用户名: 密码: 验证码:
纳米非晶金刚石薄膜在牙科钴铬合金及纯钛表面处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属是口腔义齿修复中必不可少的一种材料。由于口腔内复杂的酸碱环境和微生物环境,金属材料义齿在口腔内使用一段时间后其表面会出现不同程度的腐蚀、变色、细菌粘附等现象,既影响修复体的美观和使用寿命,又会导致一些严重的不良反应和并发症,威胁人体健康。因此对金属义齿材料进行表面处理以改善其表面性能具有十分重要的临床意义。本研究将西安交通大学研制的纳米非晶金刚石薄膜应用于牙科钴铬合金以及纯钛的表面处理,其目的旨在为改善义齿金属材料表面性能探索新的途径,同时也为纳米非晶金刚石薄膜的临床应用提供理论及实验依据。
     本课题研究采用西安交通大学研制的过滤阴极真空电弧沉积系统在牙科钴铬合金及纯钛表面制备纳米非晶金刚石薄膜。首先,采用扫描电镜、原子力显微镜、拉曼光谱以及X射线光电子能谱表征纳米非晶金刚石薄膜的表面形貌、空间结构、元素成分和化学键构成,同时探讨样品偏压这一工艺参数对该薄膜质量的影响。随后,按照医疗器械生物学评价标准,通过体外细胞毒性实验和口腔粘膜接触实验,对纳米非晶金刚石薄膜的生物相容性能进行评价。接下来,采用常规划痕实验,测量不同样品偏压条件下以及Ti和TiN两种中间层预处理条件下纳米非晶金刚石薄膜的膜基临界载荷,并探讨样品偏压和中间层预处理对该薄膜结合强度的影响。最后,采用粗糙度仪和接触角测量系统测量镀膜前后钴铬合金及纯钛表面粗糙度和三种液体接触角,并计算镀膜前后两种牙科金属的表面自由能;通过细菌粘附实验比较镀膜前后钴铬合金及纯钛表面变形链球菌、白色念珠菌、粘性放线菌的粘附数量,并结合表面粗糙度和自由能的变化,深入探讨钴铬合金和纯钛表面所镀纳米非晶金刚石薄膜影响细菌粘附的机制。本课题研究的结果如下:
     1.采用过滤阴极真空电弧沉积系统在钴铬合金及纯钛表面制备的薄膜具有纳米级厚度,由sp~3键和sp~2键碳原子组成,且sp3键含量大于70%,符合纳米非晶金刚石薄膜的质量标准。随样品偏压的增大,两种牙科金属镀膜的sp3键含量均呈现先升高后降低的趋势,钴铬合金和纯钛镀膜的最佳样品偏压分别为200v及250v。
     2.纳米非晶金刚石薄膜的细胞相对增殖率均大于90%,细胞毒性评级≤1级,粘膜刺激指数为0,具备非常良好的生物相容性。
     3.随样品偏压的增大,钴铬合金和纯钛镀膜的结合强度均呈现先升高后降低的趋势,其最佳样品偏压值分别为200v及250v。Ti和TiN两种中间层预处理后,纳米非晶金刚石薄膜与衬底的结合强度显著提高,钴铬合金采用Ti中间层时膜基结合强度最好,纯钛采用TiN中间层时膜基结合强度最佳。
     4.镀膜后钴铬合金及纯钛的表面粗糙度均显著降低,同时,钴铬合金的表面能增大明显,但是纯钛表面能的变化不显著。经纳米非晶金刚石薄膜表面处理后,钴铬合金及纯钛表面变形链球菌、白色念珠菌及粘性放线菌的粘附数量均出现了显著降低,表明纳米非晶金刚石薄膜可以改善这两种义齿金属材料表面的细菌粘附性能。
As a very important dental material, metals are widely used in completeand removable partial dentures. Owing to the complicated microbial andacid-base circumstances in oral cavity, the surfaces of dental metal materialsmay suffer corrosion, discoloration and bacterial adhesion. These phenomenamay not only affect the appearance and useful life of dentures but also lead tosome denture-induced adverse effects and complications which will severelythreaten the health of human body. Therefore, it is very significant to find aneffective method of surface treatment to improve the surface properties of dentalmetal materials. In this study, nanometer amorphous diamond films researchedand developed by Xi'an Jiaotong University were applied to the surfacetreatment of dental Co-Cr alloys and pure Ti. The aims of this study were to finda new method to improve the surface properties of dental metal materials andprovide the theoretical and experimental bases for the clinical applications ofnanometer amorphous diamond films.
