用户名: 密码: 验证码:
汽油烷基化硫转移催化精馏过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽油烷基化硫转移是指利用汽油中的烯烃与噻吩类硫化物发生烷基化反应而提高含硫化合物的沸点,并通过精馏作用将反应生成的高沸点烷基化产物转移到重馏分中,从而使轻馏分中的噻吩类硫化物得到有效脱除的技术。通过硫转移可显著提高轻重汽油的切割点,将C5~C7烯烃切入轻馏分,从而可避免含硫重汽油馏分在加氢处理时由于烯烃大量饱和而出现的辛烷值损失。该技术可在常压下操作,并且采用固体催化剂,具有绿色环保的特点。应用催化精馏技术可以将汽油烷基化硫转移工艺中的反应和精馏耦合在一起,达到过程强化和节能的目的。本论文围绕这一目标,系统地开展了汽油烷基化硫转移催化剂、汽液相行为、催化精馏过程分析和模拟等方面的研究。
     首先,对汽油烷基化硫转移固体酸催化剂进行了评价,并对体系进行了热力学和反应动力学研究,包括硫化物与汽油组分之间的相平衡测定、主副反应的热力学平衡转化率和反应焓的估算、固体酸催化剂的性能评价以及Amberlyst35树脂催化真实汽油中噻吩类硫化物烷基化反应动力学方程参数的确定等,从而为汽油烷基化硫转移催化精馏过程设计得到了所需的相平衡参数、催化剂操作条件及动力学方程参数等信息。
     然后,基于所得到的热力学及动力学参数,本论文使用反应剩余曲线,进一步对汽油烷基化硫转移催化精馏过程进行了可行性分析和设计,并使用ASPEN-PLUS模拟软件对其进行了验证。结果表明:使用催化精馏技术可以达到汽油烷基化硫转移的目的,优化后的催化精馏塔可以获得硫含量低于1ppmw的汽油产品,且可显著降低烯烃聚合副反应的发生。此外,本论文对渗流型催化精馏元件的流体力学性能进行了研究,并提出了相应的设计原则。
     最后,考虑到催化精馏过程中反应和分离之间耦合作用的复杂性以及汽油烷基化硫转移体系关键组分浓度尺度很大的特点,本论文使用多尺度方法对其进行了研究,主要包括两部分:一是通过对现有的能量最小多尺度模型进行分析,得到了控制机制竞争多尺度的思想,并应用该思想为催化精馏过程建立了多尺度模型;二是对微浓度和全浓度的相平衡数据进行了对比,结果表明稀溶液中微量组分的汽液相浓度呈现二次多项式关系,无法使用全浓度相平衡模型和传统的Herry定律来描述,从而验证了浓度尺度跨度较大体系进行多尺度相平衡研究的必要性。
Gasoline alkylation sulfur transfer contains the alkylation reactions of olefinswith thiophenic sulfur in gasoline and followed distillation to transfer the aklyatedthiophenic compounds with high boiling point to the heavy naphtha, thus removes thethiophenic sulfur in the light fractions. The sulfur transfer reactions could increase thecutting point of light and heavy gasoline, which would distil the C5~C7olefins into thelight fraction. Therefore, the loss of octane number caused by the saturation of olefinsduring the hydrotreating could be alleviated. This technology has the advantage ofgreen environmental protection, and could be operated at atmospheric pressure usingsolid catalysts. The combination of gasoline alkylation desulfurization with catalyticdistillation could achieve the purpose of process intensification and energy saving.Therefore, this work focused on the research of gasoline alkylation sulfur transfercatalytic distillation, including the catalysts, vapor-liquid equilibrium, processanalysis and modeling, etc.
     In this work, firstly the study was devoted to the thermodynamics, catalystscreening, and the reaction kinetics of gasoline alkylation sulfur transfer system,including the measurement of phase equilibrium between the sulfides and othercomponents in gasoline, the estimation of thermodynamic conversion and reactionenthalpy for the main and side reactions, the screening of solid acid catalysts, and thedetermination of kinetics for the alkylation of thiophenic compounds in FCC gasolinecatalyzed by Amberlyst35, which could provide lots of information for theparameters and operation conditions required in the design of catalytic distillationprocess.
     Then, based on the results of thermodynamic and kinetic study, the analysis anddesign was carried out using the reactive residue curves, and was validated throughrigorous numerical simulations using ASPEN-PLUS. Results showed that catalyticdistillation was feasible for gasoline alkylation sulfur transfer, and an optimizedcatalytic distillation column could obtain product gasoline with sulfur content lessthan1ppmw and reduce the side reactions of olefins oligomerization. Besides, thehydrodynamic performance of permeable catalytic distillation structure was studied,and the corresponding design principles were given.
