用户名: 密码: 验证码:
FCC汽油液相选择性氧化脱硫的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们环保意识的不断增强及原油硫含量的增大,汽车尾气所带来的污染越来越成为人们关注的焦点,生产满足环境保护要求的清洁燃料汽油越来越重要,所以世界各国对燃料油品中的硫含量提出了非常严格的要求。与其他脱硫技术相比,氧化脱硫新技术可以在常温常压,不消耗氢气的条件下使用;另外,还能够有效的脱除传统方法较难脱除的噻吩类硫化物,并且具有脱氮功能;反应副产物为有机硫化物,可以作为潜在的工业原料;反应过程中二氧化碳排放量少,系环保型工艺过程,因此具有广泛的应用前景。
     本文通过石家庄炼油厂生产的FCC汽油含硫化合物的检测,制定了以H_2O_2为氧化剂,杂多酸或有机酸为催化剂,在季铵盐相转移催化剂的作用下的催化氧化脱除模型化合物中噻吩的研究方案。对季铵盐相转移催化剂阴阳离子及其结构对氧化脱硫率的影响进行了系统研究,提出在季铵盐相转移催化剂作用下噻吩的氧化机理及最终产物,模型化合物脱硫率达到93.1%。
     以噻吩为模型化合物,在自制杂多酸季铵盐催化下,以H2O2为氧化剂,对模型化合物氧化脱除噻吩工艺进行了系统研究。自制催化剂具有较高的催化氧化活性,能够有效减小反应系统相间阻力,促进噻吩的氧化反应顺利进行。提出了该催化剂催化氧化脱除模型化合物中噻吩的反应机理。
     以噻吩为模型化合物,自制铁酸锌负载磷钨酸为催化剂,以H2O2为氧化剂,对模型化合物氧化脱除噻吩工艺进行了系统研究。负载型磷钨酸催化剂催化活性中心突出,分布均匀,克服了磷钨酸直接作为催化剂比表面小,反应后不易回收等缺点。
     通过对模型化合物氧化脱除噻吩的研究分析,制定了FCC汽油以H_2O_2为氧化剂,杂多酸或有机酸为催化剂,在季铵盐相转移催化剂的作用下的氧化脱硫实验方案。季铵盐类相转移催化剂能够降低水油两相间的相间阻力,其阳离子还能与过氧杂多阴离子结合,避免了溶剂化效应,提高了杂多酸催化剂的催化活性;确定了相转移催化氧化脱除FCC汽油中含硫化合物的反应机理及最终产物,FCC汽油脱硫率达到83.6%。
A considerable attention had been focused on automobile-exhaust pollution due to the increasingly content of sulfur in crude oil and the recognition of environmental consciousness. Strict regulations limiting the sulfur content had been introduced in some countries. Conventional hydrodesulfurizaiton technology if used for this process needed severe operating conditions, such as high hydrogen pressure and reaction temperature, which were unfavorable for commercial purpose. Much interest, therefore, had been focused on oxidative desulfurization technology, which could be operated on moderate conditions and reaction could be processed without consuming hydrogen. In addition, it had following advantages: (1) the nitrogen compounds and substituted thiophenes could be removed; (2) the side-product was organic sulfide, which may be used as industrial material; (3) it was an environment protection technique due to the decreasing emission of carbon dioxide.
     In this text, the oxidative desulfurization of thiophene as a model compound was studied over the system combined by the catalyst of heteropoly acids, the oxidant H2O2 and quaternary ammonium salt phase-transfer catalyst. The influence of cation of quaternary ammonium salt phase-transfer catalyst and the structure on the oxidative-desulfurization rate was investigated. It was shown that the desulfurization rate was up to 93.1%. The oxidation mechanism of thiophene and the final product of oxidative desulfurization were discussed.