     In this study, a filtered cathodic vacuum arc (FCVA) system was used toprepare nanometer amorphous diamond films on dental Co-Cr alloys and pureTi. Then, scanning electronic microscopy (SEM), Atomic force microscopy(AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) wereused to analyze some characteristics of the coatings including the surfacemorphology, microstructure, elemental composition and the chemical bindingstates, and simultaneously the effects of substrate bias voltage on sp3fraction ofthe coatings were investigated. The biocompatibility of the deposited nanometeramorphous diamond films was investigated through in vitro cytotoxicity test andoral mucous membrane irritation test. Using the method of scratch test, thecritical loads of the films deposited at different substrate bias voltages and underthe conditions of Ti and TiN interlayer pretreatment were measured to researchthe effects of substrate bias voltages and interlayer pretreatment on adhesionstrength of nanometer amorphous diamond films. A portable surface roughnesstester and a drop shape analysis system were used to measure respectively theroughness and static contact angle of the coated and uncoated surfaces of Co-Cralloys and pure Ti, and the surface free energy was calculated then. Bycomparing the adhesion of Streptococcus mutans, Actinomyces viscosus andCandida albicans to the coated surfaces with that to the uncoated ones, weinvestigated the effects of nanometer amorphous diamond films deposited ondental Co-Cr alloys and pure Ti on bacterial adhesion. The main results of thisstudy were listed as the following.
     1. The films deposited on the surfaces of dental Co-Cr alloys and pure Tiby the FCVA system had a nano-sized thickness and were composed of sp2andsp3bonded carbon atoms. Over70%of the carbon atoms in the films are sp3bonded. These results indicated that the deposited films came up to thequalitative standards of nanometer amorphous diamond films. With theincreased substrate bias voltages, the changes of sp3fraction in the films deposited on Co-Cr alloys and pure Ti presented a first increasing and thendecreasing tendency. The maximum sp3fraction in the films deposited on Co-Cralloys and pure Ti was obtained respectively at200v and250v.
     2. The cell relative growth rate of nanometer amorphous diamond filmswas over90%and their graduations of cytotoxicity were0or1, which means nocytotoxicity. In addition, their mucosal stimulation index was0, which means nostimulation. Therefore, nanometer amorphous diamond films had verysatisfactory biocompatibility.
     3. With the increased substrate bias voltages, the changes of adhesionstrength of nanometer amorphous diamond films to Co-Cr alloys and pure Tipresented a first increasing and then decreasing tendency. The optimal adhesionstrength of the films to Co-Cr alloys and pure Ti was obtained respectively at200v and250v. Ti and TiN interlayer pretreatment could significantly increasethe adhesion strength of nanometer amorphous diamond films to Co-Cr alloysand pure Ti. The optimal interlayer pretreatment on the substrate of Co-Cr alloysand pure Ti was Ti and TiN interlayer respectively.
     4. After the surface treatment of nanometer amorphous diamond films, thesurface roughness of Co-Cr alloys and pure Ti significantly decreased. Inaddition, the films could significantly increase the surface free energy of Co-Cralloys but had no significant effects on that of pure Ti. Most importantly, afterthe coating surface treatment, the adhesion of Streptococcus mutans,Actinomyces viscosus and Candida albicans to Co-Cr alloys and pure Ti wassignificantly decreased. This result showed that nanometer amorphous diamondfilm surface treatment on dental Co-Cr alloys and pure Ti could significantlyreduce the bacterial adhesion.
引文
[1] R. Dingreville, J.M. Qu, M. Cherkaoui. Surface free energy and its effect on the elasticbehavior of nanosized particles, wires and films.[J]. Journal of the Mechanics andPhysics of Solids.2005,53(8):1827~1854.
    [2]代淑芬.纳米材料的特性和发展.[J].无锡南洋学院学报.2008,7(4):49~53.
    [3]戴达煌.金刚石薄膜沉积制备工艺与应用.[A].北京:冶金工艺出版社.2001:1.
    [4] R.K. Roy, K.R. Lee. Biomedical Applications of Diamond-Like Carbon Coatings: AReview.[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials.2007,83(1):72~84.
    [5] B.K. Tay, X. Shi, H.S. Tan, et al. Raman studies of tetrahedral amorphous carbon filmsdeposited by filtered cathodic vacuum arc.[J]. Surface&Coatings Technology.1998,105(1-2):155~158.
    [6] S. Xu, D. Flynn, B.K. Tay, et al. Mechanical properties and Raman spectra oftetrahedral amorphous carbon films with high sp3fraction deposited using a filteredcathodic arc.[J]. Philosophical Magazine Part B.1997,76(3):351~361.