     Finally, considering the complexity of the coupling between the reaction andseparation in catalytic distillation and the large scale characteristic of concentrationsfor the key components in alkylation desulfurization, the multi-scale method wasapplied, including two parts: firstly, through the analysis of Energy MinimizationMuluti Scale model, a multi-scale thoughts for the competition between the controlmechanisms was proposed and applied to the catalytic distillation process; secondly, acomparison was made for the phase equilibrium in micro concentration and entireconcentration range, and results showed that the relation of phase equilibrium wasfitted by a quadratic polynomial model, which indicated that a multi-scale phaseequilibrium was necessary for the systems with large scale concentration.
引文
[1]别东生,含硫原油加工技术问答,北京:中国石化出版社,2008,10~11.
    [2]朱庆云,世界汽油质量标准发生趋势,国际石油经济,2011,5:33~38.
    [3]张满玉,车用汽油质量发展趋势,科技资讯,2011,34:123.
    [4] Babich I V, Moulijn J A, Science and technology of novel processes for deepdesulfurization of oil refinery streams: a review, Fuel,2003,82:607~631.
    [5]路勇,王亚,高立达等,一种催化氧化脱除烃燃料中含硫化合物的方法,中国专利,101007963A,2007-08-01.
    [6]卜欣立,阎永辉,王玉环, FCC汽油脱硫新技术,石家庄职业技术学院学报,2002,14(4):8~10.
    [7]张艳维,沈健,杨丽娜等, H3PW12O40/SiO2-Al2O3催化氧化吸附脱硫的研究,石油与天然气化工,2005,34(2):97~99.
    [8]田文莉,张军民, FCC汽油脱硫工艺及发展趋势,广州化工,2011,39(3):42~45.
    [9] Burnet S, Mey D, Perot G, et al., On the hydrodesulfurization of FCC gasoline: areview, Applied Catalysis A: General,2005,278(2):143~172.
    [10]王鸥,催化裂化汽油脱硫降烯烃技术进展,炼油技术与工程,2008,38(2):20~24.
    [11] Nocca J L, The Domino Interaction of Refinery Processes for Gasoline QualityAttainment, NPRA Annual Meeting, San Antonio,2000, AM-00-61.
    [12] John P G, Technology Options for Meeting Low Sulfur Mogas Targets, NPRAAnnual Meeting, San Antonio,2000, AM-00-11.
    [13]李明丰,夏国富,褚阳等,催化裂化汽油选择性加氢脱硫催化剂RSDS-1的开发,石油炼制与化工,2003,34(7):1~4.
    [14]赵乐平,周勇,段为宇等, OCT-M催化裂化汽油选择性加氢脱硫技术,炼油技术与工程,2004,34(2):6~8.
    [15] Shih S S, Owens P J, Palit S, Mobil's OctgainTM Process: FCC GasolineDesulfurization Reaches a New Performance Level, NPRA Annual Meeting, SanAntonio,1999, AM-99-30.
    [16] Martinez N P, Salazar J A, Tejada J, Meeting Gasoline Pool Sulfur and OctaneTargets with the ISAL Process, NPRA Annual Meeting, San Antonio,2000,AM-00-52.
    [17]聂红,石亚华,石玉林等,石油化工科学研究院开发的加氢技术与清洁燃料生产,石油炼制与化工,2002,33:8~15.
    [18]胡永康,赵乐平,李扬等,全馏分催化裂化汽油芳构化烷基化降烯烃技术的开发,炼油技术与工程,2004,34(1):1~4.
    [19]王少军,凌凤香,王安杰,柴油非加氢脱硫技术研究中样品的选择,燃料化学学报,2005,33(2):171~174.
    [20]王云,李钢,王祥生等, Ti-HMS催化氧化脱除模拟燃料中的硫化物,催化学报,2005,26(7):567~570.
    [21] Shujiro O, Takeshi N, Noriko T, et al., Oxidative Desulfurization of Light GasOil and Vacuum Gas Oil by Oxidation and Solvent Extraction, Energy&Fuels,2000,14(6):1232~1239.
    [22]唐晓东,何柏,崔盈贤等,一种直馏汽油催化氧化脱硫的方法,中国专利,CN1923967A,2007-03-07.
    [23]柯明,周爱国,周娜等,非加氢脱硫技术研究与应用进展,现代化工,2006,26:62~67.
    [24]张晓静,秦如意,刘金龙等,催化裂化汽油非临氢吸附脱硫新技术,炼油技术与工程,2003,33(1):11~14.
    [25] Greenwood G J, Kidd D, Reed L, et al., Next generation sulfur removaltechnology, NPRA Annual Meeting, San Antonio,2000, AM-00-12.
