用户名: 密码: 验证码:
抑制自噬增加阿霉素对骨髓瘤细胞的促凋亡活性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:自噬作为广泛存在于真核细胞中的生命现象,是细胞成分更新、发育、分化的重要调控机制,对维持蛋白代谢平衡及细胞内环境稳定具有重要意义。自噬是目前细胞生物学研究的热点之一,自噬与肿瘤关系的研究更被广泛关注。1999年Beth Levine等发现Beclin1单等位基因缺失致乳腺癌等患病率升高,人们认为自噬与肿瘤发生相关,并探寻诱导自噬治疗肿瘤。但进一步研究发现,自噬具有两面性,某些情况下,诱导自噬可以抑制肿瘤生长,并致自噬相关性细胞死亡;但更多情况下,肿瘤细胞可利用自噬以应对缺氧、营养匮乏及清除氧自由基、损伤的线粒体等,从而保护瘤细胞。值得注意的是:自噬对肿瘤的影响具有细胞类型及剌激依赖性,在不同的肿瘤类型与剌激条件下,自噬所起作用可能不同。多发性骨髓瘤(MM)细胞因分泌大量免疫球蛋白,蛋白质代谢极为旺盛,而自噬作为蛋白质降解代谢主要途径之一,对MM细胞死亡过程中究竟起着什么样的作用,目前尚无前人的经验可循。本课题以MM细胞系RPMI8226、H929及原代细胞为研究材料,探寻自噬对阿霉素(DOX)等化疗药物的促MM细胞凋亡的活性及其相关机制。
     方法和结果: 1.MTT法首先探寻自噬抑制剂羟氯喹(HCQ)或自噬激活剂雷帕霉素(RAPA)单药对RPMI8226及H929细胞的影响,以明确其剂量-效应关系;结果表明羟氯喹能够抑制两种细胞的增殖,并呈浓度依赖性,而雷帕霉素对细胞增殖基本无影响。2.流式细胞术发现,亚细胞毒剂量的自噬抑制剂羟氯喹、3-methlyadenine (3-MA)、Bafilomycin A1(BAF),与阿霉素、顺铂(DDP)、米托蒽醌(MIT)、马法兰(MEL)等合用均可产生增敏作用,与单药相比差异显著(P<0.05);而与长春新碱(VCR)、Bortezomib(BOR)、足叶乙甙(VP-16)等联用则无效(P>0.05)。3.透射电镜证实: 3MA单药处理组及未处理组自噬泡少见,羟氯喹+阿霉素、BAF+阿霉素组及雷帕霉素阳性对照组可见到大量自噬泡,羟氯喹、BAF及阿霉素单用组可见中等量自噬泡出现,3-MA+阿霉素联用组仅见少量自噬泡。4.内源性LC3免疫荧光染色显示,羟氯喹+阿霉素、BAF+阿霉素及雷帕霉素处理组MM细胞胞浆可见大量颗粒状荧光,羟氯喹、BAF、阿霉素单用组仅有中等量颗粒状荧光,而3-MA及3-MA+阿霉素组胞浆荧光信号基本呈弥散分布,类似于未处理对照组。5. Western blot证实:①阿霉素单药处理RPMI8226及H929细胞后8、12、24、36h,自噬蛋白Beclin1、Atg5、LC3-II表达渐升高,说明阿霉素诱导自噬活化;②Beclin1、Atg5、LC3-II表达分析表明,自噬抑制剂3-MA、羟氯喹及BAF的化学增敏作用分别与其对MM细胞自噬反应的早期抑制(阻断自噬体膜形成)与晚期抑制(抑制自噬体与溶酶体融合)有关。③凋亡蛋白caspase-3及PARP检测表明,自噬抑制剂与阿霉素联用凋亡蛋白表达高于单用阿霉素组。5. siRNA技术证明:特异性Beclin1及Atg5 siRNA导入RPMI8226及H929细胞致Beclin1及Atg5沉默,亦可增加阿霉素诱导的MM凋亡。6.小鼠模型证明:体内环境下,抑制自噬亦可增加阿霉素抑MM效应。
     结论:1.阿霉素能够诱导MM凋亡同时诱发自噬反应,自噬是瘤细胞应对DNA损伤应激的一种保护性反应;2.化学抑制剂及siRNA抑制自噬,均可增加阿霉素诱导的MM系及原代MM细胞凋亡;3.体内动物模型下,抑制自噬亦可增加阿霉素抑MM效应。
Background and Aim: As a major intracellular degradation system that is found ubiquitously in eukaryotes, autophagy plays a key role in maintaining protein metabolic equilibrium and cell homeostasis, and in regulating cellular constituent recycleing, cell development and differentiation. Autophagy is one of research hot spots in cytobiology at present, furthermore the relationship between autophagy and tumor is attracting great attention. Since Beth Levine ea al demonstrates that human cells that carry monoallelic deletions of the Beclin1/ATG6 gene are tumorigenic, autophagy has been considered as a tumor suppressor, and inducing autophagy is attempted to cancer therapy. But further investigations find that autophagy has dual role in cancer, in some circumstances, inducing autophagy may inhibit tumor cell growth, and result in autophagic cell death; but in most circumstances, autophagy may function as a cytoprotective mechanism by responsing to stress situations including hypoxia, low energy, oxidative stress and damaged mitochondria. Furthermore autophagy is tumor cell type- and stress dependent, that is, In different cell type or different stress mode, the role or function of autophagy changes. Myeloma cells are featured by exceedingly active protein metabolism such as synthesis and secretion of immunoglobulin, and as one of major protein metabolism pathways, what`s the function of autophagy in myeloma cells? There is no past experience at present. Based on the background above, in this study, by means of the model of myeloma cells (RPMI8226 and H929 and primary cells) , we try to explore the effects of autophagy on cell apoptosis induced by DOX and the correlateing mechanism.