     The processing conditions of oxidative desulfurization of thiophene were studied over the system combined by catalyst of heteropoly acids- quaternary ammonium salt, and the oxidant H2O2. The results showed that the catalyst was active because it could decrease the interfacial resistance and facilitate the oxidative desulfurization. The processing conditions of oxidative desulfurization of thiophene were investigated over the system combined by catalyst of zinc ferrite supporting on phosphotungstic acid, and the oxidant H2O2. It was shown that the active centre of catalyst was increased and distributed equably by increasing the specifics surface area of catalyst.
     According to the above analysis, the oxidative desulfurization of FCC was studied over the system combined by the catalyst of heteropoly acids, the oxidant H2O2 and quaternary ammonium salt phase-transfer catalyst. It was shown that the desulfurization rate was up to 83.6%. Quaternary ammonium salt phase-transfer catalyst could decrease the resistance of water-oil interface; its cation could combine with over-oxygen-heteropoly anion, and avoid the solvent effect, thus the activity of heteropoly acids catalysts increased. The oxidation desulfurization mechanism of FCC and the final product were determined.
引文
[1]李金良,周二鹏,崔文广,赵地顺,清洁汽油生产新技术,河北化工,2003(4):10-12
    [2]王军民,袁铁,超低硫清洁汽油的生产技术进展,天然气与石油,2001,19(4):14-18
    [3]崔文广,周二鹏,赵地顺,催化裂化汽油脱硫技术进展,河北工业科技,2004,21(2):1-4
    [4]崔文广,周二鹏,赵地顺,改进催化裂化汽油辛烷值技术进展,河北化工,200,(6):1-4
    [5]张智勇,周二鹏,刘翠微,刘妍,赵地顺,轻质油品氧化脱硫技术进展,河北化工,2004(3):1-4
    [6]刘妍,孙斌,赵地顺,周二鹏,张智勇,催化裂化汽油氧化法脱硫,天津化工,200418(5):25-27
    [7] Zhao Dishun, Sun Fengxia, Zhou Erpeng , Liu Yan. A Review of Desulfurization of Light Oil Based on Selective Oxidation-Extraction. Chemical Journal on Internet 2004, 063017
    [8]庞新梅,孙书红,高雄厚,生产低硫汽油新型FCC催化剂研究进展,石化技术与应用,2001,19(6):384-388
    [9] Gerald D., Lamb, Earl Davis, Impact on future refinery of producing low sulfur gasoline, 2000 NPRA Annual Meeting, AM-00-13
    [10]夏道宏,钱家麟,我国几家炼油厂催化裂化汽油中硫醇性硫的分布研究,石油炼制与化工,1994,25(8):56-60
    [11] Jeffrey W., Balko, David Podratz, Grace Davison FCC Catalytic Technologies for Managing New Regulations, 2000 NPRA Annual Meeting, AM-00-14
    [12]路勇,何鸣元,宋家庆等,氢转移反应与催化裂化汽油质量,炼油设计,1999,29(6):5-11
    [13]王祥生,罗国华,HZSM-5沸石上焦化苯的精制脱硫,催化学报,1996,17(6):530-534
    [14]Garcia C. L., Lercher, J. A., Adsorption and Surface Reactions of Thiophene on ZSM-5 Zeolites, J Phs Chem, 1992, 96(26): 2669
    [15]Alkemade U., Dougan T. J., Catalysts in Petroleum Refining and Petrochemical Industries. 1995
    [16] Worms Bechar, F. Kimg, Sulfurreduction in FCC gasoline, US 5376608, 1994
    [17] Jeffrey W., Balko, David Podratz, Grace Davison FCC Catalytic Technologies for Managing New Regulations, 2000 NPRA Annual Meeting, AM-00-14
    [18]李春义,山红红,赵博艺,杨朝合,张建芳,汽油催化裂化脱硫USY/ZnO/Al2O3催化剂,物理化学学报,2001,17(7):641-644
    [19]秦如意,张晓静,刘金龙, FCC汽油吸附脱硫工艺的研究,石油炼制与化工,2003,34(3):24-28
    [20]山红红,李春义等,FCC汽油中硫分布和催化脱硫研究,石油大学学报,2001,25(6):78-80
    [21]李春义,山红红,杨朝和,张建芳,轻质油品催化裂化脱硫催化剂,00120711.3,2000.