    [26] Nemeth L T, Kulprathipanza S, Removal of sulfur compounds from liquidorganic feedstreams, US5360536,1994-09-01.
    [27] Khare G P, Engelbert D R, Cass B W, Transport desulfurization process utilizinga sulfur sorbent that is both fluidizable and circulatable and a method of makingsuch sulfur sorbent, US5914292,1999-06-22.
    [28] Irvine R L, Benson B A, Varravsto D M, IRVAD Process-low Cost BreakthroughLow Sulfur Gasoline, NPRA Annual Meeting, San Antonio,1999, AM-99-42.
    [29] Collins N A, Trewella J C, Alkylation process for desulfurization of gasoline,US5599441,1997-02-04.
    [30] Alexander B D, Multiple stage sulfur removal process, WO00/14181,2000-03-16.
    [31] Alexander B D, Huff G A, Pradhan V R, et al., Sulfur removal process, US6024865,2000-02-15.
    [32] Alexander B D, Huff G A, Pradhan V R, et al., Multiple stage sulfur removalprocess, US6059962,2000-05-09
    [33]陈焕章,李永丹,赵地顺,催化裂化汽油脱硫技术进展,化工科技,2004,12(3):46~51.
    [34]董芝,王茹,张剑波, FCC汽油脱硫技术的研究进展,河北省科学院院报,2006,23(3):37~40.
    [35]安高军,周同娜,柴永明等,轻质油品非加氢脱硫技术,化学进展,2007,19(9):1331~1334.
    [36]王军民,房少华,催化裂化汽油溶剂萃取脱硫工艺的研究,炼油设计,2000,30(10):32~34.
    [37]夏道宏,苏贻励,钱家麟,汽油中硫醇的分离及结构、组成分析,炼油设计,1995,25(1):46~51.
    [38]李志东,朴香兰,朱慎林, PEG-400萃取脱除FCC汽油中硫化物的研究,石油炼制与化工,2002,33(7):24~27.
    [39]胡松青,张军,刘冰等,离子液体萃取脱硫的探索性研究,石油学报(石油加工),2007,23(1):100~103.
    [40]张锁江,董海峰,刘坤峰等,一种基于离子液体的油品脱硫方法, CN101063046,2007-10-31.
    [41] Boron D J, Deever W R, Atlas R M, et al., Biodesulfurization of gasoline: anassessment of technical and economic feasibility and outline of R&D roadmaptoward commercialization, NPRA Annual Meeting, San Antonio,1999,AM-99-54.
    [42]杜长海,马智,贺岩峰等,生物催化石油脱硫技术进展,化工进展,2002,21(8):569~571.
    [43]邱建辉,邸进申,李英杰,生物脱硫的研究进展,微生物学报,2001,41(5):650~653.
    [44]钱伯章,吴虹,石油生物脱硫技术及其应用前景,炼油设计,1999,29(8):26~31.
    [45]佟明友,方向晨,马挺等,基因工程技术在石油生物脱硫中的应用,生物工程学报,2001,17(6):617~620.
    [46]伊西青,清洁汽油生产现状及技术进展,石油与天然气化工,2005,34(3):187~191.
    [47] Takayuki H, Yasuhiro S, Ken O, et al., Effect of photosensitizer and hydrogenperoxide on desulfurization of light oil by photochemical reaction andliquid-liquid extraction, Industrial&Engineering Chemistry Research,1997,36(3):530~533.
    [48] Schucker R C, Baird W C, Electrochemical oxidation of sulfur compounds innaphtha using ionic liquids, US6274026,2001-08-14.
    [49] Schucker R C, Electrochemical oxidation of sulfur compounds in naphtha, US6338778,2002-01-15.
    [50]柯明,周爱国,赵振盛等, FCC汽油烷基化脱硫技术进展,化工进展,2005,25(4):357~361.
    [51] Bellière V, Lorentz C, Geante C, et al., Kinetics and mechanism of liquid-phasealkylation of3-methylthiophene with2-methyl-2-butene over a solid phosphoricacid, Applied Catalysis B: Environmental,2006,64:254~261.
    [52] Bellière V, Geantet C, Vrinat M, et al., Alkylation of3-Methylthiophene with2-Methyl-2-butene over a Zeolitic Catalyst, Energy&Fuels,2004,18(6):1806~1813.
    [53] Pradhan V R, Burnett P A, Mcdaniel S, et al., Multiple stage process for removalof sulfur from components for blending of transportation fuels, WO03012010,2003-02-13.
    [54] Pradhan V R, Burnett P A, Mcdaniel S, et al., Multiple stage process for removalof sulfur from components for blending of transportation fuels, US6733660,2004-05-11.
