用户名: 密码: 验证码:
Ti6Al4V表面微弧氧化生物涂层结构修饰与磷灰石形成动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用微弧氧化法在Ti6Al4V合金表面制备了TiO_2基含磷和含钙磷微弧氧化涂层。通过后续碱热处理对微弧氧化涂层进行表面改性,并采用模拟体液(SBF)浸泡在碱热处理涂层表面形成仿生磷灰石。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、X-射线光电子谱(XPS)、扫描饿歇纳米探针(AES)、傅立叶变化红外光谱(FT-IR)、透射电子显微镜(TEM)等分析手段研究了微弧氧化涂层碱热处理前后、SBF浸泡前后表面的显微组织结构。深入探讨了碱热处理涂层的形成过程以及诱导仿生磷灰石的机理,并初步评价了碱热处理涂层表面的MG63细胞繁殖行为。
     以(NaPO_3)_6+NaOH为电解液,制备了TiO_2基含磷微弧氧化涂层(PW) (注:P表示含磷,W表示未修饰涂层)。以Ca(H_2PO_4)_2+Ca(CH_3COO)_2+ EDTA-2Na+NaOH为电解液,制备了TiO_2基含钙磷微弧氧化涂层(CPW) (注:CP表示含钙磷,W表示未修饰涂层)。在一定电压下,钛合金表面的多孔钝化膜被击穿,表面被氧化,溶液中的PO_4~(3-)、CaY~(2-)和OH~-等负离子将会被注入涂层中。达到预设电压后,涂层生长分为快速和慢速生长两个阶段。300V下制备PW和CPW涂层表面具有均匀的多孔结构。随着电压升高,涂层中形成金红石相,表面变得粗糙,微孔孔径增大,微孔密度降低,涂层厚度增加,且CPW涂层中钙磷含量及钙磷比增加。在涂层内部Ti、O、Ca和P等元素具有梯度分布特征,膜基界面结合良好。
     碱处理过程中,PW和CPW涂层表面的Ca、P和Al发生溶解,涂层中的TiO_2相受到碱溶液中OH-离子的攻击形成HTiO_3-离子。对于碱处理PW涂层(PA)(注:A表示碱处理),HTiO_3-离子进一步与碱溶液中的Na+离子反应形成钛酸钠水合物,且该水合物交错分布形成多孔网络状形貌。后续热处理(400~700℃)改变了PA涂层的表面形貌,同时钛酸钠水合物出现脱水并晶化形成Na_2Ti_9O_(19)相。对于碱处理CPW涂层(CPA)(注:A表示碱处理),HTiO_3-离子进一步吸引碱溶液中溶解的Ca~(2+)离子,在涂层表面形成片状钛酸钙水合物,最终CPA涂层表面形成蜂窝状结构。提高碱浓度,有利于钛酸钙水合物形成。CPA涂层经过后续热处理(400~800℃),涂层表面的钛酸钙水合物也出现脱水并晶化形成CaTi_21O_38以及CaTiO_3,同时表面形貌发生变化。
     由于钙的引入,CPW涂层的磷灰石诱导能力高于PW涂层。低电压(200及250V)形成的CPW涂层由于表面释放的钙磷较少,相对降低了SBF的过饱和度,从而降低了磷灰石的诱导能力。高电压(350V~450V)会促使涂层中形成大量的金红石,而金红石的磷灰石诱导能力比锐钛矿差,高电压也降低了涂层的磷灰石诱导能力。因此,适中的电压(300V)制备的CPW涂层有利于磷灰石的形成。CPW涂层经过直接热处理(400~800℃)以后,涂层中非晶态磷酸钙晶化形成Ca_3(PO_4)_2。热处理导致了涂层的钙磷离子释放能力下降,进一步导致了涂层的磷灰石诱导能力降低。
     PW和CPW涂层经过碱处理以后,磷灰石诱导能力明显提高。原因是SBF浸泡过程中,涂层表面钛酸盐中Ca2+和Na+离子与SBF中的H3O+离子发生离子交换,形成了丰富的Ti-OH功能团,促进了磷灰石的形核生长。后续的热处理降低了钛酸盐中Ca~(2+)和Na~+离子的释放能力,从而降低了Ti-OH功能团的形成能力,进一步降低了磷灰石的诱导能力。但对于800℃处理CPA涂层具有良好的磷灰石诱导能力。原因是涂层中形成了钙钛矿CaTiO_3,而钙钛矿CaTiO_3( 0 22)晶面与HA(0001)晶面具有良好的晶体学匹配,可能为磷灰石的形核提供良好的形核位点,两者之间可能形成较小的接触角。所有涂层诱导的仿生磷灰石具有以下特征:含有CO_3~(2-)、HPO_4~(2-)功能团以及Mg~(2+)离子等,多孔纳米网络状结构和可控的结晶度,且磷灰石在(0001)晶面上具有定向生长特征。Ca_(10)(PO_4)_6(CO_3)_(0.5)(OH)和Ca_9(HPO_4)_(0.5)(P O_4)_5(CO_3)_(0.5)(OH)在热力学和动力学上讲具有形核长大优势。
     碱处理、碱热处理以及热处理提高了微弧氧化涂层表面的润湿性,增大了涂层表面的粗糙度。MG63细胞在PW、CPW、PA和CPA涂层表面展现了良好的繁殖能力。
     综上,微弧氧化电压及电解液组成对涂层的组织结构有较大影响。微弧氧化涂层经过碱热处理形成了特殊的表面结构,有利于仿生磷灰石的形成。磷灰石的形成主要受到异质形核能及涂层表面形貌的影响。SBF过饱和度以及晶核与基体的接触角是决定异质形核能大小的两个重要因素。本文中影响涂层表面附近SBF的过饱和度的主要因素有:Ti-O结构对钙磷离子的吸附、Ti-OH功能团的形成和涂层中钙磷的释放含量。磷灰石晶体结构与基体涂层晶体结构的匹配关系对接触角可能有影响。涂层表面具有合适的粗糙度、润湿性则有利于细胞繁殖。
TiO_2-based coatings containing P (PW), as well as containing Ca and P (CPW), were prepared on the surface of Ti6Al4V by microarc oxidation (MAO). Alkali- and heat-treatment was proposed to modify the surfaces of the MAO coatings for improving their apatite-forming ability. Biomimetic apatite was obtained by immersing the modified MAO coatings in a simulated body fluid (SBF). The surface structures of the non- and modified MAO coatings before and after SBF immersion were analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM) etc.. The formation mechanism of alkali- and heat-treated MAO coatings and their inducation mechanism for biomimetic apatite formation were disscused thoroughly. In addition, the preliminary investigations regarding to the MG63 cell proliferations on the surfaces of the non- and modified MAO coatings were conducted in this work.
     An electrolyte containing (NaPO_3)6 and NaOH was used to prepare the PW coatings. And the CPW coatings were prepared in an electrolyte containing Ca(CH_3COO)_2·H_2O, Ca(H_2PO_4)_2·H_2O, EDTA-2Na and NaOH. Under certain applied voltage, the initial passivating film on the surface of Ti6Al4V was broken, and the surface of Ti_6Al_4V was oxidized. Under the applied electric field, the negatively charged PO_4~(3-), CaY~(2-) and OH~- ions etc. could be injected into the MAO coatings. Under the setting voltage, the formation of the MAO coatings shows two stages of quick and slow growth. The MAO coatings formed at 300V show uniform surfaces with porous structure. With increasing the applied voltage, the rutile was formed in the MAO coatings, and the surfaces of the MAO coatings became rougher. At the same time, the thickness of the MAO coatings and the size and number of the MAO pores increased. Moreover, the contents of the Ca and P and the Ca/P ratio in the CPW coatings also increased. In the MAO coatings Ti, O, Ca and P atoms show a graded distribution. In addition, the PW and CPW coatings both show good adhesion with the Ti6Al4V substrate.
