Wang, X. Wang, X. Yang, L. Lu. A convenient method for preparing shape-controlled nanocrystalline Cu2O in a polyol or water/polyol system. Powder Technol.2008,181:249-254
    [154]H. Li, R. Liu, R. Zhao, Y. Zheng, W. Chen, Z. Xu. Morphology control of electrodeposited Cu2O crystals in aqueous solutions using room temperature hydrophilic ionic liquids. Cryst. Growth Des.2006,6:2795-2798
    [155]W. U. Huynh, J. J. Dittmer, A. P. Alivisatos. Hybrid nanorod-polymer solar cells. Science.2002,295:2425-2427
    [156]J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, S. Schultz. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys.2002,116: 6755-6759
    [157]H. Zhang, X. Ren, Z. Cui. Shape-controlled synthesis of Cu2O nanocrystals assisted by PVP and application as catalyst for synthesis of carbon nanofibers. J. Cryst. Growth. 2007,304:206-210
    [158]A.O. Musa, T. Akomolafe, M. J. Carter. Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties. Sol. Energy Mater. Sol. Cells.1998,51:305-316
    [159]X. Li, H. Gao. Nanoindentation of Cu2O nanocubes. Nano Lett.2004,4:1903-1907
    [160]B. White, M. Yin, A. Hall, D. Le, S. Stolbov, T. Rahman. N. Turro, S. O'Brien. Complete CO oxidation over Cu2O nanoparticles supported on silica gel. Nano Lett. 2006,6:2095-2098
    [161]C. H. Kuo, M. H. Huang. Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures. J.Phys.Chem. C.2008,112: 18355-18360
    [162]J. Y. Ho and M. H. Huang. Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity. J. Phys. Chem. C.2009,113:14159-14164
    [163]C. H. Kuo, C. H. Chen, M.I H. Huang. Seed-Mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm. Adv. Funct. Mater. 2007,17:3773-3780
    [164]C. M. McShane, K. S. Choi. Photocurrent Enhancement of n-Type Cu2O electrodes achieved by controlling dendritic branching growth. J. Am. Chem. Soc.2009,131: 2561-25699
    [165]Z Yang, C-KChiang and H-T Chang.Synthesis of fluorescent and photovoltaic Cu2O nanocubes. Nanotechnology.2008,19:1-7
    [166]L. Huang, F. Peng, H. Yu, H. Wang. Synthesis of Cu2O nanoboxes. nanocubes and nanospheres by polyol process and their adsorption characteristic. Mater. Res. Bull. 2008,43:3047-3053
    [167]H. Xu, W. Wang, W. Zhu. A facile strategy to porous materials:Coordination-assisted heterogeneous dissolution route to the spherical Cu2O single crystallites with hierarchical pores. Microporous Mesoporous Mater.2006,95:321-328
    [168]X. Li, F. Tao, Y. Jiang, Z. Xu.3-D ordered macroporous cuprous oxide:Fabrication, optical, and photoelectrochemical properties. J. Colloid Interface Sci.2007,308: 460-465
    [169]Y. Chang, J. J. Teo, H. C. Zeng. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir.2005,21:1074-1079
    [170]P. He, X. Shen, H. Gao. Size-controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption.J. Colloid Interface Sci.2005,284:510-515
    [171]X. Liang, L. Gao, S. Yang, J. Sun. Facile Synthesis and Shape Evolution of Single-Crystal Cuprous Ox ide. Adv. Mater.2009,21:2068-2071
    [172]C. H. Kuo, M. H. Huang. Fabrication of truncated rhombic dodecahedral Cu2O nanocages and nanoframes by particle aggregation and acidic etching. J. AM. CHEM. SOC.2008,130:12815-12820
    [173]C. H. Kuo, T. E. Hua, M. H. Huang. Au nanocrystal-directed growth of Au-Cu2O core-shell heterostructures with precise morphological control. J. AM. CHEM.SOC. 2009,131:17871-17878
    [174]H. Xu, W. Wang. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew. Chem. Int. Ed.2007,46:1489-1492
    [175]M. J. Siegfried, K. S. Choi. Elucidating the effect of additives on the growth and stability of Cu2O surfaces via shape transformation of Pre-Grown Crystals. J. AM. CHEM. SOC.2006,128:10356-10357
    [176]Y. Xu, D. Chen, X. Jiao, K. Xue. Nanosized Cu2O/PEG400 composite hollow spheres with mesoporous shells J. Phys. Chem. C.2007,111:16284-16289
    [177]C. M. McShane, K. S. Choi. Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. J. AM. CHEM. SOC.2009,131: 2561-2569
    [178]M. J. Siegfried, K. S. Choi. Directing the architecture of cuprous oxide crystals during electrochemical growth. Angew. Chem. Int. Ed.2005,44:3218-3223
    [179]P. Taneja, R. Chandra, R. Banerjee and P. Ayyub. Structure and properties of nanocrystalline Ag and Cu2O synthesized by high pressure sputtering. Scripta mater. 2001,44:1915-1918
    [180]Q. Chen, X. Shen, H. Gao.Formation of solid and hollow cuprous oxide nanocubes in water-in-oil microemulsions controlled by the yield of hydrated electrons. J. Colloid Interface Sci.2007,312:272-278
    [181]E. G. Ponyatovski, G. E. Abrosimova, A. S. Aronin, V. I. Kulakov, I. V. Kuleshov, and V. V. Sinitsyn. Nanocrystalline Cu2O Prepared under High Pressures. Physics of the Solid State.2002,44:820-823.