    [55] Pradhan V R, Burnett P A, Mcdaniel S, et al., Multiple stage process for removalof sulfur from components for blending of transportation fuels, US6736963,2004-05-18.
    [56]张丽萍,李永红,赵玉芝等,制备条件对FCC汽油烷基化脱硫固体磷酸催化剂性能的影响,工业催化,2007,15(9):10~15.
    [57]张丽萍,固体磷酸催化FCC汽油烷基化脱硫的研究,硕士学位论文,天津大学,2007.
    [58]王榕,李永红,张丽萍等,固体磷酸催化FCC汽油烷基化脱硫的活性和稳定性,化学反应工程与工艺,2008,24(1):40~44.
    [59] Wang R, Li Y, Preparation of MCM-41supported phosphoric acid catalyst forthiophenic compounds alkylation in FCC gasoline, Catalysis Communications,2010,11:705~709.
    [60] Shi R, Wang R, Li Y, et al., Alkylation of Thiophenic compounds with Olefinsand its Kinetics over MCM-41supported Phosphoric Acid in FCC Gasoline,Catalysis Letters,2010,139:114~122.
    [61] Wang R, Li Y, Guo B, et al., Catalytic mechanism of MCM-41supportedphosphoric acid catalyst for FCC gasoline desulfurization by alkylation:experimental and theoretical investigation, Energy&Fuels,2011,25(9):3940~3949
    [62]王榕,固体磷酸的制备及催化噻吩类硫化物烷基化反应的研究,硕士学位论文,天津大学,2008.
    [63] Arias M, Laurenti D, Geantet C, et al., Gasoline desulfurization by catalyticalkylation over silica-supported heteropolyacids: From model reaction to realfeed conversion, Catalysis Today,2008,130:190~194.
    [64] Arias M, Laurenti D, Bellière V, et al., Preparation of supportedH3PW12O40·6H2O for thiophenic compounds alkylation in FCC gasoline,Applied Catalysis A: General,2008,348:142~147.
    [65]许昀,龙军,张久顺等,分子筛催化体系中汽油噻吩类含硫化合物烷基化反应脱硫的研究,石油炼制与化工,2005,36(2):38~42.
    [66]郭晓野,张泽凯,刘盛林等,汽油在钾修饰MCM-22分子筛上的烷基化脱硫,工业催化,2008,16(6):31~34.
    [67]罗国华,徐新,佟泽民等,分子筛催化噻吩类硫化物与烯烃烷基化脱硫研究,化学反应工程与工艺,2005,21(2):132~137.
    [68]罗国华,徐新,单希林等,催化噻吩类硫化物与烯烃烷基化硫转移反应的固体酸催化剂的失活机理,催化学报,2004,25(8):648~652.
    [69]徐新,罗国华,靳海波等, AlCl3-磺酸树脂催化噻吩类硫化物与异丁烯烷基化硫转移反应,过程工程学报,2006,6(2):181~185.
    [70]王素珍,罗国华,徐新, H2SO4/MCM-41对噻吩异戊烯烷基化硫转移反应催化性能的研究,工业催化,2004,12(7):36~39.
    [71]王素珍,罗国华,徐新等,介孔分子筛MCM-41的合成及其催化噻吩与异丁烯烷基化反应性能,石油化工,2004,33(2):113~117.
    [72]张泽凯,蒋晖,刘盛林等,汽油烷基化脱硫反应中噻吩及其衍生物的烷基化性能,催化学报,2006,27(4):309~313.
    [73]张泽凯,牛雄雷,朱向学等,汽油烷基化脱硫中己烯的聚合及对噻吩烷基化的影响,中国石油大学学报(自然科学版),2008,32(1):123~127.
    [74]张泽凯,刘盛林,杜喜研等,芳烃烷基化反应性能对烷基化脱除汽油中硫化物过程的影响,石油化工,2006,35(2):113~117.
    [75] Zhang Z, Jiang H, Liu S, et al., Alkylation performance of thiophene andderivatives during olefinic alkylation of thiophenic sulfur in gasoline, ChineseJournal of Catalysis,2006,27(4):309~313.
    [76] Zhang Z, Liu S, Zhu X, et al., Modification of Hβzeolite by fluorine and itsinfluence on olefin alkylation thiophenic sulfur in gasoline, Fuel ProcessTechnology,2008,89:103~110.
    [77] Zhang Z, Liu D, Zhu X, et al., Acidity effects of Hβ zeolite on olefin alkylationof thiophenic sulfur in gasoline, Journal of Natural Gas Chemistry,2008,17:45~50.
    [78] Zhang Z, Niu X, Liu S, et al., The performance of HMCM-22zeolite catalyst onthe olefin alkylation thiophenic sulfur in gasoline, Catalysis Communications,2008,9:60~64.