     During the alkali treatment process, the Ca, P and Al of the PW and CPW coatings were dissolved into the alkali solution. TiO_2 phase of the PW and CPW coating was attacked by OH~- ions to form HTiO_3~- ions. In the case of alkali-treated PW coating (PA), the HTiO_3~- ions could absorb Na~+ ions from the alkali solution to form sodium titanate hydrates. And a network structure was formed on the surface of the PA coating by the interlacement of the sodium titanate hydrates. After heat-treatment of the PA coating at 400~700℃, the surface morphology of the PA was changed and the sodium titanate hydrates were dehydrated and then crystallized forming Na2Ti9O19 phase. In the case of alkali-treated CPW coating (CPA), the negatively charged HTiO_3- ions could be combined with released Ca2+ ions in alkali solution, forming calcium titanate hydrates with flake-like morphology. And the surface of the CPA coating shows a honeycombed structure. Increasing the alkali concentration facilitates the formation of calcium titanate hydrates. After heat-treatment of the CPA coating at 400~800℃, the surface morphology of the CPA was altered and the calcium titanate hydrates was dehydrated and then crystallized forming CaTi21O_38 and CaTiO_3 phases.
     The CPW coating shows higher apatite-forming ability compared with the PW coating due to the introducation of Ca element. In the case of the CPW coatings formed at low applied voltage (200 and 250V), the contents of the Ca and P released from these coatings were little and then the SBF supersaturation decreased relatively, which could futher lower the apatite-forming ability of these coatings. High applied voltages (350~450V) would lead to the formation of rutile in the MAO coatings, which does not facilitate the apatite formation. Thus the CPW coating formed at moderate applied voltage of 300V shows good apatite-forming ability. After only heat-treatment of the CPW coatings at 400~800℃, the amorphous calcium phosphate was crystallized to form Ca_3(PO_4)_2 phase. Moreover, the ability to release Ca and P of the CPW coating decreased, resulting in a low apatite-forming ability.
     After alkali-treatment, the apatite-forming ability of the PW and CPW coatings were improved. The reseaon for this is that abundant Ti-OH groups were formed on the surfaces of the PA and CPA coatings during the SBF immersion process via an ionic exchange between Ca~(2+) and Na~+ ions of the titanates and H3O+ ions of the SBF. The subsequent heat-treatment of the PA and CPA coatings decreased their ability to release Ca2+ and Na+ ions, thus decreasing the formation ability of Ti-OH group, which will further result in a lower apatite-forming ability. However the CPA coating after heat-treatment at 800oC shows good apatite-forming ability due to the formation of perovskite CaTiO_3 phase. The perovskite CaTiO_3 ( 0 22) plane has good crystallographic matching with HA (0001) plane probably providing good sites for apatite nucleation by the epitaxial deposition process, probably forming a small contacting angle between CaTiO_3 and apatite. Biomimetic apatite induced by all the coatings show important characters including: 1) containing CO_3~(2-), HPO_4~(2-) and Mg~(2+) ions etc., 2) pore networks on the nanometer scale and 3) controllable crystallinity. And the apatite is oriented to the (0001) crystal plane. The Ca_(10)(PO_4)_6(CO_3)_(0.5)(OH) and Ca_9(HPO_4)_(0.5)(PO_4)_5(CO_3)_(0.5)(OH) were formed easily relatively according to the analysis of thermodynamics and kinetics.
     The roughness and wetting ability of the MAO coatings were improved by alkali-treatment, alkali- and heat-treatment and heat-treatment. The PW, CPW, PA and CPA coatings can provide surfaces suitable for the proliferation of the MG63 cells.
     In short, the applied voltage and electrolyte composition have a significant effect on the structures of the MAO coatings. The alkali- and heat-treatment of the MAO coatings result in special surface structures, facilitating the apatite formation. In this work, apatite formation and growth were mainly affected by the heterogeneous nucleation energy and the surface morphology of the coatings. The SBF supersaturation and the contacting angle between apatite nucleus and substrate have effects on the heterogeneous nucleation energy. In this work, the main factors to affect the SBF supersaturation could involove: 1) the absorption of Ti-O band to Ca2+ ions and phosphate radicals etc., 2) the formation of Ti-OH groups and 3) the contents of Ca and P released from the coating surfaces. In addition, the crystallographic matching relation of apatite and substrate could affect the contacting angle. Furthermore, the coatings with moderate roughness and wetting ability facilitate the cell proliferation.
引文
1 B. D. Ratner, A. S. Hoffman. Biomaterial Science: an Introduction to Materials in Medicine. Academic Press. 2000
    2 J. B. Black, J. D. Bronzino. Biomaterials: Principles and Applications. Boca Raton: CRC Press. 2003
    3 S. I. Stupp, P. V. Baun. Molecular Manipulation of Microstructures: Biomaterials Ceramics and Semiconductors. Science. 1997, 277:1242~1247
    4 B. J. M. Dekker. inc. New York: New York University Publication. 1992
    5崔福斋,冯庆玲.生物材料学.北京.清华大学出版社. 2004, 1~2
    6 X. Y. Liu, K. C. Paul, C. X. Ding. Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications. Materials Science Engineering R. 2004, 47:49~121
    7 V. Biehl, J. Breme. Metallic Biomaterials. Materialwissenschaft Und Werkstofftechnik. 2001, 32:137~141
    8 C. G. Zhang, Y. Leng, J. Y. Chen. Elastic and Plastic Behavior of Plasma-Sprayed Hydroxyapatite Coatings on a Ti6Al4V Substrate. Biomaterials. 2001, 22:1357~1363
    9 H. Li, K. A. Khor, P. Cheang. Impact Formation and Microstructure Characterization of Thermal Sprayed Hydroxyapatite/Titania Composite Coatings. Biomaterials. 2003, 24:949~957
    10 V. Deram, C. Minichiello, R. N. Vannier, A. L. Maguer, L. Pawlowski, D. Murano. Microstructural Characterizations of Plasma Sprayed Hydroxyapatite Coatings. Surface and Coatings Technology. 2003, 166:153~159
    11 X. B. Zheng, M. H. Huang, C. X. Ding. Bond Strength of Plasma-Sprayed Hydroxyapatite/Ti Composite Coatings. Biomaterials. 2000, 21:841~849
    12 X. Nie, A. Leyland, A. Matthews. Deposition of Layered Bioceramic Hydroxyapatite/TiO2 Coatings on Titanium Alloys Using a Hybrid Technique of Microarc Oxidation and Electrophoresis. Surface and Coatings Technology. 2000, 125:407~414