    [7] D.P. Monaghan, D.G. Teer, P.A. Logan, et al. Deposition of wear resistant coatingsbased on diamond like carbon by unbalanced magnetron sputtering.[J]. Surface&Coatings Technology.1993,60(1-3):525~530.
    [8] Z.Y. Chen, Y.H. Yu, J.P. Zhao. Electrical properties of nitrogen incorporated tetrahedralamorphous carbon films.[J]. Thin Solid Films.1999,339(1-2):74~77.
    [9] S.F. Ahmed, M.W. Moon, K.R. Lee. Enhancement of electron field emission propertywith silver incorporation into diamond-like carbon matrix.[J]. Applied Physics Letters.2008,92(19):193502~193502~3.
    [10] K. Honglertkongsakul, B. Paosawatyanyong, P.W. May. Electrical and opticalproperties of diamond-like carbon films deposited by pulsed laser ablation.[J].Diamond and Related Materials.2010,19(7-9):999~1002.
    [11] M. Smietana, W.J. Bock, J. Szmidt, et al. Substrate effect on the optical properties andthickness of diamond-like carbon films deposited by the RF PACVD method.[J].Diamond and Related Materials.2010,19(12):1461~1465.
    [12]刘声雷. DLC膜化工设备防腐材料的研究.[J].安徽化工.1999(6):32~33.
    [13] A.C. Evans, J. Franks, P.J. Revell. Diamond-like carbon applied to bioengineeringmaterials.[J]. Surface&Coatings Technology.1991,47(1-3):662~667.
    [14] I.R. McColl, D.M. Grant, S.M. Green, et al. Low temperature plasma-assistedchemical vapour deposition of amorphous carbon films for biomedical-polymericsubstrates.[J]. Diamond and Related Materials.1994,3(1-2):83~87.
    [15] C.Q. Zheng, M.C. Zhang, J.G. Ran. Quality of the diamond film and itscharacterization.[J]. Chinese Journal of Materials Research.1997,11(3):231~239.
    [16]宋健民.超硬材料.[A].台湾:全华科技图书股份有限公司.2000,8章:17~41.
    [17] D.S. Grierson, A.V. Sumant, A. Konicek, et al. Thermal Stability and Rehybridizationof Carbon Bonding in Tetrahedral Amorphous Carbon.[J]. Journal of Applied Physics.2010,107(3):033523~033523~5.
    [18] D. Kim, S. Kim. Characteristics of a direct negative carbon ion beam source and AFMobservations of DLC film.[J]. Surface&Coatings Technology.2002,157(1):66~71.
    [19] A.A. Balandin, M. Shamsa, W.L. Liu, et al. Thermal conductivity of ultrathintetrahedral amorphous carbon films.[J]. Applied Physics Letters.2008,93(4):043115~043115~3.
    [20] H. Liang, C. Xian, Y. Li, et al. Synthesis and structure of nitrogenated tetrahedralamorphous carbon films prepared by nitrogen ion bombardment.[J]. Applied SurfaceScience.2011,257(15):6945~6951.
    [21]郭延龙,孙有文,王淑云,等.金属掺杂类金刚石膜的研究进展.[J].纳米科技.2008,5(6):13~16.
    [22] M. Forster, L. Egerhazi, C. Haselberger, et al. Femtosecond laser interaction withpulsed-laser deposited carbon thin films of nanoscale thickness.[J]. Applied Physics A:Materials Science&Processing.2011,102(1):27~33.
    [23]钟科,姚月玲,孙延,等.纳米非晶金刚石薄膜与热凝义齿树脂材料的结合力研究.[J].中国美容医学.2003,12(1):63~65.
    [24]陈钢,赵晓琳,李斌,等.纳米非晶金刚石薄膜与纯钛及钴铬合金表面结合强度的研究.[J].中国美容医学.2008,17(10):1491~1493.
    [25] J. Robertson. Diamond-like amorphous carbon.[J]. Materials Science and Engineering:R: Reports.2002,37(4-6):129~281.
    [26] J.C. Sanchez-Lopez, C. Donnet, J. Fontaine, et al. Diamond-like carbon prepared byhigh density plasma.[J]. Diamond and Related Materials.2000,9(3-6):638~642.
    [27] R.L. Boxman, V. Zhitomirsky, B. Alterkop, et al. Recent progress in filtered vacuumarc deposition.[J]. Surface&Coatings Technology.1996,86(1):243~253.
    [28] A. Grill. Diamond-like carbon: state of the art.[J]. Diamond and Related Materials.1999,8(2-5):428~434.