    [79]赵玉芝,李永红,李兰芳等, USY分子筛催化FCC汽油的烷基化脱硫反应研究,分子催化,2008,22(1):17~21.
    [80]赵玉芝,分子筛催化噻吩类硫化物烷基化反应研究,硕士学位论文,天津大学,2007.
    [81]刘兴利,李永红,赵玉芝等,改性对分子筛酸性和烷基化脱硫性能的影响,石油化工高等学校学报,2008,21(4):26~29.
    [82]刘兴利, FCC汽油烷基化脱硫催化剂大孔磺酸树脂的研究,硕士学位论文,天津大学,2008.
    [83]李兰芳,李永红,张丽萍等,大孔磺酸树脂催化噻吩类硫化物烷基化反应,化学反应工程与工艺,2007,23(4):370~374.
    [84]李兰芳,大孔磺酸树脂用于噻吩类硫化物烷基化反应的催化性能研究,硕士学位论文,天津大学,2007.
    [85]刘磊,王兰芝,侯凯湖, FCC汽油中噻吩与烯烃在AlCl3-NKC9催化剂上的烷基化反应,石油炼制与化工,2007,38(6):30~32.
    [86]刘磊, FCC汽油烷基化脱硫催化剂的制备及其催化性能的研究,硕士学位论文,河北工业大学,2007.
    [87]祝文书,罗国华,徐新等,大孔磺酸树脂CT175催化噻吩与异丁烯烷基化硫转移反应的研究,石油化工,2004,33(5):424~427.
    [88]姜蕾,张占柱,毛俊义等,采用改性磺酸树脂催化剂的催化裂化汽油的烷基化脱硫,石油学报(石油加工),2006,22(1):22~26.
    [89]姜蕾,张占柱,毛俊义等,一种汽油烷基化脱硫催化剂及其制备方法,中国专利,1986746A,2007-06-27.
    [90] Stuntz G F, The production of low sulfur naphtha streams via sweetening andfractionation combined with thiophene alkylation, WO2005019387,2005-03-03.
    [91] Stuntz G F, Smiley R J, Halbert T R, Olefin addition for selective naphthadesulfurization with reduced octane loss, WO2005019390,2005-03-03.
    [92] Stuntz G F, Smiley R J, Halbert T R, Naphtha desulfurization with no octaneloss and increased olefin retention, WO2005019391,2005-03-03.
    [93] Magne D J, Picard F, Process for desulfurization of gasolines, US20050061711,2005-03-24.
    [94] Quentin D, Jean L N, Prime-G+(tm): from pilot to start up of world’s firstcommercial10ppm FCC gasoline desulfurization process, NPRA AnnualMeeting, San Antonio,2002, AM-02-12.
    [95]周丽亚,催化精馏制备乳酸乙酯绿色公益的研究,硕士学位论文,河北工业大学,2003.
    [96] Backhaus A A, Continuous process for the manufacture of esters, US1400849,1921-12-20.
    [97]刘根生,浅述催化精馏技术,兰化科技,1994,12(4):281~284.
    [98]杜长海,催化精馏专用填料型固体酸催化剂的制备研究,硕士学位论文,天津大学,2004.
    [99] Smith J L A, Catalytic distillation process, US4232177,1980-11-04.
    [100] Smith J L A, Huddleston M N, New MTBE design now commercial,Hydrocarbon Process,1982,61(3):121~123.
    [101]张猛,反应精馏过程的建模与优化控制研究,硕士学位论文,清华大学,2004.
    [102] Luyben W L, Yu C, Reactive distillation design and control, John Wiley&Songs, INC., Publication,2008,10~20.
    [103] Quang D V, Amigues P, Gaillard J, et al., Process for manufacturing a tertiaryalkyl ether by reactive distillation, US4847430,1989-7-11.
    [104] Jacobs R, Krishna R S R, Multiple solutions in reactive distillation for methyltert-butyl ether synthesis, Industrail Engineering&Chemistry Research,1993,32:1706~1709.
    [105] Smith J L A, Catalyst system for separating isobutene from C4streams, US4215011,1980-7-29.
    [106] Bravo J L, Pyhalahti A, Investigations in a catalytic distillation pilot plant:vapor/liquid equilibrium, kinetics, and mass-transfer issues, IndustrailEngineering&Chemistry Research,1993,32:2220~2226.
    [107] Quitain A, Itoh H, Goto S J, Reactive distillation for synthesizing ethyltert-butyl ether from bioethanol, Journal of Chemical Engineering of Japan,1999,32:280~287.
    [108] Marker T L, Funck G A, Barger T, et al., Two-stage process for producingdiisopropyl ether using catalytic distillation, US5504258,1996-4-2.