     Methods and Results: 1. In our work, MTT assays showed that autophagy inhibitor hydroxychloroquine (HCQ) could inhibit proliferation of RPMI8226 and H929 cells by dose-dependent manner in vitro. While autophagy inducer rapamycin had no effects on myeloma cell proliferation.2. Flow cytometer (FCM) displayed that autophagy inhibition by HCQ, 3-methlyadenine(3-MA) or bafilomycin A1 could enhance doxorubicin(DOX), cisplatin(DDP), mitoxantone(MIT), or melphalan(MEL) induced myeloma cell apoptosis repectively ( P < 0.05), while could not enhance vincristine(VCR), etoposide(VP-16) induced cell apoptosis(P>0.05).3. Autophagic morphology of myeloma cells was monitored by Electron microscopy and fluorescence microscopy.①By electron microscopy, it showed that the autophagosome amounts in untreated, 3-MA treated and 3-MA combined with DOX treated cells were scanty, moderate in HCQ ,BAF, or DOX singly treated cells, and abundent in HCQ or BAF combined with DOX treated cells, and also abundant in positive control: rapamycin treated cells.②LC3-FITC had been used to monitor autophagy by immunofluorescence. It showed that there are a high level of LC3 puncta in HCQ+DOX or BAF +DOX treated cells, and in rapamycin treated cells, moderate level in HCQ, BAF, or DOX singly treated cells, and low level in 3-MA+DOX, and there was diffuse fluorescence in untreated or 3-MA treated cells. 4. Western blot showed:①the amount of autophagic proteins Beclin1、Atg5、LC3-II increased gradually after RPMI8226 and H929 cells were treated with DOX for 0, 4, 8, 12h respectively, which indicated that autophagy was induced by DOX;②By means of analysis of express levels of Beclin1、Atg5、LC3-II after autophagy inhibitor HCQ, BAF or 3-MA combined with DOX, It showed that chemical sensitization of HCQ and BAF was due to post-sequestration step inhibition(by blocking fusion autophagosome with lysosome) to autophagy of myeloma cells, while 3-MA was due to sequestration inhibition.③Express levels of apoptosis protein caspase-3 and PARP treated by autophagy inhibitor HCQ, BAF or 3-MA combined with DOX increased compared with treated by DOX singly, which indicated that autophagy inhibition enhanced apoptosis induced by DOX. 5. The apoptosis induced by DOX also was enhanced by specific Beclin1 siRNA or Atg5 siRNA in H929 and RPMI8226 cells. 6. It was demonstrated in myeloma mouse model that in vivo autophagy inhibition also enhanced inhibition of tumor growth induced by DOX.
     Conclusions: 1.Autophagy as a protective mechanism responses to the apoptosis induced by DOX . 2. Autophagy inhibition by chemical inhibitor or specific siRNA, could enhance the apoptosis induced by DOX in myeloma cell lines or primary cells; 3. In myeloma mouse models, autophagy inhibition also enhanced inhibition of tumor growth induced by DOX.
引文
[1] Reggiori F, Klionsky DJ. Autophagy in the eukaryotic cell. Eukaryot Cell 2002;1 (1):11-21.
    [2] Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science 2004;306 (5698):990-5.
    [3] Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 1992;119 (2):301-11.
    [4] Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 1993;73 (3):585-96.
    [5] Tsukada M, Ohsumi Y. Isolation and characterization of autophagy- defective mutants of Saccharomyces cerevisiae. FEBS Lett 1993;333 (1-2):169-74.
    [6] Matsuura A, Tsukada M, Wada Y, Ohsumi Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 1997;192 (2):245-50.
    [7] Mortimore GE, Poso AR. Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr 1987;7:539-64.
    [8] Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000;290 (5497):1717-21.