    13 Y. M. Zhang, P. Bataillon-Linez, P. Huang, Y. M. Zhao, Y. Han, M. Traisnel,K. W. Xu, H. F. Hildebrand. Surface Analyses of Microarc Oxidized and Hydrothermally Treated Titanium and Effect on Osteoblast Behavior. J. of Biomedical Materials Research. 2004, 68A:383~391
    14 L. H. Li, H. W. Kim, S. H. Lee, Y. M. Kong, H. E. Kim. Biocompatibility of Titanium Implants Modified by Microarc Oxidation and Hydroxyapatite Coating. J. of Biomedical Materials Research. 2005, 73A:48~54
    15 T. Kokubo, H. M. Kim, M. Kawashita, T. Nakamura. Bioactive Metals: Preparation and Properties. J. of Materials Science: Materials in Medicine. 2004, 15:99~107
    16 M. Wang. Developing Bioactive Composite Materials for Tissue Replacement. Biomaterials. 2003, 24:2133~2151
    17 S. K. Kalpana. Biomaterials in Total Joint Replacement. Colloids and Surfaces B: Biointerfaces. 2004, 39:133~142
    18 D. G. Guo, K. W. Xu, X. Y. Zhao, Y. Han. Development of a strontium-containing Hydroxyapatite Bone Cement. Biomaterials. 2005, 26:4073~4083
    19 A. Yasukawa, M. Kidokoro, K. Kandori, T. Ishikawa. Preparation and Characterization of Barium-Strontium Hydroxyapatites. J. of Colloid and Interface Science. 1997, 191:407~415
    20 A. Yasukawa, M. Nakajima, K. Kandori, T. Ishikawa. Preparation and Characterization of Carbonated Barium Hydroxyapatites. J. of Colloid and Interface Science. 1999, 212:220~227
    21 E. F. Morgan, D. N. Yetkinler, B. R. Constantz, R. H. Dauskardt. Mechanical Properties of Carbonated Apatite Bone Mineral Substitute: Strength, Fracture and Fatigue Behavior. J. of Materials Science: Materials in Medicine. 1997, 8:559~570
    22 H. Tohda, M. Okazaki, T. Yanagisawa, J. Takahashi. Transmission Electron Microscopic Observation of Heterogeneous Fluoridated Hydroxyapatites. Biomaterials. 1995, 16:945~950
    23 J. Christoffersen, M. R. Christoffersen, N. Kolthoff. Effects of Strontium Ions on Growth and Dissolution of Hydroxyapatite and on Bone Mineral Detection. Bone. 1997, 20:47~54
    24 D. Fcm. Relation between Apatite Solubility and Anticariogenic Effect of Fluoride. Nature. 1973 :243~420
    25 M. Okazaki. Heterogeneous Synthesis of Fluoridated Hydroxyapatites. Biomaterials. 1992, 13:749
    26 M. Okazaki, H. Tohda, T. Yanagisawa. Heterogeneous Fluoridated Apatites Synthesized with a Three-Step Fluoride Supply System. Biomaterials. 1998, 19:919
    27 M. Okazaki, H. Tohda, T. Yanagisawa. Differences in Solubility of Two Types of Heterogeneous Fluoridated Hydroxyapatites. Biomaterials. 1998, 19:611
    28 S. Overgaard, K. Syballe, M. Lind. Resorption of Hydroxyapatite and Fluorapatite Coating in Man. J Bone Joint. Surg[Br]. 1997, 79B:654
    29 E. Landi, G. Celotti, G. Logroscino, A. Tampieri. Carbonated Hydroxyapatite as Bone Substitute. J. of the European Ceramic Society. 2003, 23:2931~2937
    30 R. Z. LeGros, O. R. Trautz, J. P. Legros. Apatite Crystallities: Effects of Carbonate on Morphology. Science. 1967, 155:1409
    31 M. Okazaki, J. Takahashi. Synthesis of Functionally Graded Co3 Apatite as Surface Biodegradable Crystals. Biomaterials. 1999, 20:1073
    32母瑞虹,赵谌.氟羟磷灰石和含碳酸盐氟羟灰石离解度的比较研究.第四届全国口腔材料学术交流会.论文汇编. 1998, 18
    33方玉,王建平,母瑞虹.含碳酸盐氟羟磷灰石与羟磷灰石的表面反应及其对细胞附着的影响.第四届全国口腔材料学术交流会.论文汇编. 1998, 30
    34丁宁,赵谌,牛景路.含碳酸盐氟羟磷灰石-兔骨内的动物试验观察.第四届全国口腔材料学术交流会.论文汇编. 1998, 37
    35 N. Tamari, M. Mouri, I. Kondo. Mechanical Properties and Existing Phase of Composite Ceramics Obtained by Sintering of a Mixture of Hydroxyapatite and Zirconia. J. of Japanese Ceramic Society. 1987, 95:806~809
    36 E. Champion, S. Gautier, D. Bernacche-Assoliant. Characterization of Hot Pressed Al2O3-platelet Reinforced Hydroxyapatite Composites, J. of Materials Science: Material in Medicine. 1996, 7:125~130
    37 J. D. Santos, R. L. Reis, F. J. Monteiro, J. C. Knowles, G. W. Hastings. Liquid Phase Sintering of Hydroxyapatite Byphosphate and Silicate Glass Additions: Structure and Properties of the Composites. J. of MaterialsScience: Materials in Medicine. 1995, 5:348~352
    38 D. Santos, P. L. Silva, J. C. Knowles, S. Talal, F. J. Monteiro. Reinforcement of Hydroxyapatite by Adding P2O5-CaO Glass with Na2O, K2O and MgO. J. of Materials Science: Materials in Medicine. 1996, 7:187~189
    39 J. C. Knowles, W. Bonfield. Development of a Glass Reinforced Hydroxyapatite with Enhanced Mechanical Properties: The Effect of Glass Composition on Mechanical Properties and Its Relationship to Phase Changes. J. of Biomedical Materials Research. 1993, 27:1591~1598
    40 C. K. Wang, C. P. Ju, J. H. Chern. Effect of Doped Bioactive Glass on Structure and Properties of Sintered Hydroxyapatite. Materials Chemistry and Physics. 1998, 53:138~149
    41 S. J. Kalita, S. Bose, H. L. Hosick, A. Bandyopadhyay. CaO-P2O5-Na2O-Based Sintering Additives for Hydroxyapatite (HAp) Ceramics. Biomaterials 25, 2004:2331~2339
    42 P. E. Wang, T. K. Chaki. Sintering Behaviour and Mechanical Properties of Hydroxyapatite and Dicalcium Phosphate. J. of Materials Science: Materials in Medicine. 1993, 4:150~158
    43 K. Ioku. K. Yanagisawa, N. Yamasaki, H. Kurosawa, K. Shibuya, H. Yokozeki. Preparation and Characterization of Porous Apatite Ceramics Coated withβ-TCP. Biomedical Engineering. 1993, 3(3):137~145
    44 S. Yamada, D. Heymann, J. M. Bouler, G. Daculsi. Osteoclastic Resorption of Biphasic Calcium Phosphate Ceramic in Vitro. J. of Biomedical Materials Research. 1997, 37:346~352
    45 G. Daculsi, R. Z. Le Geros, E. Nery. K. Lynch, B. Kerebel. Transformation of Biphasic Calcium Phosphate [BCP] Ceramics in vitro: Ultrastructural and Physicochemical Characterization. J. of Biomedical Materials Research. 1989, 23:883~894
    46 X. H. Yang, Z. H. Wang. Synthesis of Biphasic Ceramics of Hydroxyapatite andΒ-Tricalcium Phosphate with Controlled Phase Content and Porosity. J Materials Chemistry. 1998, 8(10):2233~2237
    47 J. Peňa, M. Vallet-Regí. Hydroxyapatite, Tricalcium Phosphate and Biphasic Materials Prepared by a Liquid Mix Technique. J. of the European Ceramic Society. 2003, 23:1687~1696
    48 J. X. Wang, W. Q. Chen, Y. B. Li, S. J. Fan, J. Weng, X. D. Zhang. Biological Evaluation of Biphasic Calcium Phosphate Ceramic Vertebral Laminae. Biomaterials. 1998, 19:1387~1392
    49 G. Daculsi. Biphasic Calcium Phosphate Concept Applied to Artificial Bone, Implant Coating and Injectable Bone Substitute. Biomaterials. 1998, 19:1473~1478
    50 G. Georgiou, J. C. Knowles. Glass Reinforced Hydroxyapatite for Hard Tissue Surgery-Part 1: Mechanical Properties. Biomaterials. 2001, 22:2811~2815