    [109] Neumann R, Sasson Y, Recovery of dilute acetic acid by esterification in apacked chemorectification column, Industrial and Engineering Chemistry ProcessDesign and Development,1984,23:654~659.
    [110] Jones S, Fallon D G, Process for the recovery of an organic acid from themanufacture of a cellulose ester, US5648529,1997-7-15
    [111] Xu Z, Afacan A, Chuang K, Removal of acetic acid from water by catalyticdistillation. Part1: Experimental studies, The Canadian Journal of ChemicalEngineering,1999,77(8):676~681.
    [112] Scates M O, Parker S E, Lacy J B, et al., Recovery of acetic acid from diluteaqueous streams formed during a carbonylation process, US5599976,1997-2-4.
    [113] Yang Z, Cui X, Gao J, Esterification-distillation of butanol and acetic acid,Chemcal Engineering Science,1998,53:2081~2088.
    [114] Saha B, Chopade S P, Mahajani S M, Recovery of dilute acetic acid throughesterification in a reactive distillation column, Catalysis Today,2000,60:147~157.
    [115] Choi J, Hong W H, Recovery of Lactic Acid by Batch Distillation withChemical Reactions Using Ion Exchange Resin, Journal of Chemical Engineeringof Japan,1999,32(2):184~189.
    [116]方永成,江桂秀,顾军民等,催化蒸馏制备丙二醇单烷基醚羧酸酯工艺,中国专利, CN1180692,1998-5-6.
    [117] Saha B, Sharma M M, Esterification of formic acid, acrylic acid andmethacrylic acid with cyclohexene in batch and distillation column reactors:ion-exchange resins as catalysts, Reactive and Functional Polymers,1996,28(3):263~278.
    [118] Luo H, Xiao W, A reactive distillation process for a cascade and azeotropicreaction system: Carbonylation of ethanol with dimethyl carbonate, ChemicalEngineering Science,2001,56:403~410.
    [119] Geelen H, Wijffels J B, The use of a distillation column as a chemical reactor,3rd European Symposium on Chemcal Reaction Engineering,1965,125~133.
    [120] Fuchigami Y, Hydrolysis of Methyl Acetate in Distillation Column Packedwith Reactive Packing of Ion Exchange Resin, Journal of Chemical Engineeringof Japan,1990,23:354~360.
    [121] Kim K, Roh H D, Reactive distillation process and equipment for theproduction of acetic acid and methanol from methylacetate hydrolysis, US5770770,1998-6-23.
    [122]王成习,沈庆扬,树脂环催化剂在乙酸甲酯催化水解精馏中的应用,化学反应工程与工艺,2000,2:136~141.
    [123] Masamoto J, Matsuzaki K, Development of Methylal Synthesis by ReactiveDistillation, Journal of Chemical Engineering of Japan,1994,27:1~5.
    [124] Smith L K, Arganbright R P, Process for making acetals, US6015875,2000-1-18.
    [125] Chopade S P, Sharma M M, Reaction of ethanol and formaldehyde: use ofversatile cation-exchange resins as catalyst in batch reactors and reactivedistillation columns, Reactive and Functional Polymers,1997,32:53~64.
    [126] Chopade S P, Sharma M M, Acetalization of ethylene glycol withformaldehyde using cation-exchange resins as catalysts: batch versus reactivedistillation, Reactive and Functional Polymers,1997,34:37~45
    [127] Broekhuis R R, Lynn S, King C J, Recovery of Propylene Glycol from DiluteAqueous Solutions via Reversible Reaction with Aldehydes, IndustrailEngineering&Chemistry Research,1994,33:3230~3237.
    [128] Groening C, Ebel K, Kaibel G, et al., Process for the preparation ofmethylglyoxal dimethyl acetal, EP704422,1996-4-3.
    [129] Ciric A R, Miao P, Steady State Multiplicities in an Ethylene Glycol ReactiveDistillation Column, Industrail Engineering&Chemistry Research,1994,33:2738~2748
    [130] Ciric A R, Gu D, Synthesis of nonequilibrium reactive distillation processesby MINLP optimization, AIChE Journal,1994,40:1479~1487.
    [131] Monroy-Loperena R, Alvarez-Ra-mirez J, On the Steady-State Multiplicitiesfor an Ethylene Glycol Reactive Distillation Column, Industrail Engineering&Chemistry Research,1999,38:451~455.
    [132] Smith L A, Catalytic distillation process, US4307254,1980-12-22.
    [133] Smith L A, Method for operating a catalytic distillation process, US5221441,1993-6-22.