    [29] O.S. Panwar, N. Rupesinghe, G.A.J. Amaratunga. Field emission from as grown andnitrogen incorporated tetrahedral amorphous carbon/silicon heterojunctions grownusing a pulsed filtered cathodic vacuum arc.[J]. Journal of Vacuum Science&Technology B.2008,26(2):566~575.
    [30] H.S. Zhang, K. Komvopoulos. Direct-current cathodic vacuum arc system withmagnetic-field mechanism for plasma stabilization.[J]. Review of ScientificInstruments.2008,79(7):073905~073905~7.
    [31]韩杰才,朱嘉琦,孟松鹤.过滤阴极真空电弧法制备四面体非晶碳薄膜.[J].功能材料与器件学报.2003,9(2):118~122.
    [32] O.S. Panwar, M.A. Khan, B.S. Satyanarayana, et al. Effect of high substrate bias andhydrogen and nitrogen incorporation on density of states and field-emission thresholdin tetrahedral amorphous carbon films.[J]. Journal of Vacuum Science&TechnologyB.2010,28(2):411~423.
    [33] O.S. Panwar, A.K. Srivastava, S. Kumar, et al. Effect of substrate bias in amorphouscarbon films having embedded nanocrystallites.[J]. Surface&Coatings Technology.2011,206(1):155~164.
    [34] O.S. Panwar, M.A. Khan, A. Basu, et al. Analysis of dielectric constants to determinesp3/sp2ratio and effect of substrate bias on spectroscopic ellipsometric studies oftetrahedral amorphous carbon films.[J]. Indian journal of pure&applied physics.2009,47(2):141~148.
    [35]韩杰才,朱嘉琦.过滤阴极真空电弧制备非晶金刚石红外保护膜.[J].中国有色金属学报.2005,15(11):1795~1799.
    [36]朱嘉琦,孟松鹤,韩杰才,等.衬底偏压对四面体非晶碳薄膜结构和性能的影响.[J].材料研究学报.2004,18(1):76~81.
    [37] Y. Lifshitz. Hydrogen-free amorphous carbon films: correlation between growthconditions and properties.[J]. Diamond and Related Materials.1996,5(3-5):388~400.
    [38] M. Chhowalla, J. Robertson, C.W. Chen, et al. Influence of ion energy and substratetemperature on the optical and electronic properties of tetrahedral amorphous carbon(ta-C) films.[J]. Journal of Applied Physics.1997,81(1):139~145.
    [39]桑利军,陈强.脉冲负偏压对沉积类金刚石薄膜结构和摩擦性能的影响.[J].核技术.2009,32(6):427~430.
    [40] M.C. Polo, J.L. Andujar, A. Hart, et al. Preparation of tetrahedral amorphous carbonfilms by filtered cathodic vacuum arc deposition.[J]. Diamond and Related Materials.2000,9(3-6):663~667.
    [41] V.S. Veerasamy, G.A.J. Amaratunga, W.I. Milne, et al. Optical and electronic propertiesof amorphous diamond.[J]. Diamond and Related Materials.1993,2(5-7):782~787.
    [42] A. Liu, J. Zhu, J. Han, et al. Correlation between substrate bias, growth process andstructural properties of phosphorus incorporated tetrahedral amorphous carbon films.[J]. Applied Surface Science.2007,253(23):9124~9129.
    [43]易树,尹光福,郑昌琼.类金刚石薄膜表面界面特性表征方法以及检测技术.[J].北京生物医学工程.2004,23(2):152~154.
    [44]于峰.机械精度设计与测量技术.[A].北京:北京大学出版社.2008:100~119.
    [45] L.C. Chen, C.C. Huang. Miniaturized3D surface profilometer using digital fringeprojection.[J]. Measurement Science and Technology.2005,16(5):1061~1068.
    [46] S. Chatterjee, S.S. Gadad, K. Tapas, et al. Atomic force microscopy.[J]. Resonance.2010,15(7):622~642.
    [47] D.W.M. Lau, J.G. Partridge, M.B. Taylor, et al. Microstructural investigationsupporting an abrupt stress induced transformation in amorphous carbon films.[J].Journal of Applied Physics.2009,105(8):084302~084302~6.
    [48] A.C. Ferrari. Determination of bonding in diamond-like carbon by Ramanspectroscopy.[J]. Diamond and Related Materials.2002,11(3-6):1053~1061.
    [49] C. Casiraghi, F. Piazza, A.C. Ferrari, et al. Bonding in hydrogenated diamond-likecarbon by Raman spectroscopycam.[J]. Diamond and Related Materials.2005,14(3-7):1098~1102.