    [182]H.Zhang, D. Zhou, L. Zhang, D. F. Zhang, L. Guo, L.He, C.P. Chen. Cu2O Hollow Spheres:Synthesis, Characterization and Magnetic Property. J. Nanosci. Nanotechnol. 2009,9:1321-1325
    [183]S. Wan, F. Guo, L. Shi, Y. Peng, X. Liu, Y. Zhang,Y. Qian. Single-step synthesis of copper sulfide hollow spheres by a template interface reaction route. J. Mater. Chem. 2004,14:2489-2491
    [184]X. Jiang, Y. Wang, T. Herricks and Y. Xia. Ethylene glycol-mediated synthesis of metal oxide nanowires. J. Mater. Chem.2004,14:695-703
    [185]Y. Wang, X. Jiang, Y. Xia. A Solution-Phase, Precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J. AM. CHEM. SOC.2003,125:16176-16177
    [186]X. Liua, R. Hub, S. Xionga, Y. Liua, L. Chaia, K. Baoa, Y. Qiana.Well-aligned Cu2O nanowire arrays prepared by an ethylene glycol-reduced process. Macromol. Chem. Phys. 2009,114:213-216
    [187]Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xi, Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone.Chem. Mater.2002,14:4736-4745
    [188]X. Zhang, J. Song, J. Jiao, X. Mei. Preparation and photocatalytic activity of cuprous oxides Solid State Sciences.2010,12:1-5
    [189]Y. Xie, J. Hnang, B. Li, Y. Lin, Y. Qian, A novel peanut-like nanostnicture of II-VI semiconductor CdS and ZnS. Adv. Mater.2000,12:1523-1526
    [190]J. T. Sampanthar, H. C. Zeng, Arresting butterfly-like intermediate nanocrystals of β-Co(OH)2 via ethylenediamine-mediated synthesis. J. Am. Chem. Soc.2002,124: 6668-6675
    [191]X.W. Lou, H. C. Zeng. Complex a-MoO3 nanostructures with external bonding capacity for self-assembly. J. Am. Chem. Soc.2003,125:2697-2704
    [192]H. Wang, S. He, S. Yu,T. Shi, S. Jiang. Template-free synthesis of Cu2O hollow nanospheres and their conversion into Cu hollow nanospheres. Powder Technol.2009, 193:182-186
    [193]C. Li, W. Cai, B. Cao, F. Sun, Y. Li, C. Kan, L. Zhang. Mass Synthesis of Large, Single-Crystal Au Nanosheets Based on a Polyol Process. Adv. Funct. Mater.2006,16: 83-90
    [194]Y. Sui, W. Fu, H. Yang, Y. Zeng, Y. Zhang, Q. Zhao,Y. Li, X. Zhou, Y. Leng, M.i Li, G. Zou. Low Temperature Synthesis of Cu2O Crystals:Shape Evolution and Growth Mechanism. Cryst. Growth Des..2010,10:99-108
    [195]Y. D. Li, Y. Ding, and Z. Y. Wang. A novel chemical route to ZnTe semiconductor nanorods. Adv. Mater.1999,11(10):847-850
    [196]S. Y. Jing, S. X. Xing, Y Wu, Y F. Wang, B. Zhao, C. Zhao. Synthesis of octahedral Cu2O microcrystals assisted with mixed cationic/anionic surfactants. Materials Letters.2007,61:2281-2283
    [197]Z. Wang, X. Chen, J. Liu, M. Mo, L. Yang, Y. Qian. Room temperature synthesis of Cu2O nanocubes and nanoboxes. Solid State Commun.2004,130:582-589
    [198]Catherine J. Murphy Nanocubes and Nanoboxes. Science.2002,298:2139.lan C. Scott and Didier Y. R. Stainier.Fishing Out a New Heart. Science.2002,298:2141
    [199]Z. L. Wang. Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. J. Phys. Chem. B.2000,104:1153-1175
    [200]L.S. Xu, X.H. Chen, Y.R. Wu, C.S. Chen, W.H. Li, W.Y. Pan and Y.G. Wang. Solution-phase synthesis of single-crystal hollow Cu2O spheres with nanoholes. Nanotechnology.2006,17:1501-1505
    [201]D. Wang, D. Yu, M. Mo, X. Liu, Y. Qian. Seed-mediated growth approach to shape-controlled synthesis of Cu2O particles. J. Colloid Interface Sci.2003,261: 565-568
    [202]A. Ahmed, N. S. Gajbhiye, A. G. Joshi. Low cost, surfactant-less, one potsynthesis of Cu2O nano-octahedraat room temperature. J. Solid State Chem.2001,184:2209-2214

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700