    [9] Lemasters JJ, Qian T, He L, Kim JS, Elmore SP, Cascio WE, Brenner DA. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal 2002;4 (5):769-81.
    [10] Reggiori F, Klionsky DJ. Autophagosomes: biogenesis from scratch? Curr Opin Cell Biol 2005;17 (4):415-22.
    [11] Klionsky DJ. The molecular machinery of autophagy: unanswered questions. J Cell Sci 2005;118 (Pt 1):7-18.
    [12] Dice JF. Chaperone-mediated autophagy. Autophagy 2007;3 (4):295-9.
    [13] Kourtis N, Tavernarakis N. Autophagy and cell death in model organisms. Cell Death Differ 2009;16 (1):21-30.
    [14] Wang CW, Klionsky DJ. The molecular mechanism of autophagy. Mol Med 2003;9 (3-4):65-76.
    [15] Kopitz J, Kisen GO, Gordon PB, Bohley P, Seglen PO. Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol 1990;111 (3):941-53.
    [16] Smith R, Drenick EJ. Changes in body water and sodium during prolonged starvation for extreme obesity. Clin Sci 1966;31 (3):437-47.
    [17] Bolender RP, Weibel ER. A morphometric study of the removal of phenobarbital-induced membranes from hepatocytes after cessation of threatment. J Cell Biol 1973;56 (3):746-61.
    [18] Veenhuis M, Douma A, Harder W, Osumi M. Degradation and turnover of peroxisomes in the yeast Hansenula polymorpha induced by selective inactivation of peroxisomal enzymes. Arch Microbiol 1983;134 (3):193-203.
    [19] Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature 2004;432 (7020):1032-6.
    [20] Kotoulas OB, Kalamidas SA, Kondomerkos DJ. Glycogen autophagy in glucose homeostasis. Pathol Res Pract 2006;202 (9):631-8.
    [21] Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1998;1366 (1-2):177-96.
    [22] Elmore SP, Qian T, Grissom SF, Lemasters JJ. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. Faseb J 2001;15 (12):2286-7.
    [23] Xue L, Fletcher GC, Tolkovsky AM. Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis. Curr Biol 2001;11 (5):361-5.
    [24] Kim J, Klionsky DJ. Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem 2000;69:303-42.
    [25] Tanida I, Mizushima N, Kiyooka M, Ohsumi M, Ueno T, Ohsumi Y, Kominami E. Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy. Mol Biol Cell 1999;10 (5):1367-79.
    [26] Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y. A protein conjugation system essential for autophagy. Nature 1998;395 (6700):395-8.
    [27] Kuma A, Mizushima N, Ishihara N, Ohsumi Y. Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex,mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 2002;277 (21):18619-25.
    [28] Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 2003;116 (Pt 9):1679-88.
    [29] Huang WP, Scott SV, Kim J, Klionsky DJ. The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem 2000;275 (8):5845-51.
    [30] Tanida I, Sou YS, Minematsu-Ikeguchi N, Ueno T, Kominami E. Atg8L/Apg8L is the fourth mammalian modifier of mammalian Atg8 conjugation mediated by human Atg4B, Atg7 and Atg3. Febs J 2006;273 (11):2553-62.
    [31] Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004;15 (3):1101-11.
    [32] Hamacher-Brady A, Brady NR, Gottlieb RA. The interplay between pro-death and pro-survival signaling pathways in myocardial ischemia/reperfusion injury: apoptosis meets autophagy. Cardiovasc Drugs Ther 2006;20 (6):445-62.
    [33] Yoshimori T. Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun 2004;313 (2):453-8.
    [34] Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 2008;19 (5):2092-100.
    [35] Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 2007;282 (52):37298-302.
    [36] Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 2001;152 (4):657-68.
    [37] Suzuki K, Kubota Y, Sekito T, Ohsumi Y. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 2007;12 (2):209-18.
    [38] Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. The pre-autophagosomal structure organized by concerted functions ofAPG genes is essential for autophagosome formation. Embo J 2001;20 (21):5971-81.
    [39] Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 2001;276 (38):35243-6.
    [40] Codogno P, Meijer AJ. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 2005;12 Suppl 2:1509-18.
    [41] Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H, Meijer AJ. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 1997;243 (1-2):240-6.
    [42] Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 2000;275 (2):992-8.
    [43] Arsham AM, Neufeld TP. Thinking globally and acting locally with TOR. Curr Opin Cell Biol 2006;18 (6):589-97.
    [44] Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006;124 (3):471-84.
    [45] Bhaskar PT, Hay N. The two TORCs and Akt. Dev Cell 2007;12 (4):487-502.
    [46] Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 2002;10 (3):457-68.
    [47] Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004;18 (16):1926-45.
    [48] Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 2005;37 (1):19-24.
    [49] Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 2004;36 (12):2445-62.
    [50] Byfield MP, Murray JT, Backer JM. hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 2005;280 (38):33076-82.