    [50] R.E. Shroder, R.J. Nemanich, J.T. Glass. Analysis of the composite structures indiamond thin films by Raman spectroscopy.[J]. Physical Review B.1990,41(6):3738~3745.
    [51] K.W.R. Gilkes, S. Prawer, K.W. Nugent, et al. Direct quantitative detection of the spbonding in diamond-like carbon films using ultraviolet and visible Ramanspectroscopy.[J]. Journal of Applied Physics.2000,87(10):7283~7289.
    [52] S. Prawer, K.W. Nugent, Y. Lifshitz, et al. Systematic variation of the Raman spectra ofDLC films as a function of sp2/sp3composition.[J]. Diamond and Related Materials.1996,5(3-5):433~438.
    [53] P. Merel, M. Tabbal, M. Chaker, et al. Direct evaluation of the sp3content indiamond-like-carbon films by XPS.[J]. Applied Surface Science.1998,136(1-2):105~110.
    [54] L. Li, H. Zhang, Y. Zhang, et al. Structural analysis of arc deposited diamond-likecarbon films by Raman and X-ray photoelectron spectroscopy.[J]. Materials Scienceand Engineering: B.2002,94(1):95~101.
    [55] J. Kulik, Y. Lifshitz, G.D. Lempert, et al. Electron energy loss spectroscopy of massselected ion beam deposited diamond-like carbon.[J]. Journal of Applied Physics.1994,76(9):5063~5069.
    [56] J.J. Cuomo, J.P. Doyle, J. Bruley, et al. Sputter deposition of dense diamond-likecarbon films at low temperature.[J]. Applied physics letters.1991,58(5):466~468.
    [57]何慧,沈家瑞.用接触角法测量聚合物共混体系的表面性能.[J].合成材料老化与应用.2002,31(1):1~6.
    [58]韩玉香,韩平,王永富,等.固体表面自由能及其分量的计算方法(I)—接触角法.[J].辽宁师范大学学报.1995,18(3):214~218.
    [59] C.J. Van Oss, M.K. Chaudhury, R.J. Good. Interfacial Lifshitz-van der Waals and polarinteractions in macroscopic systems.[J]. Chemical Reviews.1988,88(6):927~941.
    [60] C.J. Van Oss. Acid-base interfacial interactions in aqueous media.[J]. Colloids andsurfaces A: Physicochemical and engineering aspects.1993,78:1~49.
    [61]钟科.纳米非晶金刚石薄膜的生物相容性及与义齿树脂间结合强度研究.第四军医大学硕士学位论文.2003:21~31.
    [62]孙延,姚月玲,黎永钧,等.纳米非晶金刚石薄膜对树脂人工牙耐磨性及其影响因素的实验研究.[J].中国美容医学.2004,13(1):60~62.
    [63]陈钢,姚月玲,李斌,等.纳米非晶金刚石薄膜对纯钛腐蚀性能的影响.[J].中国美容医学.2005,14(1):60~62.
    [64]陈钢,赵晓琳,李斌,等.纳米非晶金刚石薄膜对钴铬合金表面腐蚀性能的影响.[J].中国美容医学.2008,17(9):1342~1344.
    [65]李斌,姚月玲,安银东,等.纳米非晶金刚石膜抗口腔白色念珠菌粘附作用的研究.[J].中国美容医学.2005,14(2):203~204.
    [66]李斌.纳米非晶金刚石薄膜改善义齿基托细菌粘附的研究.第四军医大学硕士学位论文.2005:35~48.
    [67] M. Ban, T. Hasegawa. Internal stress reduction by incorporation of silicon in diamondlike carbon films.[J]. Surface and Coatings Technology.2003,162(1):1~5.
    [68]邓兴瑞,冷永祥,孙鸿,等.类金刚石薄膜在不锈钢表面结合强度及耐腐蚀性研究.[J].功能材料.2009,40(6):1009~1012.
    [69]胡德平,刘成龙,齐民,等. Si过渡层对梯度影响类金刚石薄膜结合力的影响研究.[J].功能材料.2005,36(10):1561~1567.
    [70] D. Sheeja, B.K. Tay, S.P. Lau, et al. Tribological characterisation of diamond likecarbon coatings on Co–Cr–Mo alloy for orthopaedic applications.[J]. Surface andCoatings Technology.2001,146-147:410~416.
    [71]钛过镀层对类金刚石薄膜的膜基结合力以及摩擦学性能的影响.[J].功能材料.2008,39(8):1340~1343.