    51 M. A. Lopes, F. J. Monteiro, J. D. Santos. Glass-Reinforced Hydroxyapatite Composites: Fracture Toughness and Hardness Dependence on Microstructural Characteristics. Biomaterials, 1999, 20:2085~2090
    52李亚军,阮建明.聚乳酸/羟基磷灰石复合型多孔状可降解生物材料.中南工业大学学报. 2002, 33(3):261~265
    53郭晓东,郑启新,杜靖远.可吸收羟基磷石/聚DL乳酸骨折内固定材料机械强度和生物降解性研究.中国生物医学工程学报. 2001, 20(1):23~28
    54 M. Wang, S. Deb, K. Tanner, W. Bonpeld. Hydroxyapatite-Polyethylene Composites for Bone Substitution: Effects of Silanation and Polymer Grafting. Proc 7th European Conf on Composite. Materials, London, 1996:455~460
    55 C. H. Ristich, M. Plavsic, M. Goosen, L. Sajc, D. Antonovic, B. Bugarski. An Investigation of the Synthesis of Poly(L-Lactide) as a Biodegradable Polymer for Orthopedic Application. J. of Serb Chemical Society. 1996, 61:311~318
    56 L. Rodrigues-Lorenzo, A. Salinas, M. Vallet-Regi, J. San-Roman. Composite Biomaterials Based on Ceramic Polymers. I. Reinforced System Based on Al2O3/PMMA/PLLA. J. of Biomedical Materials Research. 1996, 30:515~22
    57 Q. Liu, J. De-Wijn, C. Van-Blitterswijk. Nano-Apatite/Polymer Composites: Mechanical and Physicochemical Characteristics. Biomaterials. 1997, 18:1263~1269
    58 N. Ignjatovi?, S. Tomi?, M. Daki?, M. Miljkovi?, M. Plav?i?, D. Uskokovi?. Synthesis and Properties of Hydroxyapatite/Poly-L-Lactide CompositeBiomaterials. Biomaterials. 1999, 20:809~816
    59 M. Satoa, E. B. Slamovicha, T. J. Webster. Enhanced Osteoblast Adhesion on Hydrothermally Treated Hydroxyapatite/Titania/Poly(Lactide-Co-Glycolide) Sol-Gel Titanium Coatings. Biomaterials. 2005, 26:1349~1357
    60 M. Wang, R. Joseph, W. Bonfield. Hydroxyapatite-Polyethylene Composites for Bone Substitution: Effects of Ceramic Particle Size and Morphology. Biomaterials. 1998, 19:2357~2366
    61 W. Bonfield, M. D. Grynpas, A. E. Tully, J. Bowman, J. Abram. Hydroxyapatite Reinforced Polyethylene-A Mechanically Compatible Implant Material for Bone Replacement. Biomaterials. 1981, 2:185~186
    62 W. Bonfield. Hydroxyapatite Reinforced Polyethylene as an Analogous Material for Bone Replacement. Ann NY Acad Sci. 1988, 523:173~177
    63 C. Doyle, Z. B. Luklinska, K. E. Tanner, W. Bonteld. An Ultrastructural Study of the Interface between Hydroxyapatite-Polymer Composite and Bone in: Heimke G, Soltesz U, Lee AJC, Editors. Clinical Implant Materials. Amsterdam: Elsevier. 1990 :339~343
    64 K. E. Tanner, R. N. Downes, W. Bonteld. Clinical Applications of Hydroxyapatite Reinforced Materials. British Ceramic Transaction. 1994, 93:104~107
    65 M. Wang, I. M. Ward, W. Bonteld. Hydroxyapatite-Polyethylene Composites for Bone Substitution: Effects of Hydrostatic Extrusion in: Scott ML, Editor. Proc 11th Int Conf Composite Materials. Gold Coast, Australia, July 1997. Cambridge: Woodhead Publishing, 1997, 1:488~95
    66 R. Joseph, K. E. Tanner. Effect of Morphological Features and Surface Area of Hydroxyapatite on the Fatigue Behavior of Hydroxyapatite-Polyethylene Composites. Biomacromolecules. 2005, 6:1021~1026
    67 M. Kikuchi, T. Ikoma, S. Itoh, B. Synthesis of Bone-Like Nanocomposites Using the Self-organization Mechanism of Hydroxyapatite and Collagen. Composites Science and Technology. 2004, 64:819~825
    68 X. L. Cheng, M. Filiaggi, S. G. Roscoe. Electrochemically Assisted Co-precipitation of Protein with Calcium Phosphate Coatings on Titanium Alloy. Biomaterials. 2004, 25:5395~5403
    69徐启文,黄岳山,吴效明.羟基磷灰石复合材料的研究进展.上海生物医学工程. 2003, (24)
    70 M. R. Urist. Bone Formation by Autoinduction. Science. 1965, 150:893
    71 L. LRipamonti. Induction of Bone in Compositites of Osteogonin and Porous Hydroxyapatite in Baboons. Plast Reconstr Surg. 1992, 9:731
    72 G. Y. Pettis. Tissue Response to Composite Ceramic Hydroxyapatite/ Demineralized Bone Implants. J Oral Maxillofac Surg. 1990, 48:1068
    73 M. I. Alam, I. Asahina, K. Ohmamiuda, K. Takahashi, S. Yokota, S. Nomoto. Evaluation of Ceramics Composed of Different Hydroxyapatite to Tricalcium Phosphate Ratios as Carriers for Rhbmp-2. Biomaterials. 2001, 22:1643~1651
    74 M. R. Urist. Bone: Formation by Autoinduction. Science. 1965, 150:893~899
    75 M. R. Urist, B. S. Strstes. Bone Morphogeneticprotein. J. of Dental Research. 1971, 50:1392~1406
    76 E. A. Wang, V. Rosen, J. S. D'Alessandro, M. Bauduy, P. Cordes, T. Harada, D. Israel, R. M. Hewick, K. M. Kerns, P. Lapan, D. P. Luxenberg, D. Maquaid, I. K. Moutsatsos, J. Nove, J. M. Wozney. Recombinant Human Bone Morphogenetic Protein Induces Bone Formation. Proc Natl Acad Sci USA. 1990, 87:2220~2224
    77 J. M. Wozney, V. Rosen, A. J. Celeste, L. M. Mitsock, M. J. Whtters, R. W. Kriz, R. M. Hewick, E. A. Wang. Novel Regulators of Bone Formation: Molecular Clones and Activities. Science. 1988, 242:1528~1533
    78 M. R. Urist, A. Lietze, H. Mizutani, K. Takagi, J. T. Triffitt, J. Amstutz, R. Delange, J. Termine, G. A. M. Finerman. A Bovine Low Molecular Weight Bone Morphogenetic Protein (BMP) Fraction. CORR. 1980, 162:219~232
    79 C. N. Cornell, J. M. Lane. Newest Factors in Fracture Healing. CORR. 1992, 277:297~311
    80 J. E. Aubin, F. Liu. The Osteoblast Lineage in: Principles of Bone Biology. San Diego: Academic Press. 1996 :51~67
    81 M. Lind. Growth Factor Stimulation of Bone Healing. Acta Orthop Scand. 1998, 69(283):1~37
    82 S. T. Yoon, S. D. Boden. Osteoinductive Molecules in Orthopaedics: Basic Science and Preclinical Studies. CORR. 2002, 395:33~43
    83 U. Ripamonti, A. H. Reddi. Tissue Engineering, Morphogenesis, and Regeneration of the Periodontal Tissues by Bone Morphogenetic Proteins. Crit Rev Oral Biol Med. 1997, 8(2):154~163
    84 A. Valentin-Opran, J. Wozney, C. Csimma, L. Lilly, G. E. Riedel. Clinical Evaluation of Recombinant Human Bone Morphogenetic Protein-2. CORR. 2002, 395:110~120
    85 W. V. Giannobile. Periodontal Tissue Regeneration by Polypeptide Growth Factors and Gene Transfer. In: Tissue Engineering: Applications in Maxillofacial Surgery and Periodontics. Chicago: Quintessence Publishing; 1999 :231~244
    86 R. T. Bothe, L. E. Beaton, H. A. Davenport. Reaction of Bone to Multiple Metallic Implants. Surg Gynecol Obstet. 1940, 71:598~602
    87 P. Branmark, U. Breine, J. Lindstrom. Intraosseous Anchorage of Dental Prosthese: I Experimental Studies. Scand J Plast Reconstr Surg. 1969, 3:81~82
    88 P. Branmark, B. Hansson, R. Adell. Osseointegrated Implants in the Treatment of Edentulous Jaw: Experience from a 10-Year Period. Scand J Reconstr Surg Suppl. 1997, 16:1~4