    [51] Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, Byfield MP, Backer JM, Natt F, Bos JL, Zwartkruis FJ, Thomas G. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A 2005;102(40):14238-43.
    [52] Scott RC, Juhasz G, Neufeld TP. Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 2007;17 (1):1-11.
    [53] Liang XH, Yu J, Brown K, Levine B. Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function. Cancer Res 2001;61 (8):3443-9.
    [54] Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005;122 (6):927-39.
    [55] Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 2008;90 (2):313-23.
    [56] Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclin- phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2001;2 (4):330-5.
    [57] Zeng X, Overmeyer JH, Maltese WA. Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci 2006;119 (Pt 2):259-70.
    [58] Furuya N, Yu J, Byfield M, Pattingre S, Levine B. The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 2005;1 (1):46-52.
    [59] Goi T, Kawasaki M, Yamazaki T, Koneri K, Katayama K, Hirose K, Yamaguchi A. Ascending colon cancer with hepatic metastasis and cholecystolithiasis in a patient with situs inversus totalis without any expression of UVRAG mRNA: report of a case. Surg Today 2003;33 (9):702-6.
    [60] Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, Hickman JA, Geneste O, Kroemer G. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. Embo J 2007;26 (10):2527-39.
    [61] Pattingre S, Levine B. Bcl-2 inhibition of autophagy: a new route to cancer? Cancer Res 2006;66 (6):2885-8.
    [62] Obara K, Sekito T, Ohsumi Y. Assortment of phosphatidylinositol 3-kinase complexes--Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol Biol Cell 2006;17 (4):1527-39.
    [63] Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. Embo J 2007;26 (7):1749-60.
    [64] Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol 2007;170 (1):75-86.
    [65] Tasdemir E, Maiuri MC, Orhon I, Kepp O, Morselli E, Criollo A, Kroemer G. p53 represses autophagy in a cell cycle-dependent fashion. Cell Cycle 2008;7 (19):3006-11.
    [66] Maiuri MC, Tasdemir E, Criollo A, Morselli E, Vicencio JM, Carnuccio R, Kroemer G. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ 2009;16 (1):87-93.
    [67] Tasdemir E, Chiara Maiuri M, Morselli E, Criollo A, D'Amelio M, Djavaheri-Mergny M, Cecconi F, Tavernarakis N, Kroemer G. A dual role of p53 in the control of autophagy. Autophagy 2008;4 (6):810-4.
    [68] Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, Criollo A, Morselli E, Zhu C, Harper F, Nannmark U, Samara C, Pinton P, Vicencio JM, Carnuccio R, Moll UM, Madeo F, Paterlini-Brechot P, Rizzuto R, Szabadkai G, Pierron G, Blomgren K, Tavernarakis N, Codogno P, Cecconi F, Kroemer G. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 2008;10 (6):676-87.
    [69] Morselli E, Tasdemir E, Maiuri MC, Galluzzi L, Kepp O, Criollo A, Vicencio JM, Soussi T, Kroemer G. Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle 2008;7 (19):3056-61.
    [70] Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 1962;12:198-202.
    [71] Deter RL, Baudhuin P, De Duve C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol 1967;35 (2):C11-6.
    [72] Pfeifer U. Inhibition by insulin of the physiological autophagic breakdown of cell organelles. Acta Biol Med Ger 1977;36 (11-12):1691-4.
    [73] Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005;120 (2):237-48.
    [74] Pattingre S, Bauvy C, Codogno P. Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem2003;278 (19):16667-74.
    [75] Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 2002;157 (3):455-68.
    [76] Levine B, Yuan J. Autophagy in cell death: an innocent convict? J Clin Invest 2005;115 (10):2679-88.
    [77] Otto GP, Wu MY, Kazgan N, Anderson OR, Kessin RH. Macroautophagy is required for multicellular development of the social amoeba Dictyostelium discoideum. J Biol Chem 2003;278 (20):17636-45.
    [78] Otto GP, Wu MY, Kazgan N, Anderson OR, Kessin RH. Dictyostelium macroautophagy mutants vary in the severity of their developmental defects. J Biol Chem 2004;279 (15):15621-9.
    [79] Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 2005;169 (3):425-34.
    [80] Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 2003;301 (5638):1387-91.
    [81] Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP. Autophagy regulates programmed cell death during the plant innate immune response. Cell 2005;121 (4):567-77.
    [82] Kosta A, Roisin-Bouffay C, Luciani MF, Otto GP, Kessin RH, Golstein P. Autophagy gene disruption reveals a non-vacuolar cell death pathway in Dictyostelium. J Biol Chem 2004;279 (46):48404-9.
    [83] Lee CY, Baehrecke EH. Steroid regulation of autophagic programmed cell death during development. Development 2001;128 (8):1443-55.
    [84] Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 2004;304 (5676):1500-2.