    [22]庞新梅,李春义,山红红等,硫化物在FCC催化剂上的裂化脱硫研究,石油大学学报(自然科学版),2003,27(1):95-98
    [23]廖健,张兵,刘伯华,国外清洁燃料生产技术,当代石油石化,2001,9(3):28-32
    [24] Shorey S. W., Exploiting Synergy between FCC and Feed Pretreating Units to Improve RefineryMmargins and Produce Low-sulfur Fuels. 1999 NPRA Annual Meeting, AM-99-55
    [25]许金山,周忠国,林健,重质催化裂化原料加氢预处理制备清洁燃料,石油炼制与化工,2003,34(2):7-10
    [26]卫恒德,张士瑞,满足更苛刻汽油规格的炼油技术,炼油设计,2001,31(1):20-22
    [27] Nocca J. L., Cosyns J., Debuisschert Q., The Domino Interaction of Refinery Processes for Gasoline Quality Attainment, 2000 NPRA Annual Meeting, AM-00-61
    [28] Shih S S,Owens P J,Palit S.Mobil’s Octgain Process:FCC Gasoline Desulfurization Reaches a New Performance Leve NPRA, San Antonio,1999, AM-99-30
    [29]廖健,张兵,刘伯华,国外清洁燃料生产技术,当代石油石化,2001,9(3):29~30
    [30] Alkemade U., Dougan T. J., Catalysts in Petroleum Refining and Petrochemical Industries, 1995
    [31]Greeley J. P., Zaczepinski S.,Selective Cat Naphtha Hydrofining with Minimal Octane Loss, 1999 NPRA Annual Meeting, AM-99-31
    [32]Halbert T. R., Brignac G. B., Greeley J. P., Technology Options for Meeting Low Sulfur Mogas Targets, 2000 NPRA Annual Meeting, AM-00-11
    [33]Shih S. S., Owens P. J., Mobils OCTGAINTM Process: FCC Gasoline Desulfurization Reaches a New Performance Level, 1999 NPRA Annual Meeting, AM-99-30
    [34]Nocca J. L., Cosyns J., Debuisschert Q., The Domino Interaction of Refinery Processes for Gasoline Quality Attainment, 2000 NPRA Annual Meeting, AM-00-61 [35Martinez N. P., Salazar J. A., Tejada J., Meet Gasoline Pool Sulfur and Octane Targets with the ISAL Process, 2000 NPRA Annual Meeting, AM-00-52
    [36]达建文,韩新竹,徐兴忠等,催化裂化汽油选择性加氢脱硫催化剂的研制及性能评价,石油炼制与化工,2002,33(7):1-4
    [37]Martinez N. P., Salazar J. A.,Tejada J. et al., Meet Gasoline Pool Sulfur and Octane Targets with the ISAL Process, 2000 NPRA Annual Meeting, AM-00-52
    [38]达建文,韩新竹,徐兴忠等,催化裂化汽油选择性加氢脱硫催化剂的研制及性能评价,石油炼制与化工,2002,33(7):1-4
    [39]Tippett T., Knudsen K. G., Cooper B. H., Ultra Low Sulfur Diesel:Catalyst and Process Options, 1999 NPRA Annual Meeting, AM-99-06
    [40]Boron D. J., Deever W. R., Atlas R. M., et al., Biodesulfurization of Gasoline:an Assess- ment of Technical and Economic Feasibility and Outline of R&D Roadmap toward Com- mercialization, 1999 NPRA Annual Meeting, AM-99-54
    [41]Monticello D. J., Riding the Fossil Fuel Biodesulfurization wave, Chemtech, 1998, 28(7): 38-45
    [42]Gray K. A., et al., Molecular Mechanisms of Biocalytic Desulfurization of Fossil Fuels, Nature Biotechnol, 1996, 14(13): 1705-1709