    89 M. Long, H. J. Rack. Titanium Alloys in total Joint Replacement-A Materials Science Perspective. Biomaterials. 1998, 19:1621~1639
    90 K. Wang. The Use of Titanium for Medical Application in the USA. Mater Sci Eng. 1996, A213: 134~137
    91 M. Niinonmi, D. Kuroda, K. Fukunaga, A. L. Et. Corrosion Wear Fracture of NewΒType Biomedical Titanium Alloys. Materials Science and Engineering. 1999, A263:193~199
    92张玉梅,郭天文,李佐臣.钛及钛合金在口腔在应用的研究方向.生物医学工程学杂志. 2000, 17(2):206~208
    93 D. Kuroda, M. Niinonmi, M. Morinaga. Design and Mechanical Properties of NewΒType Titanium Alloys for Implant Materials. Materials Science and Engineering. 1998, A243:244~249
    94 P. Laing, A. Fergonsun, E. Hodge. Tissue Reaction in Rabbit Muscle Exposed to Metallic Implants. J. of Biomedical Materials Research. 1967, 1:135~149
    95 R. L. Buly. Titanium Wear Debris in Failed Cemented total Hip Arthroplasty. J Arthroplasty. 1992, 7(3):315~323
    96 R. Zwicker, K. Buehler, R. Mueller, H. Beck, H. J. Schmid, J. Ferstl. Mechanical Properties and Tissue Reactions of a Titanium Alloy for Implant Material. Titanium’80 Science and Technology. Edited by H. Kimura. Tms-Aime. 1980, 505~514
    97 M. Semlitsch, F. Staub, H. Webber. Titanium-Aluminum-Niobium Alloy, Development for Biocompatible, High Strength Surgical Implants. Biomed Technik. 1985, 30:334~339
    98 R. Huiskes, H. Weinans, B. Riebergen. The Relationship between Stress Shielding and Bone Resorption around total Hip Stems and the Effects of Flexible Materials. Clin Orthop Relat Res. 1992, 274:124~134
    99 K. Wang, L. Gustavson, J. Dumbleton. The Characterization of Ti-12Mo-6Zr-2Fe-a New Alloy Developed for Surgical Implants. In Beta Titanium Alloys in the 1990’S. Tms-Aime. 1993, 49~60
    100 A. Ungersbock, S. M. Perren, O. Pohler. Comparison of the Tissue Reaction to Implants Made of a Beta Titanium Alloy and Pure Titanim: Experimental Study on Rabbits. J. of Materials Science: Materials in Medicine. 1994, 5:788~792
    101 J. Fanning. A New Titanium Alloy for Surgical Implant Applications: Timetal21srx. in Proc. Technical Program From the 1994 int. Conf. 1994:395~402
    102 M. A. Khan, R. L. Williams, D. F. Williams. Conjoint Corrosion and Wear in Titanium Alloys. Biomaterials. 1999, 20:765~772
    103 C. K. Chang, J. Q. Huang, J. Y. Xia, C. X. Ding. Study on Crystallization Kinetics of Plasma Sprayed Hydroxyapatite Coating. Ceramics international. 1999, 25:479~483
    104 Y. C. Yang, E. Chang, B. H. Hwang, S. Y. Lee. Biaxial Residual Stress States of Plasma-sprayed Hydroxyapatite Coatings on Titanium Alloy Substrate. Biomaterials. 2000, 21:1327~1337
    105 Gra?mann, R. B. Heimann. Compositional and Microstructural Changes of Engineered Plasma-sprayed Hydroxyapatite Coatings on Ti6Al4V Substrates During incubation in Protein-free Simulated Body Fluid. J. of BiomedicalMaterials Research B. 2000, 53:685~693
    106 X. B. Zheng, M. H. Huang, C. X. Ding. Bond Strength of Plasma-sprayed Hydroxyapatite/Ti Composite Coatings. Biomaterials. 2000, 21:841~849
    107 C. F. Feng, K. A. Khor, E. J. Liu, P. Cheang. Phase Transformations in Plasma Sprayed Hydroxyapatite Coatings. Scripta Mater. 2000, 42:103~109
    108 M. F. Hsieh, L. H. Perng, T. S. Chin. Hydroxyapatite Coating on Ti6Al4V Alloy Using a Sol-Gel Derived Precursor. Materials Chemistry and Physics. 2002, 74:245~250
    109 E. Milella, F. Cosentino, A. Licciulli, C. Massaro. Preparation and Characterisation of Titania/Hydroxyapatite Composite Coatings Obtained by Sol-Gel Process. Biomaterials. 2001, 22:1425~1431
    110 M. Katto, M. Nakamura, T. Tanaka, T. Matsutani, M. Kuwata, T. Nakayama. Hydroxyapatite Coatings Using Novel Pulsed Laser Ablation Methods. Surface and Coatings Technology. 2003, 169-170:712~715
    111 Z. S. Luo, F. Z. Cui, Q. L. Feng, H. D. Li, X. D. Zhu, M. Spector. In Vitro and in Vivo Evaluation of Degradability of Hydroxyapatite Coatings Synthesized by Ion Beam-assisted Deposition. Surface and Coatings Technology. 2000, 131:192~195
    112 P. Huang, K. W. Xu, Y. Han. Preparation and Apatite Layer formation of Plasma Electrolytic Oxidation Film on Titanium for Biomedical Application. Materials Letters. 2005, 59:185~189
    113 W. H. Song, Y. K. Jun, Y. Han, S. H. Hong. Biomimetic Apatite Coatings on Microarc Oxidized Titania. Biomaterials. 2004, 25:3341~3349
    114 Y. Han, S. H. Hong, K. W. Xu. Structure and in Vitro Bioactivity of Titania-Based Films by Microarc Oxidation. Surface and Coatings Technology. 2003, 168:249~258
    115 L. H. Li, Y. M. Kong, H. W. Kim, Y. W. Kim, H. E. Kim, S. J. Heo, J. Y. Koak. Improved Biological Performance of Ti Implants due to Surface Modification by Microarc Oxidation. Biomaterials. 2004, 25:2867~2875
    116 S. K. Yen, C. M. Lin. Cathodic Reactions of Electrolytic Hydroxyapatite Coating on Pure Titanium. Materials Chemistry and Physics. 2002, 77:70~76
    117 M. C. Kuo, S. K. Yen. The Process of Electrochemical Deposited Hydroxyapatite Coatings on Biomedical Titanium at Room Temperature.Materials Science and Engineering C. 2002, 20:153~160
    118 X. L. Cheng, M. M. Filiaggi, S. G. Roscoe. Electrochemically Assisted Co-Precipitation of Protein with Calcium Phosphate Coatings on Titanium Alloy. Biomaterials. 2004, 25:5395~5403
    119 Q. Y. Zhang, Y. Leng, R. L. Xin. A Comparative Study of Electrochemical Deposition and Biomimetic Deposition of Calcium Phosphate on Porous Titanium. Biomaterials. 2005, 26:2857~2865
    120 I. Zhitomirsky, L. Gal-Or. Electrophoretic Deposition of Hydroxyapatite. J. of Materials Science: Materials in Medicine. 1997, 8:213~219
    121 S. J. Ban, S. G. Maruno. Effect of Temperature on Electrochemical Deposition of Calcium Phosphate Coatings in a Simulated Body Fluid. Biomaterals. 1995, 16:977~981
    122 Stoch, A. Bro?ek, G. Kmita, J. Stoch, W. Jastrzebski, A. Rakowska. Electrophoretic Coating of Hydroxyapatite on Titanium Implants. J. of Molecular Structure. 2001, 596:191~200
    123 M. F. Hsieh, L. H. Perng, T. S. Chin. Hydroxyapatite Coating on Ti6Al4V Alloy Using a Sol-Gel Derived Precursor. Materials Chemistry and Physics. 2002, 74:245~250
    124 W. J. Weng, S. Zhang, K. Cheng, H. B. Qu, P. Y. Du, G. Shen, J. Yuan, G. R Han. Sol-Gel Preparation of Bioactive Apatite Films. Surface and Coatings Technology. 2003, 167:292~296
    125 K. Hwang, Y. Lim. Chemical and Structural Changes of Hydroxyapatite Films by Using a Sol-Gel Method. Surface and Coatings Technology. 1999, 115:172~175