    [85] Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 2004;6 (12):1221-8.
    [86] Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, Bamber BA, Bassham DC, Bergamini E, Bi X, Biard-Piechaczyk M, Blum JS, Bredesen DE, Brodsky JL, Brumell JH, Brunk UT, Bursch W,Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin LS, Choi A, Chu CT, Chung J, Clarke PG, Clark RS, Clarke SG, Clave C, Cleveland JL, Codogno P, Colombo MI, Coto-Montes A, Cregg JM, Cuervo AM, Debnath J, Demarchi F, Dennis PB, Dennis PA, Deretic V, Devenish RJ, Di Sano F, Dice JF, Difiglia M, Dinesh-Kumar S, Distelhorst CW, Djavaheri-Mergny M, Dorsey FC, Droge W, Dron M, Dunn WA, Jr., Duszenko M, Eissa NT, Elazar Z, Esclatine A, Eskelinen EL, Fesus L, Finley KD, Fuentes JM, Fueyo J, Fujisaki K, Galliot B, Gao FB, Gewirtz DA, Gibson SB, Gohla A, Goldberg AL, Gonzalez R, Gonzalez-Estevez C, Gorski S, Gottlieb RA, Haussinger D, He YW, Heidenreich K, Hill JA, Hoyer-Hansen M, Hu X, Huang WP, Iwasaki A, Jaattela M, Jackson WT, Jiang X, Jin S, Johansen T, Jung JU, Kadowaki M, Kang C, Kelekar A, Kessel DH, Kiel JA, Kim HP, Kimchi A, Kinsella TJ, Kiselyov K, Kitamoto K, Knecht E, Komatsu M, Kominami E, Kondo S, Kovacs AL, Kroemer G, Kuan CY, Kumar R, Kundu M, Landry J, Laporte M, Le W, Lei HY, Lenardo MJ, Levine B, Lieberman A, Lim KL, Lin FC, Liou W, Liu LF, Lopez-Berestein G, Lopez-Otin C, Lu B, Macleod KF, Malorni W, Martinet W, Matsuoka K, Mautner J, Meijer AJ, Melendez A, Michels P, Miotto G, Mistiaen WP, Mizushima N, Mograbi B, Monastyrska I, Moore MN, Moreira PI, Moriyasu Y, Motyl T, Munz C, Murphy LO, Naqvi NI, Neufeld TP, Nishino I, Nixon RA, Noda T, Nurnberg B, Ogawa M, Oleinick NL, Olsen LJ, Ozpolat B, Paglin S, Palmer GE, Papassideri I, Parkes M, Perlmutter DH, Perry G, Piacentini M, Pinkas-Kramarski R, Prescott M, Proikas-Cezanne T, Raben N, Rami A, Reggiori F, Rohrer B, Rubinsztein DC, Ryan KM, Sadoshima J, Sakagami H, Sakai Y, Sandri M, Sasakawa C, Sass M, Schneider C, Seglen PO, Seleverstov O, Settleman J, Shacka JJ, Shapiro IM, Sibirny A, Silva-Zacarin EC, Simon HU, Simone C, Simonsen A, Smith MA, Spanel-Borowski K, Srinivas V, Steeves M, Stenmark H, Stromhaug PE, Subauste CS, Sugimoto S, Sulzer D, Suzuki T, Swanson MS, Tabas I, Takeshita F, Talbot NJ, Talloczy Z, Tanaka K, Tanaka K, Tanida I, Taylor GS, Taylor JP, Terman A, Tettamanti G, Thompson CB, Thumm M, Tolkovsky AM, Tooze SA, Truant R, Tumanovska LV, Uchiyama Y, Ueno T, Uzcategui NL, van der Klei I, Vaquero EC, Vellai T, Vogel MW, Wang HG, Webster P, Wiley JW, Xi Z, Xiao G, Yahalom J, Yang JM, Yap G, Yin XM, Yoshimori T, Yu L, Yue Z, Yuzaki M, Zabirnyk O, Zheng X, Zhu X, Deter RL. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 2008;4 (2):151-75.
    [87] Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 2006;8 (10):1124-32.
    [88] Kamada S, Kikkawa U, Tsujimoto Y, Hunter T. Nuclear translocation of caspase-3 is dependent on its proteolytic activation and recognition of a substrate-like protein(s). J Biol Chem 2005;280 (2):857-60.
    [89] Luo S, Rubinsztein DC. Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death Differ 2007;14 (7):1247-50.
    [90] Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 2005;115 (10):2656-64.
    [91] Shohat G, Spivak-Kroizman T, Eisenstein M, Kimchi A. The regulation of death-associated protein (DAP) kinase in apoptosis. Eur Cytokine Netw 2002;13 (4):398-400.