    [43]Li M. Z., et al., Genetic Analysis of the Dsz Promoter and Associated Regulatory Regions of Rhodococcus Erythropolis IGTS8, Journal of Bacteriology, 1996, 17 (22): 6409-6418
    [44]Pacheco M .A., et al., Recent Advances in Biodesulfurization (BDS) of Diesel Fuel, 1999 NPRA Annual Meeting, AM-99-27
    [45]佟明友,方向晨,马挺等,基因工程技术在石油生物脱硫中的应用,生物工程学报,2001,17(6):617-620
    [46]刘成军,李胜山,国外清洁汽油生产工艺,石油与天然气化工,2001,30(6):298-301
    [47]Maple R. E., Wizig H. W., Removal of Sulfur from Light FCC Gasoline, 2000 NPRA Annual Meeting, AM-00-54
    [48]王军民,房少华,廖启玲等,催化裂化汽油溶剂萃取脱硫工艺的研究,炼油设计,2000,30(10):32-34
    [49]袁铁,溶剂萃取脱除FCC汽油中硫化物的研究,北京:清华大学化学系,2000
    [50]田龙胜,唐文成,FCC汽油溶剂抽提脱硫的研究,石油炼制与化工,2001,32(9):7-9
    [51]Irvine R. L., Benson B. A., Varraveto D. M., et al., IRVAD Process-low Cost Breakthrough Low Sulfur Gasoline, 1999 NPRA Annual Meeting, AM-99-42.
    [52]US Environmental Protection Agency Office of Mobile Sources, EPA Staff Paper on Gasoline Sulfur Issues, May, 1, 1998
    [53]Gil J., Greenwood, Dennis Kidd, et al., Next Generation Sulfur Removal Technology, 2000 NPRA Annual Meeting, AM-00-12
    [54]Nemeth L. T., Kulprathipanza S., Removal of Sulfur Compounds from Liquid Organic Feedstreams, US 5 360 536, 1994
    [55]Khare G. P., Engelbert D. R., Cass B. W., Transport Desulfurization Process Utilizing a Sulfur Sorbent That Is both Fluidizable and Circulatable and a Method of Making such Sulfur Sorbent, US 5 914 292, 1999
    [56]杜秀英,陆耘,符若文等,载锰活性碳纤维SACF-Mn的制备及对乙基硫醇的吸附性能研究,离子交换与吸附, 1999,15(5):397-402
    [57]徐志达,陈冰,陈燕萍等,活性碳纤维用于汽油脱硫醇的研究,石油炼制与化工,1999,30(9):12-14
    [58]张晓静,秦如意,刘金龙等,催化裂化汽油吸附脱硫工艺研究,炼油设计, 2001,31(6):44-47
    [59] Bōsmann A., Daatsevich L., Jess A., et al., Deep desulfurization of diesel fuel by extraction with ionic liquids, Chem. Commun., 2001, 2494–2495
    [60] E?er J., Wasserscheid P., Jess A., Deep desulfurization of oil refinery streams by extraction with ionic liquids, Green Chem., 2004, 6(7), 316-322
    [61] Zhang S. G., Zhang Z. C., Novel properties of Ionic Liquids in Selective Sulfur Removal from Fuels at Room Temperature, Green Chemistry, 2002, 98(4): 376–379
    [62]蒋小川,于春影,冯婕等,离子液体1-丁基-3-甲基咪唑磷酸二丁酯的制备与应用,北京化工大学学报2006 34 (1): 5-7
    [63] Nie Y., Li C. X., Sun A. J., Extractive Desulfurization of Gasoline Using Imidazolium-Based Phosphoric Ionic Liquids, Energy & Fuels, 2006, 20 (5), 2083–2087
    [64] Nie Y., Li C. X., Wang Z. H., Extractive Desulfurization of Fuel Oil Using Alkylimidazole and Its Mixture with Dialkylphosphate Ionic Liquids, Ind. Eng. Chem. Res., 2007, 46 (15), 5108 -5112
    [65] Shiraishi Y., Tachibana K., Hirai T., et al., Desulfurization and Denitrogenation Process for Light Oils Based on Chemical Oxidation followed by Liquid-Liquid Extraction, Ind. Eng. Chem. Res., 2002, (41): 4362-4375