    126 D. M. Liu, Q. Z. Yang, T. Troczynski. Sol-Gel Hydroxyapatite Coatings on Stainless Steel Substrates. Biomaterials. 2002, 23:691~698
    127 K. Hwang, J. Song, B. Kang, Y. Park, Sol-Gel Derived Hydroxyapatite Films on Alumina Substrates. Surface and Coatings Technology. 2000, 123:252~255
    128 F. Z. Cui, Z. S. Luo, Q. L. Feng. Highly Adhesive Hydroxyapatite Coatings on Titanium Alloy formed by Ion Beam Assisted Deposition. J. of Materials Science: Materials in Medicine. 1997, 8:403~405
    129 Z. S. Luo, F. Z. Cui, Q. L. Feng, H. D. Li, X. D. Zhu, M. Spector. In Vitroand in Vivo Evaluation of Degradability of Hydroxyapatite Coatings Synthesized by Ion Beam-assisted Deposition. Surface and Coatings Technology. 2000, 131:192~195
    130 M. Katto, M. Nakamura, T. Tanaka, T. Nakayama. Hydroxyapatite Coatings Deposited by Laser-assisted Laser Ablation Method. Applied Surface Science. 2002, 197-198:768~771
    131 S. J. Ding. Properties and Immersion Behavior of Magnetron-Sputtered Multi-layered Hydroxyapatite/Titanium Composite Coatings. Biomaterials. 2003, 24:4233~4238
    132 J. G. C. Wolke, K. D. Groot, J. A. Jansen. In Vivo Dissolution Behavior of Various RF Magnetron Sputter Ca-P Coatings. J. of Biomedical Materials Research. 1998, 39:524~530
    133 S. Nishiguchi, H. Kato, M. Neo, M. Oka, H. M. Kim, T. Kokubo, T. Nakamura1. Alkali- and Heat-treated Porous Titanium for Orthopedic Implants. J. of Biomedical Materials Reseach. 2001, 54:198~208
    134 H. M. Kim, F. Miyaji, T. Kokubo, T. Nakamura. Preparation of Bioactive Ti and Its Alloys via Simple Chemical Surface Treatment. J. of Biomedical Materials Research. 1996, 32:409~417
    135 C. B. Mao, H. D. Li, F. Z. Cui, Q. L. Feng, H. Wang, C. L. Ma. Oriented Growth of Hydroxyapatite on (0001) Textured Titanium with Functionalized Self-assembled Silane Monolayer as Template. J. of Materials Chemistry. 1998, 8:2795~2801
    136 Q. Liu, J. Ding, F. K. Mante, S. L. Wunder, G. R. Baran. The Role of Surface Functional Groups in Calcium Phosphate Nucleation on Titanium Foil: a Self-assembled Monolayer Technique. Biomaterials. 2002, 23:3103~3111
    137 X. X. Wang, S. Hayakawa, K. Tsuru, A. Osaka. Bioactive Titania Gel Layers formed by Chemical Treatment of Ti Substrate with a H2O2/HCl Solution. Biomaterials. 2002, 23:1353~1357
    138 T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yammamuro. Solutions Able to Reproduce in Vivo Surface Structure Changes in Bioactive Glass-ceramic A-W. J. of Biomedical Materials Research 1990, 24:721~734
    139 H. B. Wen, J. G. C. Wolke, J. R. De, W. Etal. Fast Precipitation of CalciumPhosphate Layers on Titanium induced by Simple Chemical Treatments. Biomaterials. 1997, 18:1471~1478
    140 A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, T. Nakamura. Preparation and Assessment of Revised Simulated Body Fluids. J. of Biomedical Materials Research A. 2003, 65:188~195
    141 W. H. Song, Y. K. Jun, Y. Han, S. H. Hong, Biomimetic Apatite Coatings on Micro-arc Oxidized Titania. Biomaterials. 2004, 25:3341~3349
    142 B. C. Yang, M. Uchida, H. M. Kim, X. D. Zhang, T. Kokubo. Preparation of Bioactive Titanium Metal via Anodic Oxidation Treatment. Biomaterials. 2004, 25:1003~1010
    143 M. Wei, M. Uchida, H. M. Kim, T. Kokuboa, T. Nakamura. Apatite-forming Ability of Ca-containing Titania. Biomaterials. 2002, 23:167~172
    144 T. Miyazaki, H. M. Kim, F. Miyaji, T. Kokubo, H. Kato, T. Nakamura. Bioactive Tantalum Metal Prepared by Naoh Treatment. J. of Biomedical Materials Research. 2000, 50:35~42
    145 F. Barrere, M. M. E. Snel, C. A. V. Blitterswijk, K. D. Groot, P. Layrolle. Nano-scale Study of the Nucleation and Growth of Calcium Phosphate Coating on Titanium Implants. Biomaterials. 2004, 25:2901~2910
    146 H. M. Kim, F. Miyaji, T. Kokubo, S. Nishiguchi, T. Nakamura. Graded Surface Structure of Bioactive Titanium Prepared by Chemical Treatment. J. of Biomedical Materials Research. 1999, 45:100~107
    147 T. Kokubo, H. M. Kim, M. Kawashita. Novel Bioactive Materials with Different Mechanical Properties. Biomaterials. 2003, 24:2161~2175
    148 H. M. Kim, T. Kokubo, S. Fujibayashi, S. Nishiguchi, T. Nakamura. Bioactive Macroporous Titanium Surface Layer on Titanium Substrate. J. of Biomedical Materials Research. 2000, 52:553~557
    149 C. X. Wang, M. Wang, X. Zhou. Nucleation and Growth of Apatite on Chemically Treated Titanium Alloy: an Electrochemical Impedance Spectroscopy Study. Biomaterials. 2003, 24:3069~3077
    150 H. Takadama, H. M. Kim, T. Kokubo, T. Nakamura. An X-Ray Photoelectron Spectroscopy Study of the Process of Apatite formation on Bioactive Titanium Metal. J. of Biomedical Materials Research. 2001, 55:185~193
    151 S. Fujibayashi, T. Nakamura, S. Nishiguchi, J. Tamura, M. Uchida, H. M. Kim, T. Kokubo. Bioactive Titanium: Effect of Sodium Removal on the Bone-Bonding Ability of Bioactive Titanium Prepared by Alkali and Heat Treatment. J. of Biomedical Materials Research. 2001,56:562~570
    152 H. Kato, T. Nakamura, S. Nishiguchi, Y. Matsusue, M. Kobayashi, T. Miyazaki, H. M. Kim, T. Kokubo. Bonding of Alkali- and Heat-treated Tantalum Implants to Bone. J. of Biomedical Materials Research B. 2000, 53:28~35
    153 W. Q. Yan, T. Nakamura, M. Kobayashi, H. M. Kim, F. Miyaji, T. Kokubo. Bonding of Chemically Treated Titanium Implants to Bone. J. of Biomedical Materials Research. 1997, 37:267~275
    154 S. Nishiguchi, H. Kato, M. Neo, M. Oka, H. M. Kim, T. Kokubo, T. Nakamura. Alkali- and Heat-treated Porous Titanium for Orthopedic Implants. J. of Biomedical Materials Research. 2001, 54:198~208
    155 X. X. Wang, S. Hayakawa, K. Tsuru, A. Osaka. Improvement of Bioactivity of H2O2/TaCl5-treated Titanium after Subsequent Heat Treatments. J. of Biomedical Materials Research. 2000, 52:171~176
    156 X. X. Wang, S. Hayakawa, K. Tsuru, A. Osaka. Bioactive Titania Gel Layers formed by Chemical Treatment of Ti Substrate with a H2O2/HCl Solution. Biomaterials. 2002, 23:1353~1357
    157 J. Pan, H. Liao, C. Leygraf, D. Thierry, J. Li. Variation of Oxide Films on Titanium Induced by Osteoblast-like Cell Culture and the Influence of an H2O2 Pretreatment. J. of Biomedical Materials Research. 1998, 40:244~256
    158 J. Pan, D. Thierry, C. Leygraf. Hydrogen Peroxide toward Enhanced Oxide Growth on Titanium in PBS Solution: Blue Coloration and Clinical Relevance. J. of Biomedical Materials Research. 1996, 30:393~402