    [92] Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, Aguilar-Quesada R, Martin-Oliva D, de Murcia G, Menissier de Murcia J, Almendros A, Ruiz de Almodovar M, Oliver FJ. PARP-1 is involved in autophagy induced by DNA damage. Autophagy 2009;5 (1):61-74.
    [93] Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999;402 (6762):672-6.
    [94] Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003;112 (12):1809-20.
    [95] Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 2003;100 (25):15077-82.
    [96] Hoyer-Hansen M, Bastholm L, Mathiasen IS, Elling F, Jaattela M. Vitamin D analog EB1089 triggers dramatic lysosomal changes and Beclin 1-mediated autophagic cell death. Cell Death Differ 2005;12 (10):1297-309.
    [97] Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 2006;8 (7):688-99.
    [98] Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mul JJ, Pledger WJ, Wang HG. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 2007;9 (10):1142-51.
    [99] Eisenberg-Lerner A, Kimchi A. The paradox of autophagy and its implication in cancer etiology and therapy. Apoptosis 2009;14 (4):376-91.
    [100] Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue Z, Uchiyama Y, Kominami E, Tanaka K. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007;131 (6):1149-63.
    [101] Sakai Y, Oku M, van der Klei IJ, Kiel JA. Pexophagy: autophagic degradation of peroxisomes. Biochim Biophys Acta 2006;1763 (12):1767-75.
    [102] Zhang Y, Qi H, Taylor R, Xu W, Liu LF, Jin S. The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains. Autophagy 2007;3 (4):337-46.
    [103] Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, Chen G, Jin S, White E. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 2007;21 (11):1367-81.
    [104] Ahn CH, Jeong EG, Lee JW, Kim MS, Kim SH, Kim SS, Yoo NJ, Lee SH. Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers. Apmis 2007;115 (12):1344-9.
    [105] Tsuchihara K, Fujii S, Esumi H. Autophagy and cancer: Dynamism of the metabolism of tumor cells and tissues. Cancer Lett 2008.
    [106] Harris AL. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2002;2 (1):38-47.
    [107] Izuishi K, Kato K, Ogura T, Kinoshita T, Esumi H. Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy. Cancer Res 2000;60 (21):6201-7.
    [108] Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, Nelson DA, Jin S, White E. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006;10 (1):51-64.
    [109] Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, White E. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 2007;21 (13):1621-35.
    [110] Qian W, Liu J, Jin J, Ni W, Xu W. Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1. Leuk Res 2007;31 (3):329-39.
    [111] Kanzawa T, Kondo Y, Ito H, Kondo S, Germano I. Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res 2003;63 (9):2103-8.
    [112] Ertmer A, Huber V, Gilch S, Yoshimori T, Erfle V, Duyster J, Elsasser HP, Schatzl HM. The anticancer drug imatinib induces cellular autophagy. Leukemia 2007;21 (5):936-42.
    [113] Bilir A, Erguven M, Oktem G, Ozdemir A, Uslu A, Aktas E, Bonavida B. Potentiation of cytotoxicity by combination of imatinib and chlorimipramine in glioma. Int J Oncol 2008;32 (4):829-39.
    [114] Shao Y, Gao Z, Marks PA, Jiang X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci U S A 2004;101 (52):18030-5.
    [115] Yamamoto S, Tanaka K, Sakimura R, Okada T, Nakamura T, Li Y, Takasaki M, Nakabeppu Y, Iwamoto Y. Suberoylanilide hydroxamic acid (SAHA) induces apoptosis or autophagy-associated cell death in chondrosarcoma cell lines. Anticancer Res 2008;28 (3A):1585-91.
    [116] Kim KW, Hwang M, Moretti L, Jaboin JJ, Cha YI, Lu B. Autophagy upregulation by inhibitors of caspase-3 and mTOR enhances radiotherapy in a mouse model of lung cancer. Autophagy 2008;4 (5):659-68.
    [117] Cao C, Subhawong T, Albert JM, Kim KW, Geng L, Sekhar KR, Gi YJ, Lu B. Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res 2006;66 (20):10040-7.
    [118] Paglin S, Lee NY, Nakar C, Fitzgerald M, Plotkin J, Deuel B, Hackett N, McMahill M, Sphicas E, Lampen N, Yahalom J. Rapamycin-sensitive pathway regulates mitochondrial membrane potential, autophagy, and survival in irradiated MCF-7 cells. Cancer Res 2005;65 (23):11061-70.
    [119] Witzig TE, Geyer SM, Ghobrial I, Inwards DJ, Fonseca R, Kurtin P, Ansell SM, Luyun R, Flynn PJ, Morton RF, Dakhil SR, Gross H, Kaufmann SH. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol 2005;23 (23):5347-56.
    [120] Haritunians T, Mori A, O'Kelly J, Luong QT, Giles FJ, Koeffler HP. Antiproliferative activity of RAD001 (everolimus) as a single agent and combined with other agents in mantle cell lymphoma. Leukemia 2007;21 (2):333-9.