    [72] N.W. Khun, E. Liu. Effect of Sputtering Power on Structure, Adhesion Strength andCorrosion Resistance of Nitrogen Doped Diamond-Like Carbon Thin Films.[J].Journal of Nanoscience and Nanotechnology.2011,11(6):5292~5298.
    [73] C. Wei, J.Y. Yen. Effect of film thickness and interlayer on the adhesion strength ofdiamond like carbon films on different substrates.[J]. Diamond and Related Materials.2007,16(4-7):1325~1330.
    [74]张文军蒋翔六.强碳化物形成元素衬底上金刚石薄膜的生长特性.[J].薄膜科学与技术.1994,2:123~128.
    [75] N.W. Khun, E. Liu. Investigation of structure, adhesion strength, wear performanceand corrosion behavior of platinum/ruthenium/nitrogen doped diamond-like carbonthin films with respect to film thickness.[J]. Materials Chemistry and Physics.2011,126(1-2):220~226.
    [76] D. Sheeja, B.K. Tay, K.W. Leong, et al. Effect of film thickness on the stress andadhesion of diamond-like carbon coatings.[J]. Diamond and Related Materials.2002,11(9):1643~1647.
    [77] J.B. Pethica. Ion Implantation into Metals.[A]. Oxford: Pergainon Press.1982:147.
    [78] D. Sheeja, B.K. Tay, S.P. Lau, et al. Tribological properties and adhesive strength ofDLC coatings prepared under different substrate bias voltages.[J]. Wear.2001,249(5-6):433~439.
    [79] X. Gui, Y.Y. Su, S.Y. Li, et al. Tribological properties of hydrogenated amorphouscarbon (aC: H) films on aluminium alloy substrate under different substrate biasvoltages.[J]. Materials Science Forum.2011,687:784~790.
    [80] R. Koppert, D. Goettel, O. Freitag-Weber, et al. Nickel containing diamond like carbonthin films.[J]. Solid State Sciences.2009,11(10):1797~1800.
    [81]李培勋,王天民,钟玉荣,等.基体预处理方式对合成类金刚石薄膜的影响.[J].兰州大学学报.2001,37(4):46~50.
    [82] K. Shibuki, K. Sasaki, M. Yagi, et al. Diamond coating on WC-Co and WC for cuttingtools.[J]. Surface and Coatings Technology.1994,68-69:369~373.
    [83]李红轩,徐洮,陈建敏,等.预处理对不锈钢表面沉积类金刚石薄膜的影响.[J].电子显微学报.2003,22(6):545~546.
    [84] W.D. Fan, X. Chen, K.J. Agannadham, et al. Diamond-ceramic Composite ToolCoatings.[J]. Journal of materials research.1994,9(11):2850~22867.
    [85] M. Nesladek, K. Vandierendonck, C. Quaeyhaegens, et al. Adhesion of DiamondCoatings on Cemented Carbides.[J]. Thin Solid Films.1995,270(1-2):184~188.
    [86] M. Alam, D.E. Peebles, D.R. Tallant. Diamond Deposition onto WC-26%Co CuttingTool Material: Coating Structure and Interfacial Bond Strength.[J]. Thin Solid Films.1997,300(1-2):164~170.
    [87]方莉俐. CVD金刚石薄膜涂层衬底预处理方法.[J].人工晶体学报.2004,33(6):1060~1064.
    [88] A. Raveh, L. Martinu, H.M. Hawthorne, et al. Mechanical and tribological propertiesof dual-frequency plasma-deposited diamond-like carbon.[J]. Surface and CoatingsTechnology.1993,58(1):45~55.
    [89] G. Wu, L. Sun, W. Dai, et al. Influence of interlayers on corrosion resistance ofdiamond-like carbon coating on magnesium alloy.[J]. Surface and CoatingsTechnology.2010,204(14):2193~2196.
    [90] H. Ronkainen, J. Vihersalo, S. Varjus, et al. Improvement of a-C:H film adhesion byintermediate layers and sputter cleaning procedures on stainless steel, alumina andcemented carbide.[J]. Surface and Coatings Technology.1997,90(3):190~196.
    [91] A.A. Voevodin, C. Rebholz, J.M. Schneider, et al. Wear resistant composite coatingsdeposited by electron enhanced closed field unbalanced magnetron sputtering.[J].Surface and Coatings Technology.1995,73(3):185~197.
    [92] I.K. Konyashin, M.B. Guseva, V.G. Babaev, et al. Diamond Films Deposited onWC-Co Substrates by Use of Barrier Interlayers and Nano-grained Diamond Seeds.[J]. Thin Solid Films.1997,300(1-2):18~24.