    159 S. Hayakawa, A. Osaka. Biomimetic Deposition of Calcium Phosphates on Oxides Soaked in a Simulated Body Fluid. J. of Non-Crystalline Solids. 2000, 263-264:409~415
    160 Y. Xie, X. Y. Liu, A. P. Huang, C. X. Ding, P. K. Chu. Improvement of Surface Bioactivity on Titanium by Water and Hydrogen Plasma Immersion Ion Implantation. Biomaterials. 2005, 26:6129~6135
    161 M. T. Pham, M. F. Maitz, W. Matz, H. Reuther, E. Richter, G. Steiner.Promoted Hydroxyapatite Nucleation on Titanium Ion Implanted with Sodium. Thin Solid Films. 2000, 379:50~56
    162 M. F. Maitz, M. T. Pham, W. Matz, H. Reuther, G. Steiner. Promoted Calcium-Phosphate Precipitation from Solution on Titanium for Improved Biocompatibility by Ion Implantation. Surface and Coatings Technology. 2002, 158-159C:151~156
    163 M. F. Maitz, R. W. Y. Poon, X. Y. Liu, M. T. Pham, P. K. Chu. Bioactivity of Titanium Following Sodium Plasma Immersion Ion Implantation and Deposition. Biomaterials. 2005, 26:5465~5473
    164 T. Peltola, M. P?tsi, H. Rahiala, I. Kangasniemi, A. Yli-Urpo. Calcium Phosphate Induction by Sol-gel-derived Titania Coatings on Titanium Substrates in Vitro. J. of Biomedical Materials Research. 1998, 41:504~510
    165 J. Core?o, A. Martínez, O. Core?o, A. Bolarín, F. Sánchez. Calcium and Phosphate Adsorption as Initial Steps of Apatite Nucleation on Sol-gel-prepared Titania Surface. J. of Biomedical Materials Research. 2003, 64A: 131~137
    166 P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, K. D. Groot. The Role of Hydrated Silica, Titania and Alumina in Inducing Apatite on Implants. J. of Biomedical Materials Research. 1994, 28:7~15
    167 P. Li, I. Kangasniemi, K. D. Groot, T. Kokubo. Bonelike Hydroxyapatite induction by a Gel-derived Titania on a Ti Substrate. J Am Ceram Soc. 1994, 77:1307~1312
    168 H. K. Varma, Y. Yokogawa, F. F. Espinosa, Y. Kawamoto, K. Nishizawa, F. Nagata, T. Kameyama. Porous Calcium Phosphate Coating over Phosphorylated Chitosan Film by a Biomimetic Method. Biomaterials. 1999, 20:879~884
    169 Q. Liu, J. Ding, F. K. Mante, S. L. Wunderb, G. R. Baran. The Role of Surface Functional Groups in Calcium Phosphate Nucleation on Titanium Foil: a Self-assembled Monolayer Technique. Biomaterials. 2002, 23:3103~3111
    170 C. B. Mao, H. D. Li, F. C. Cui, Q. L. Feng, C. L. Ma. The Functionalization of Titanium with EDTA to Induce Biomimetic Mineralization of Hydroxyapatite. J. of Materials Chemistry. 1999, 9:2573~2582
    171 C. B. Mao, H. D. Li, F. C. Cui, Q. L. Feng, H. Wang, C. L. Ma. Oriented Growth of Hydroxyapatite on (0001) Textured Titanium with Functionalized Self-assembled Silane Monolayer as Template. J. of Materials Chemistry. 1998, 8:2795~2801
    172 T. Kawai, C. Ohtsuki, M. Kamitakahara, T. Miyazaki. Coating of an Apatite Layer on Polyamide Films Containing Sulfonicgroups by a Biomimetic Process. Biomaterials. 2004, 25:4529~4534
    173 M. Tanahashi, T. Matsuda. Surface Functional Group Dependence on Apatite formation on Self-assembled Monolayers in a Simulated Body Fluid. J. of Biomedical Materials Research. 1997, 34:305~315
    174 A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. J. Dowey. Plasma Electrolysis for Surface Engineering. Surface and Coatings Technology. 1999, 122:73~93
    175 A. GüNtherschulze, H. Betz. Neue UntersuchungenüBer Die Elcktrdytische Ventilwirkung. Z Phys. 1932, 78:196
    176 A. GüNtherschulze, H. Betz. Die Elektronenstromung in Isolatoren Bei Extremen Feldstarken. Z Phys. 1934, 91:70
    177 G. A. Markov, G. V. Markov. The formation Method of Anodic Electrolytic Condensation. SU. 526961. 1976.08.30
    178 A. V. Nikolacv, G. A. Markov, B. I. Peshchevitskii. A New Phenomenon Electrolysis. Izv Sib Otd Akad Nauk Sssr. Ser Khim. 1977, 5:22
    179 P. Kurze, H. G. Krysmann. Application Fields of ANOF Layers and Composites. Crystal Research and Technology. 1986, 21(12):1603
    180柳田和夫. Ceramics Films on Aluminum by Electrolytic Deposition Process.フルトヒァ. 1987, 17(4):49
    181邓志威,薛文斌.铝合金表面微弧氧化技术.材料保护. 1996, 29(2):15
    182薛文斌,邓志威,来永春.铝合金微弧氧化陶瓷膜的形成过程及其特性.电镀与精饰. 1996, 4:3~6
    183 A. K. Vijh. Mechanism of Anodic Spark Desposition. Corrosion Science. 1971, 11:411
    184 J. Yahaln. Proc Shmp Oxic-Electrolyte Interfaces (Edited by Alnitt R. S). The J. Electrochem inc. 1973, 10:503
    185 T. B. Van, S. D. Brun, G. P. Write. Anodic Spark Reaction Products inAluminum, Tung State and Silicate. Bulletions America Society. 1977, 56(6):563
    186 S. Ikonopisov. Process Characteristics and Parameters of Anodic Oxidation by Spark Discharge. Electrochemica Acta. 1977, 22:1077
    187 A. J. Matiker. J. of Electrochemistry Society. 1984, 131:1101
    188 W. Krysmann, K. P. Etal. Process Characteristics and Parameters of Anodic Oxidation by Spark Discharge (ANOF). Crystal Research and Technology. 1984, 19(7):973~979
    189 D. K. Hagter. Structure and Properties of ANOF Layers. Crystal Research and Technology. 1984, 19(1):93~99
    190 A. L. Yerokhin, A. Leyland, A. Matthews. Kinetic Aspects of Aluminium Titanate Layer Formation on Titanium Alloys by Plasma Electrolytic Oxidation. Applied Surface Science. 2002, 200:172~184
    191 L. O. Snizhko, A. L. Yerokhin, A. Pilkington, N. L. Gurevina, D. O. Misnyankin, A. Leyland, A. Matthews. Anodic Processes in Plasma Electrolytic Oxidation of Aluminium in Alkaline Solutions. Electrochemistry Acta. 2004, 49:2085~2095
    192 T. H. Teh, A. Berkani, S. Mato, P. Skeldon, G. E. Thompson, H. Habazaki, K. Shimizu. Initial stages of plasma electrolytic oxidation of titanium. Corrosion Science. 2003, 45:2757~2768
    193 X. L. Zhu, K. H. Kim, Y. S. Jeong. Anodic Oxide Films Containing Ca and P of Titanium Biomaterial. Biomaterials. 2001, 22:2199~2206
    194 X. L. Zhu, J. L. Ong, S. Y. Kim, K. H. Kim. Surface Characteristics and Structure of Anodic Oxide Films Containing Ca and P on a Titanium Implant Material. J. of Biomedical Materials Research. 2002, 60:333~338
    195 W. H. Song, H. S. Ryu, S. H. Hong. Apatite Induction on Ca-Containing Titania Formed by Micro-arc Oxidation. J. of American Ceramic Society. 2005, 88(9) 2642~2644
    196 R. Rodriguez, K. Kim, J. L. Ong. In Vitro Osteoblast Response to Anodized Titanium and Anodized Titanium Followed by Hydrothermal Treatment. J. of Biomedical Materials Research. 2003, 65A:352~358
    197 J. Takebe, S. Itoh, J. Okada, K. Ishibashi. Anodic Oxidation and Hydrothermal Treatment of Titanium Results in a Surface that CausesIncreased Attachment and Altered Cytoskeletal Morphology of Rat Bone Marrow Stromal Cells in Vitro. J. of Biomedical Materials Research. 2000, 51:398~407