    [134] Knifton J F, Sanderson J, Ronald S, et al., Use of reactive distillation in thedhydration of tertiary butyl alcohol, US5811620,1998-9-22.
    [135] González J C, Subawalla H, Fair J R, Preparation of Tertiary Amyl Alcohol ina Reactive Distillation Column.1. Reaction Kinetics, Chemical Equilibrium, andMass-Transfer Issues, Industrail Engineering&Chemistry Research,1997,36,3833~3844.
    [136] Shoemaker J D, Jones E M, Cumene by catalytic distillation, HydrocarbonProcessing,1987,66(6):57~60.
    [137]温朗友,闵恩泽,庞桂赐等,悬浮床催化蒸馏新工艺合成异丙苯,化工学报,2000,51(1),115~119.
    [138] Hsieh C R, Robinson R, Process to remove benzene from refinery streams,US5210348,1993-5-11.
    [139] Ryu J Y, Groten W A, Isomerization of olefins by alkylation and dealkylationof aromatic hydrocarbons, US5811623,1998-9-22.
    [140] Huss A, Kennedy C R, Hydrocarbon processes comprised of catalyticdistillation using Lewis acid promoted inorganic oxide catalyst systems, US4935577,1990-06-19.
    [141] Krill S, Giray G, Hiibner F, et al., Method of producing β-isophorone by theisomerization of α-isophorone, US5907065,1999-5-25.
    [142] Arganbright R P, Hydroisomerization process, US5087780,1991-02-11.
    [143] Lebas E, Jullian S, Travers C, et al., Paraffin isomerisation process usingreactive distillation, US5948948,1999-9-7.
    [144] Gildert G R, Hearn D, Putman H M, Hydrogenation of unsaturated cycliccompounds, US5773670,1998-6-30.
    [145] Hildreth J, Removal of α-methyl styrene from cumene, US5905178,1999-5-18.
    [146] Lowson K, Nkosi B, Production of MIBK using catalytic distillationtechnology, US6008416,1999-12-28.
    [147] Clifford S C, Catalytic distillation refining, US5837130,1998-11-17.
    [148] Hearn D, Putman H M, Hydrodesulfurization process utilizing a distillationcolumn realtor, US5779883,1998-7-14.
    [149] Hichy T P, Hearn D, Putman H M, Hydroconversion process, US5961815,1999-10-05.
    [150] Jung C W, Garrou P E, Strickler G R, Disproportionation of alkenes, US4709115,1987-11-24.
    [151] Vora B V, Hammershaimb H U, Oligomer production with catalyticdistillation, US6025533,2000-2-15.
    [152] Podrebarac G G, Ng F T T, Rempel G L, More uses for Catalytic Distillation,CHEMTECH,1997,5:37~45.
    [153]赵毓璋,陈素华,郁灼,薛范,脱除醚化原料中二烯烃杂质的非加氢精制方法及应用设备,中国专利, CN1230583,1999-10-6.
    [154]刘祖虎,催化蒸馏构件的流体力学性能研究,硕士学位论文,天津大学,2010.
    [155]肖剑,刘家祺,催化精馏塔催化剂装填技术研究进展,化工进展,1999,2:8~11.
    [156]刘国标,王树楹,郭群超,催化蒸馏塔中催化剂装填技术研究进展,石油化工设备,2003,6(32):37~40.
    [157]高鑫,李鑫刚,李洪,催化精馏塔中催化剂填装技术的研究述评,化工进展,2010,3(29):419~425.
    [158] Smith J L A, Process for separating isobutene from C4streams, US4302356,1981-11-24.
    [159] Ko odziej A, Jaroszyński M, Bylica I, Mass transfer and hydraulics forKATAPAK-S, Chemical Engineering and Processing,2004,43:457~464.
    [160]张猛,徐用懋,反应精馏相关技术研究进展:过程优化与控制技术,化工自动化及仪表,2004,2(31):5~9.
    [161]李静海,欧阳洁,高士秋等,颗粒流体复杂系统的多尺度模拟,北京:科学出版社,2005,2~20.
    [162] Kwauk M, Beyond transport phenomena and reaction engineering, ChemicalEngineering Science,2004,59:1613~1616.
    [163]郭慕孙,胡英,王夔等,物质转化过程中的多尺度效应,哈尔滨:黑龙江教育出版社,2002,93~110.
    [164]葛蔚,刘新华,任瑛等,从多尺度到介尺度——复杂化工过程模拟的新挑战,化工学报,2010,61(7):1613~1680.
    [165] Wang H, He G, Xia M, et al., Multiscale coupling in complex mechanicalsystems, Chemical Engineering Science,2004,59:1677~1686.
    [166] Mergheim J, A variational multiscale method to model crack propagation atfinite strains, International Journal for Numerical Methods in Engineering,2009,80:269~289.