    [66] Shiraishi Y., Hirai T. Desulfurization of Vacuum Gas Oil Based on Chemical Oxidation Followed by Liquid-Liquid Extraction. Energy & Fuels, 2004,(18):37-40
    [67] Mei H., Mei B.W., Fuyen T., A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization, Fuel, 2003, (82): 405–414
    [68] Ishihara A., Wang D., Dumeignil F., Oxidative Desulfurization and Denitrogenation of a Light Gas Oil Using an Oxidation/Adsorption continuous Flow Process, Applied Catalysis A: General, 2005(279): 279–287
    [69] NPRA, AM-00-25
    [70]相田哲夫,过酸化水素にょ石油の酸化脱硫,Petrotech,2000,23(6):483-486
    [71] US 4,746,420
    [72] US 6,160,193
    [73]余国贤,陈辉,陆善祥,朱中南,柴油催化氧化深度脱硫研究,高校化学工程学报,2006,20(4):616-621
    [74]吕志风等,用-有机酸氧化脱除催化裂化柴油中的硫化物,石油大学学报,2001,25(3):26-29
    [75]陈焕章,李永丹,赵地顺,等,汽油和柴油氧化脱硫技术进展,化工进展,2004,23(9):913-916
    [76]单玉华,邬国英,李为民等,氧化法精制汽油或柴油的方法,CN 99 119 904,2001
    [77]单玉华等,杂多酸催化下过氧化氢氧化法精制焦化汽油,石油化工,2002,32(5):361-364
    [78]刘万楹,雷正兰,吕伟等,有机硫化物的等离子体液相氧化脱硫,应用化学,1997,(5):83-85
    [79]杨丽娜,李德飞,李东胜等,石油二厂催化裂化柴油化学方法脱硫,抚顺石油学院学报,2002,22(2):22-24
    [80]邓南圣,吴峰,环境光化学,北京:化学工业出版社,2003:1-5
    [81] Shiraishi Y., Taki Y., Photochemical Desulfurization and Denitrogenation of Light Oil Using Benzophenone-Modified Silica Gel as a Heterogeneous Triplet Photosensitizer, Solv. Extr. Res. Dev. Japan., 2003, (10): 79-85
    [82] Hirai T., Ogawa K., Komasawa I., Desulfurization Process for Dibenzothiophenes from Light Oil by Photochemical Reaction and Liquid-Liquid Extraction, Ind. Eng. Chem. Res., 1996, (35): 586-589
    [83] Shiraishi Y., Komasawa I., Desulfurization Process for Light Oil by Photochemical Reaction and Liquid-Liquid Extraction;Removal of Benzothiophenes and Alkyl Sulfides, Chem. Eng. Jpn., 1997, (30):173-175
    [84] Shiraishi Y., Hirai T., Komasawa I., Photochemical Desulfurization of Light Oils Using an Oil/Hydrogen Peroxide aqueous Solution Extraction System; Application for high sulfur content straight-run light gas oil and aromatic rich light cycle oil. Chem. Eng. Jpn., 1999, (32):158-161
    [85] Matsuzawa S., Tanaka J., Sato S., Photocatalytic Oxidation of Dibenzothiophenes in Acetonitrile Using TiO2: Effect of Hydrogen Peroxide and Ultrasound Irradiation. Journal of photochemistry and photobiology, A: Chemistry, 2002, (149): 183-189
    [86] Nakano H., Proceedings of the 35th Annual Meeting of the Japan Society on Water Environment, 2001, 544
    [87] Rivera A.P., Tanaka K., Hisanaga T., Photocatalytic Degradation of Pollutant over TiO2 in Different Crystal Structures, Appl. Catal. B, 1993: 37-44