    [93] E.M. Regan, J.B. Uney, A.D. Dick, et al. Differential patterning of neuronal, glial andneural progenitor cells on phosphorus-doped and UV irradiated diamond-like carbon.[J]. Biomaterials.2000,31(2):207~215.
    [94] H.S. Zhang, J.L. Endrino, A. Anders. Comparative surface and nano-tribologicalcharacteristics of nanocomposite diamond-like carbon thin films doped by silver.[J].Applied Surface Science.2008,255(5):2551~2556.
    [95] H. Wong, Y.M. Foong, D.H.C. CHUA. Improving the conductivity of diamond-likecarbon films with zinc doping and its material properties.[J]. Applied Surface Science.2011,257(22):9616~9620.
    [96] A. Sen, S. Barizuddin, M. Hossain, et al. Preferential cell attachment to nitrogendoped diamond-like carbon (DLC:N) for the measurement of quantal exocytosis.[J].Biomaterials.2009,30(8):1604~1612.
    [97] A.A. Voevodin, M.S. Donley, J.S. Zabinski. Pulsed laser deposition of diamond-likecarbon wear protective coatings: a review.[J]. Surface and Coatings Technology.1997,92(1-2):42~49.
    [98] J.J. Cuomo, J.P. Doyle, J. Bruley, et al. Sputter deposition of dense diamond-likecarbon films at low temperature.[J]. Applied physics letters.1991,58(5):466~468.
    [99] W.J. Liu, X.J. Guo, C.L. Chang, et al. Diamond-like carbon thin films synthesis bylow temperature atmospheric pressure plasma method.[J]. Thin Solid Films.2009,517(14):4229~4232.
    [100] J. Robertson. Deposition mechanisms for promoting sp3bonding in diamond likecarbon.[J]. Diamond and Related Materials.1993,2(5-6):984~989.
    [101]余志芬,张向宇.细菌黏附的研究进展.[J].国际口腔医学杂志.2009,36(4):448~450.
    [102]王永生.两种不同材料总义齿基托菌斑与义齿性口炎的临床分析.[J].现代口腔医学杂志.2004,18(6):557~559.
    [103]王萍.义齿性口炎的研究.[J].国外医学口腔医学分册.1999,26(5):275~277.
    [104] N. Okita, D. rstavik, J. rstavik, et al. In vivo and in vitro studies on soft denturematerials: microbial adhesion and tests for antibacterial activity.[J]. Dental Materials.1991,7(3):155~160.
    [105] R.D. Cannon, K.M. Lyons, K. Chong, et al. Adhesion of yeast and bacteria to oralsurfaces.[J]. Methods in Molecular Biology.2010,666(2):103~124.
    [106] R. Bürgers, W. Schneider-Brachert, M. Rosentritt, et al. Candida albicans adhesion tocomposite resin materials.[J]. Clinical Oral Investigations.2009,13(3):293~299.
    [107] T. Pereira-Cenci, A.A. Del Bel Cury, W. Crielaard, et al. Development ofCandida-associated denture stomatitis: new insights.[J]. Journal of Applied OralScience.2008,16(2):86~94.
    [108] C. Jespersgaard, G. Hajishengallis, M.W. Russell, et al. Identification andCharacterization of a Nonimmunoglobulin Factor in Human Saliva That InhibitsStreptococcus mutans Glucosyltransferase.[J]. Infection and immunity.2002,70(3):1136~1142.
    [109] R.J. Gibbons, E.C. Moreno, I. Etherden. Concentration-Dependent Multiple BindingSites on Saliva-Treated Hydroxyapatite for Streptococcus sanguis.[J]. Infection andimmunity.1983,39(1):280~289.
    [110] J.M. Tanzer, L. Grant, A. Thompson, et al. Amylase-binding proteins A (AbpA) and B(AbpB) differentially affect colonization of rats' teeth by Streptococcus gordonii.[J].Microbiology.2003,149(9):2653~2660.
    [111]逯宜,姚月玲,赵信义.义齿PMMA基托表面粗糙度影响的实验研究.[J].中国美容医学.2007,16(4):492~493.
    [112] D.R. Radford, S.J. Challacombe, J.D. Walter. Denture plaque and adherence ofCandida albicans to denture-base materials in vivo and in vitro.[J]. Critical Reviewsin Oral Biology and Medicine.1999,10(1):99~116.
    [113]柳云霞,牟月照.义齿性口炎的研究进展.[J].口腔颌面修复学杂志.2007,8(2):151~153.
    [114] A.H. Weerkamp, H.M. Uyen, H.J. Busscher. Effect of zeta potential and surfaceenergy on bacterial adhesion to uncoated and saliva-coated human enamel and dentin.[J]. Journal of dental research.1988,67(12):1483~1487.