    198 X. Nie, A. Leyland, A. Matthews, J. C. Jiang, E. I. Meletis. Effects of Solution Ph and Electrical Parameters on Hydroxyapatite Coatings Deposited by a Plasma-assisted Electrophoresis Technique. J. of Biomedical Materials Research. 2001, 57:612~618
    199 M. Fini, A. Cigada, G. Rondelli. In vitro and in vivo Behaviour of Ca- and P-Enriched Anodized Titanium. Biomaterials. 1999, 20:1587~1594
    200 K. Anselme. Osteoblast Adhesion on Biomaterials. Biomaterials 2000, 21: 667~681
    201胡岳华,陈湘清,王毓华.磷酸盐对一水硬铝石和高岭石浮选的选择性作用.中国有色金属学报. 2003, 13:221~228
    202 V. M. Frauchiger, F. Schlottig, B. Gasser, M. Textor. Anodic Plasma-chemical Treatment of CP Titanium Surfaces for Biomedical Applications. Biomaterials. 2004, 25:593~606
    203 L. Müller, F. A. Müller. Preparation of SBF with Different HCO3- Content and Its Influence on the Composition of Biomimetic Apatites. Acta Biomateriala. 2006, 2:181~189
    204 S. Koutsopoulos. Synthesis and Characterization of Hydroxyapatite Crystals: a Review Study on the Analytical Methods. J. of Biomedical Materials Research. 2002, 62:600~612
    205 X. Lu, Y. Leng. TEM Study of Calcium Phosphate Precipitation on Bioactive Titanium Surfaces. Biomaterials. 2004, 25:1779~1786
    206 X. Lu, Y. Leng. Theoretical Analysis of Calcium Phosphate Precipitation in Simulated Body Fluid. Biomaterials. 2005, 26:1097~1108
    207 A. Ito, K. Maekawa, S. Tsutsumi, F. Ikazaki, T. Tateishi. Solubility Product of OH-carbonated Hydroxyapatite. J of Biomed Mater Res. 1997,36:522~528
    208 S. Koutsopoulos, E. Dalas. The Effect of Acidic Amino Acids on Hydroxyapatite Crystallization. J of Crystal Growth. 2000, 217:410~415
    209 J. W. Mullin. Crystallization. Butterworth-Heinemann. 2001:86-214
    210 R. Boistelle, I. Lopez-valero. Growth Units and Nucleation: The Case ofCalcium Phosphates. J of Crystal Growth. 1990, 102:609~617
    211 A. E. Nielsen. Electrolyte Crystal Growth Mechanisms. J of Crystal Growth. 1984, 67:289~310
    212 G. F. Xu, I. A. Aksay, J.T. Groves. Continuous Crystalline Carbonate Apatite Thin Films: A Biomimetic Approach. J. of Am. Chem. Soc. 2001, 123:2196~2203
    213 M. E. Fleet, X. Y. Liu. Location of Type Bcarbonate Ion in Type A-B Carbonate Apatite Synthesized at High Pressure. Journal of Solid State Chemistry. 2004, 177:3174~3182
    214 R. Murugan, S. Ramakrishna. Production of Ultra-fine Bioresorbable Carbonated Hydroxyapatite. Acta Biomaterialia. 2006, 2:201~206
    215 T. S. S. Kumar, I. Manjubala, J. Gunasekaran. Synthesis of Carbonated Calcium Phosphate Ceramics Using Microwave Irradiation. Biomaterials. 2000, 21:1623~1629
    216 C. C. Chusuel, D. W. Goodman, M. J. Van Stipdonk, D. R. Justes, K. H. Loh, E. A. Schweikert. Solid-liquid Adsorption of Calcium Phosphate on TiO2. Langmuir. 1999, 15:7355~7360
    217 M. Uchida, H. M. Kim, T. Kokubo, S. Fujibayashi, T. Nakamura. Structural Dependence of Apatite Formation on Titania Gels in a Simulated Body Fluid. J. of Biomedical Materials Research A. 2003, 64:164~170
    218 C. B. Mao, H. D. Li, F. Z. Cui, Q. L. Feng, H. Wang, C. L. Ma. Oriented Growth of Hydroxyapatite on (0001) Textured Titanium with Functionalized Self-assembled Silane Monolayer as Template. J. of Materials Chemistry. 1998, 8:2795~2801
    219 A. Cohen, R. C. Bradt, G. S. Ansell. Dielectric Aging in Tetragonal Solid Solutions of Calcium Titanate in Barium Titanate. J. of American Ceramic Society. 1970, 53(7):396~398
    220 L. M. Troilo, D. Damjanovic, R. E. Newnham. Modified Lead Calcium Titanate Ceramics with a Relatively Large Dielectric Constant for Hydrophone Applications. J. of American Ceramic Society. 1994, 77(3):856~859
    221 F. M. Figueiredo, V. V. Kharton, J. C. Waerenborgh, A. P. Viskup, E. N. Naumovich, J. R. Frade. Influence of Microstructure on the ElectricalProperties of Iron-Substituted Calcium Titanate Ceramics. J. of American Ceramic Society. 2004, 87(12):2252~2261
    222 X. F. Xiao, R. F. Liu, Y. Z. Zheng. Characterization of Hydroxyapatite/ Titania Composite Coatings Codeposited by a Hydrothermal-electrochemical Method on Titanium. Surfaces and Coating Technology. 2006, 200:4406~4413
    223 H. Li, K. A. Khor, P. Cheang. Impact Formation and Microstructure Characterization of Thermal Sprayed Hydroxyapatite/Titania Composite Coatings. Biomaterials. 2003, 24:949~957
    224 H. Li, K. A. Khor, P. Cheang. Titanium Dioxide Reinforced Hydroxyapatite Coatings Deposited by High Velocity Oxy-Fuel (HVOF) Spray. Biomaterials. 2002, 23:85~91
    225 P. Zhou, M. Akao. Preparation and Characterization of Double Layered Coating Composed of Hydroxyapatite and Perovskite by Thermal Decomposition. Bio-Medical Materials and Engineering. 1997, 1: 67~81
    226 Y. Ohba, T. Watanabe, E Sakai, M. Daimon. Coating of HAP/CaTiO3 Multilayer on Titanium Substrates by Hydrothermal Method. J. of Japanese Ceramic Society. 1999, 107:907~912
    227 S. Ka?iulis, G. Mattogno, L. Pandolfi, M. Cavalli, G. Gnappi, A. Montenero. XPS Study of Apatite-based Coatings Prepared by Sol–Gel Technique,”Applied Surface Science. 1999, 151:1~5
    228 J. Core?o, O. Core?o. Evaluation of Calcium Titanate as Apatite Growth Promoter. J. of Biomedical Materials Research A. 2005, 75:478~484
    229葛泉波,何淑兰,毛津淑,姚康德.生物材料与细胞相互作用及表面修饰. 2005, 1:43~48
    230贝建中,屈雪,王身国.生物材料与细胞的相互作用.北京生物医学工程. 2005, 24(1):64~71
    231郝杰.成骨细胞与生物材料的粘附及相关蛋白.国外生物医学工程分册. 2003, 26(1):24~29
    232牛旭锋,罗彦凤,潘君,王远亮.成骨细胞在生物活性材料中黏附性能研究进展.生物医学工程学杂志. 2005, 22(4):848~852
    233 B. D. Boyan, T. W. Humert, D. D. Dean, Z. Schwartz. Role of Material Surfaces in Regulating Bone and Cartilage Cell Response. Biomaterials.1996, 17:137~146
    234 K. Anselme, M. Bigerelle, B. Noel, E. Dufresne, D. Judas, A. Iost, P. Hardouin. Qualitative and Quantitative Study of Human Osteoblast Adhesion on Materials with Various Surface Roughnesses. J. of Biomedical Materials Research. 2000, 49:155~166
    235 K. Kieswetter, Z. Schwartz, T. W. Humrnert, D. L. Cochran, J. Simpson, D. D. Dean, B. D. Boyan. Surface Roughness Modulates the Local Production of Growth Factors and Cytokines by Osteoblast-like MG-63 Cells. J. of Biomedical Materials Research. 1996, 32:55~63.
    236 K. Das, S. Bose, A. Bandyopadhyay. Surface Modifications and Cell–Materials Interactions with Anodized Ti. Acta Biomaterialia. 2007, 3:573~585

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700