    [88] Kado Y., Atobe M., Nonaka T., A limiting current study on electroreduction of benzophenone in the presence of a proton donor, 2001, (8): 69-74
    [89] Takayuki Hirai et al., Effect of photosensi-tizer and hydrogen peroxide on desulfurization of light oil by photochemical reaction and liquid-liquid extraction, Ind. Eng. Chem.Res., 1997, 36: 530-533
    [90]白石康浩,液液抽出法と光化学反应を利用すそ轻油の新しソ深度脱硫フロヤス,ヶシカル,エンジニヤリニゲ,1998,43(8):34-39
    [91] Petroleum Energy Center(Tokyo), H2O2 offers a milder desulphurization route for diesel fuel, Chemical Engineering, 1999, 106(11): 23
    [92] Hai Mei, B. Wmel, Tech FuYue, A new method for obtaining ultra-low sulfur via ultrasound assisted oxidative desulfurization . Fuel, 2003, 82: 405-414
    [93] Schoonover R. E., Oxidation-extraction removal of organosulfur compounds from hydrocarbon fuels by contact with ionic liquids, U.S. Pat. Appl., 2003, Publ. 2003085156
    [94] Lo W. H., Yang H. Y., Wei G. T., One-pot desulfurization of light oils by chemical oxidation andsolvent extraction with room temperature ionic liquids, Green Chem., 2003, 5(6): 639-642
    [95] Dishun Zhao, Jianlong Wang, Erpeng Zhou. Oxidative desulfurization of diesel fuel using a Br?nsted acid room temperature ionic liquid in the presence of H2O2. Green Chemistry, 2007, 9, 1219-1222
    [96] Liang Lu, Shifu Cheng, Jinbao Gao, Guohua Gao, Mingyuan He, Deep Oxidative Desulfurization of Fuels Catalyzed by Ionic Liquid in the Presence of H2O2. Energy & Fuels 2007, 21, 383-384
    [97]陈惠敏,21世纪的车用燃料—超低硫汽油和柴油,炼油设计,1999,29(5):8-12
    [98]殷长龙,夏道宏,催化裂化汽油中类型硫含量分布,燃料化学学报,2001,29(3):256-258
    [99]赵腾飞,柴油生物脱硫技术进展,中外能源,2007,12(3):72-77
    [100] Mure T., Craig F., Zbigniew R., Oxindation reactivities of dibenzothio-phenes In polyoxometalate/H2O2 and formic acid/ H2O2 systems, Applied Catalysis A: General, 2001, 219: 267-280
    [101]吕志凤,战风涛,李林等,用H2O2-有机酸氧化脱除催化裂化柴油中的硫化物,石油大学学报(自然科学版),2001,25(3):26-29
    [102] Shujiro Otsuki, Takeshi Nonaka, Oxidative Desulfurization of light gas oil and vacuum gas oil by oxidation and solventextraction, Energ&fuels, 2000(14): 1232 -1239
    [103]王豪,唐晓东,周建军,刘亮,柴油氧化脱硫技术研究进展,石油与天然气化工, 2003,32(1):38-41
    [104]林道汉,许绍权,绿色氧化剂过氧化氢,化学教育, 2000,(10):1-4.
    [105] US Patent 6,274,785
    [106] Starks C. M., Phase-transfer catalysis I. Heterogeneous reactions involving anion transfer by quaternary ammonium and phosphonium salts, J. Am. Chem. Soc., 1971, 93(1): 195-199
    [107]李坤兰,周宁,奚祖威,溶剂和杂多酸盐中季铵阳离子对环己烯环氧化反应控制相转移催化的影响,催化学报, 2002, 23(2): 125-126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700