    [121] Yee KW, Zeng Z, Konopleva M, Verstovsek S, Ravandi F, Ferrajoli A, Thomas D, Wierda W, Apostolidou E, Albitar M, O'Brien S, Andreeff M, Giles FJ. Phase I/II study of the mammalian target of rapamycininhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 2006;12 (17):5165-73.
    [122] Iwamaru A, Kondo Y, Iwado E, Aoki H, Fujiwara K, Yokoyama T, Mills GB, Kondo S. Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene 2007;26 (13):1840-51.
    [123] Yokoyama T, Iwado E, Kondo Y, Aoki H, Hayashi Y, Georgescu MM, Sawaya R, Hess KR, Mills GB, Kawamura H, Hashimoto Y, Urata Y, Fujiwara T, Kondo S. Autophagy-inducing agents augment the antitumor effect of telerase-selve oncolytic adenovirus OBP-405 on glioblastoma cells. Gene Ther 2008;15 (17):1233-9.
    [124] Shinohara ET, Cao C, Niermann K, Mu Y, Zeng F, Hallahan DE, Lu B. Enhanced radiation damage of tumor vasculature by mTOR inhibitors. Oncogene 2005;24 (35):5414-22.
    [125] Sato K, Tsuchihara K, Fujii S, Sugiyama M, Goya T, Atomi Y, Ueno T, Ochiai A, Esumi H. Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res 2007;67 (20):9677-84.
    [126] Fujii S, Mitsunaga S, Yamazaki M, Hasebe T, Ishii G, Kojima M, Kinoshita T, Ueno T, Esumi H, Ochiai A. Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome. Cancer Sci 2008;99 (9):1813-9.
    [127] Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 2007;117 (2):326-36.
    [128] Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L, Houghton JA, Huang P, Giles FJ, Cleveland JL. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 2007;110 (1):313-22.
    [129] Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 2008;68 (5):1485-94.
    [130] Li J, Hou N, Faried A, Tsutsumi S, Takeuchi T, Kuwano H. Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Ann Surg Oncol 2009;16 (3):761-71.
    [131] Qadir MA, Kwok B, Dragowska WH, To KH, Le D, Bally MB, Gorski SM. Macroautophagy inhibition sensitizes tamoxifen-resistant breastcancer cells and enhances mitochondrial depolarization. Breast Cancer Res Treat 2008;112 (3):389-403.
    [132] Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006;441 (7095):885-9.
    [133] Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006;441 (7095):880-4.
    [134] Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med 2004;10 Suppl:S10-7.
    [135] Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, Padmanabhan R, Hild M, Berry DL, Garza D, Hubbert CC, Yao TP, Baehrecke EH, Taylor JP. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 2007;447 (7146):859-63.
    [136] Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 2005;171 (4):603-14.
    [137] Bjorkoy G, Lamark T, Johansen T. p62/SQSTM1: a missing link between protein aggregates and the autophagy machinery. Autophagy 2006;2 (2):138-9.
    [138] Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007;282 (33):24131-45.
    [139] Klionsky DJ, Cuervo AM, Dunn WA, Jr., Levine B, van der Klei I, Seglen PO. How shall I eat thee? Autophagy 2007;3 (5):413-6.
    [140] Amano A, Nakagawa I, Yoshimori T. Autophagy in innate immunity against intracellular bacteria. J Biochem 2006;140 (2):161-6.
    [141] Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S, Yoshimori T. Autophagy defends cells against invading group A Streptococcus. Science 2004;306 (5698):1037-40.
    [142] Vergne I, Singh S, Roberts E, Kyei G, Master S, Harris J, de Haro S, Naylor J, Davis A, Delgado M, Deretic V. Autophagy in immune defense against Mycobacterium tuberculosis. Autophagy 2006;2(3):175-8.
    [143] Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, Levine B. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 1998;72 (11):8586-96.
    [144] Jackson WT, Giddings TH, Jr., Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, Kirkegaard K. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 2005;3 (5):e156.
    [145] Prentice E, Jerome WG, Yoshimori T, Mizushima N, Denison MR. Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem 2004;279 (11):10136-41.
    [146] Zhao Z, Thackray LB, Miller BC, Lynn TM, Becker MM, Ward E, Mizushima NN, Denison MR, Virgin HWt. Coronavirus replication does not require the autophagy gene ATG5. Autophagy 2007;3 (6):581-5.
    [147] Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 2003;426 (6967):620.
    [148] Bergamini E, Cavallini G, Donati A, Gori Z. The role of macroautophagy in the ageing process, anti-ageing intervention and age-associated diseases. Int J Biochem Cell Biol 2004;36 (12):2392-404.
    [149] Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Muller M, Kreymborg K, Altenberend F, Brandenburg J, Kalbacher H, Brock R, Driessen C, Rammensee HG, Stevanovic S. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci U S A 2005;102 (22):7922-7.