    [115] M. Quirynen, C.M. Bollen. The influence of surface roughness and surface freeenergy on supra and subgingival plaque formation in man.[J]. Journal of ClinicalPeriodontology.1995,22(1):1~14.
    [116] J. Wang, N. Huang, P. Yang, et al. The effects of amorphous carbon films deposited onpolyethylene terephthalate on bacterial adhesion.[J]. Biomaterials.2004,25(16):3163~3170.
    [117] C.I. Pereni, Q. Zhao, Y. Liu, et al. Surface free energy effect on bacterial retention.[J].Colloids and Surfaces B: Biointerfaces.2006,48(2):143~147.
    [118] C. Liu, Q. Zhao, Y. Liu, et al. Reduction of bacterial adhesion on modified DLCcoatings.[J]. Colloids and Surfaces B: Biointerfaces.2008,61(2):182~187.
    [119] L. Mei, H.J. Busscher, H.C. van der Mei, et al. Influence of surface roughness onstreptococcal adhesion forces to composite resins.[J]. Dental Materials.2011,27(8):770~778.
    [120] R. Taylor, C. Maryan, J. Verran. Retention of oral microorganisms on cobaltchromium alloy and dental acrylic resin with different surface finishes.[J]. TheJournal of prosthetic dentistry.1998,80(5):592~597.
    [121]李笑梅,郭天文.口腔修复材料的表面粗糙度及表面自由能对微生物粘附的影响.[J].第二军医大学学报.2001,22(5):487~489.
    [122] M. Quirynen, M. Marechal, H.J. Busscher, et al. The influence of surface free energyand surface roughness on early plaque formation.[J]. Journal of ClinicalPeriodontology.1990,17(3):138~144.
    [123] R. McNab, A.R. Holmes, J.M. Clarke, et al. Cell surface polypeptide CshA mediatesbinding of Streptococcus gordonii to other oral bacteria and to immobilizedfibronectin.[J]. Infection and Immunity.1996,64(10):4204~4210.
    [124] A. Shimotoyodome, T. Koudate, H. Kobayashi, et al. Reduction of Streptococcusmutans Adherence and Dental Biofilm Formation by Surface Treatment withPhosphorylated Polyethylene Glycol.[J]. Antimicrobial Agents and Chemotherapy.2007,51(10):3634~3641.
    [125] M. Katsikogianni, I. Spiliopoulou, D.P. Dowling, et al. Adhesion of slime producingStaphylococcus epidermidis strains to PVC and diamond-like carbon/silver/fluorina-ted coatings.[J]. Journal of materials science: Materials in medicine.2006,17(8):679~689.
    [126] S. Tsuneda, H. Aikawa, H. Hayashi, et al. Extracellular polymeric substancesresponsible for bacterial adhesion onto solid surface.[J]. FEMS Microbiology Letters.2003,223(2):287~292.
    [127] S.T. Jackson, R.G. Nuzzo. Determining hybridization differences for amorphouscarbon from the XPS C1s envelope.[J]. Applied Surface Science.1995,90(2):195~203.
    [128]尹路,郭天文.纯钛及钛合金的表面修饰.[J].口腔颌面修复学杂志.2006,9(4):295~298.
    [129]郭天文.口腔科用钛理论和技术.[A].人民军医出版社.2005:101~111.
    [130] G. Irmer, A. Dorner-Reisel. Micro-Raman Studies on DLC coatings.[J]. AdvancedEngineering Materials.2005,7(8):694~705.
    [131]中华人民共和国国家标准GB/T16886.医疗器械生物学评价.2003(第五部分):体外细胞毒性试验.
    [132] T. Tsuchiya. Study on the standardization of cytotoxicity test and new standardreference materials useful for evaluating the safety of biomaterials.[J]. Journal ofBiomaterials Applications.1994,9(2):138~157.
    [133]吕晓迎, H.F Ka.牙科材料细胞毒性评定的新方法.[J].中华口腔医学杂志.1995,30(6):377~379.
    [134]中华人民共和国国家标准GB/T16886.医疗器械生物学评价.2005(第十部分):刺激与迟发型超敏反应试验(附录B).
    [135]顾宜.材料科学与工程基础.[A].化学工业出版社.2011(2):95~96.
    [136] M. Grischke, A. Hieke, F. Morgenweck, et al. Variation of the wettability ofDLC-coatings by network modification using silicon and oxygen.[J]. Diamond andRelated Materials.1998,7(2-5):454~458.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700