    [150] Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Munz C. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 2005;307 (5709):593-6.
    [151] Li C, Capan E, Zhao Y, Zhao J, Stolz D, Watkins SC, Jin S, Lu B. Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal cell death. J Immunol 2006;177 (8):5163-8.
    [152] Prescott NJ, Fisher SA, Franke A, Hampe J, Onnie CM, Soars D, Bagnall R, Mirza MM, Sanderson J, Forbes A, Mansfield JC, Lewis CM, Schreiber S, Mathew CG. A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn's disease and is independent of CARD15 and IBD5. Gastroenterology 2007;132 (5):1665-71.
    [153] Sooparb S, Price SR, Shaoguang J, Franch HA. Suppression of chaperone-mediated autophagy in the renal cortex during acute diabetes mellitus. Kidney Int 2004;65 (6):2135-44.
    [154] Tanida I, Yamaji T, Ueno T, Ishiura S, Kominami E, Hanada K. Consideration about negative controls for LC3 and expression vectors for four colored fluorescent protein-LC3 negative controls. Autophagy 2008;4 (1):131-4.
    [155] Elsasser A, Vogt AM, Nef H, Kostin S, Mollmann H, Skwara W, Bode C, Hamm C, Schaper J. Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death. J Am Coll Cardiol 2004;43 (12):2191-9.
    [156] Kostin S, Pool L, Elsasser A, Hein S, Drexler HC, Arnon E, Hayakawa Y, Zimmermann R, Bauer E, Klovekorn WP, Schaper J. Myocytes die by multiple mechanisms in failing human hearts. Circ Res 2003;92 (7):715-24.
    [157] Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis 2007;26 (1):86-93.
    [158] Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 2000;150 (6):1507-13.
    [159] Pattingre S, Petiot A, Codogno P. Analyses of Galpha-interacting protein and activator of G-protein-signaling-3 functions in macroautophagy. Methods Enzymol 2004;390:17-31.
    [160] Furuya N, Kanazawa T, Fujimura S, Ueno T, Kominami E, Kadowaki M. Leupeptin-induced appearance of partial fragment of betaine homocysteine methyltransferase during autophagic maturation in rat hepatocytes. J Biochem 2001;129 (2):313-20.
    [161] Taylor GS, Long HM, Haigh TA, Larsen M, Brooks J, Rickinson AB. A role for intercellular antigen transfer in the recognition of EBV-transformed B cell lines by EBV nuclear antigen-specific CD4+ T cells. J Immunol 2006;177 (6):3746-56.
    [162] Karim MR, Kanazawa T, Daigaku Y, Fujimura S, Miotto G, Kadowaki M. Cytosolic LC3 ratio as a sensitive index of macroautophagy in isolated rat hepatocytes and H4-II-E cells. Autophagy 2007;3 (6):553-60.
    [163] Gutierrez MG, Saka HA, Chinen I, Zoppino FC, Yoshimori T, Bocco JL, Colombo MI. Protective role of autophagy against Vibrio cholerae cytolysin, a pore-forming toxin from V. cholerae. Proc Natl Acad Sci U S A 2007;104 (6):1829-34.
    [164] Komatsu M, Wang QJ, Holstein GR, Friedrich VL, Jr., Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and theprevention of axonal degeneration. Proc Natl Acad Sci U S A 2007;104 (36):14489-94.
    [165] Bampton ET, Goemans CG, Niranjan D, Mizushima N, Tolkovsky AM. The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy 2005;1 (1):23-36.
    [166] Yang W, Monroe J, Zhang Y, George D, Bremer E, Li H. Proteasome inhibition induces both pro- and anti-cell death pathways in prostate cancer cells. Cancer Lett 2006;243 (2):217-27.
    [167] Zhao X, Carnevale KA, Cathcart MK. Human monocytes use Rac1, not Rac2, in the NADPH oxidase complex. J Biol Chem 2003;278 (42):40788-92.
    [168] Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006;126 (1):121-34.
    [169] Mitsiades CS, Ocio EM, Pandiella A, Maiso P, Gajate C, Garayoa M, Vilanova D, Montero JC, Mitsiades N, McMullan CJ, Munshi NC, Hideshima T, Chauhan D, Aviles P, Otero G, Faircloth G, Mateos MV, Richardson PG, Mollinedo F, San-Miguel JF, Anderson KC. Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo. Cancer Res 2008;68 (13):5216-25.
    [170] Kawai A, Takano S, Nakamura N, Ohkuma S. Quantitative monitoring of autophagic degradation. Biochem Biophys Res Commun 2006;351 (1):71-7.
    [171] Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 2005;25 (3):1025-40.
    [172] Katayama M, Kawaguchi T, Berger MS, Pieper RO. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 2007;14 (3):548-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700