    [167] Souza F V, Allen D H, Kim Y, Multiscale model for predicting damageevolution in composites due to impact loading, Composites Science andTechnology,2008,68:2624~2634.
    [168] Sih G C, Tang X S, Simultaneous occurrence of double micro/macro stresssingularities for multiscale crack model, Theoretical and Applied FractureMechanics,2006,46:87~104.
    [169] Wei Y, Xu G, A multiscale model for the ductile fracture of crystallinematerials, International Journal of Plasticity,2005,21:2123~2149.
    [170] Feng J, Liu H, Hu Y, et al., Micro-phase separation of diblock–copolymermelts confined in a slit from simulation calculations-effect of coarse-grainingscale, Chemical Engineering Science,2004,59:1701~1710.
    [171] Ahluwalia R, Sullivan M B, Srolovitz D J, et al., Multiscale kinetic model forpolarization switching in ferroelectric polymer thin films, Physical Review B,2008,78:054110.
    [172] Swaminarayan S, Charbon C, A Multiscale Model for PolymerCrystallization. I: Solidification of a Macroscopic Part, Polymer Engineering andScience,1998,38:4644~4656.
    [173] Bigerelle M, Najjar D, Iost A, Multiscale functional analysis of wear A fractalmodel of the grinding process, Wear,2005,258:232~239.
    [174] Rondanini M, Cereda S, Montalenti F, et al., A multiscale model of theplasma assisted deposition of crystalline silicon, Surface&Coatings Technology,2007,201:8863~8867.
    [175] Yuan X, Zha B, Hou G, et al., Multiscale Model on Deposition Behavior ofAgglomerate Metal Particles in a Low-Temperature High-Velocity Air FuelSpraying Process, Journal of Thermal Spray Technology,2009,18(3):411~420.
    [176] Montazeri A, Naghdabadi R, Study the Effect of Viscoelastic Matrix Modelon the Stability of CNT/Polymer Composites by Multiscale Modeling, PolymerComposites,2009,30(11):1545~1551.
    [177] Qian D, Zheng Q, Ruoff R S, Multiscale simulation of nanostructures basedon spatial secant model: a discrete hyperelastic approach, ComputionalMechanics,2008,42:557~567.
    [178] Namilae S, Chandra N, Multiscale Model to Study the Effect of Interfaces inCarbon Nanotube-Based Composites, Transactions of the ASME,2005,127:222~232.
    [179] Creighton S L, Regueiro R A, Garikipati K, et al., A variational multiscalemethod to incorporate strain gradients in a phenomenological plasticity model,Computer Methods in Applied Mechanics and Engineering,2004,193:5453~5475.
    [180] Zbib H M, de la Rubia T D, A multiscale model of plasticity, InternationalJournal of Plasticity,2002,18:1133~1163.
    [181] Zbib H M, de la Rubia T D, Bulatov V, A Multiscale Model of PlasticityBased on Discrete Dislocation Dynamics, Transactions of the ASME,2002,124:78~87.
    [182] Seok J, Kim A T, Sukam C P, et al., Inverse analysis of material removal datausing a multiscale CMP model, Microelectronic Engineering,2003,70:478~488.
    [183] Kim A T, Seok J, Tichy J A, et al., A Multiscale Elastohydrodynamic ContactModel for CMP, Journal of The Electrochemical Society,2003,150(9):G570~G576.
    [184] Madej L, Hodgson P D, Pietrzyk M, The validation of a multiscalerheological model of discontinuous phenomena during metal rolling,Computational Materials Science,2007,41:236~241.
    [185] Trevethan T, Kantorovich L, Polesel-Maris J, et al., Multiscale model of themanipulation of single atoms on insulating surfaces using an atomic forcemicroscope tip, Physical Review B,2007,76:085414.
    [186] Hund A, Ramm E, Locality constraints within multiscale model fornon-linear material behaviour, International Journal for Numerical Methods inEngineering,2007,70:1613~1632.
    [187] Mosler J, On the efficient implementation of an elastoplastic damage modelfor large-scale analyses of material failure: a multiscale approach, Computers andStructures,2005,83:369~382.
    [188] Franz G, Abed-Meraim F, Zineb T B, Strain localization analysis using amultiscale model, Computational Materials Science,2009,45:768~773.
    [189] Mohan G, Kopelevich D I, A multiscale model for kinetics of formation anddisintegration of spherical micelles, The Journal of Chemical Physics,2008,128:044905.
    [190] Prusa J M, Smolarkiewicz P K, Wyszogrodzki A A, EULAG, a computationalmodel for multiscale flows, Computers&Fluids,2008,37:1193~1207.
    [191] Deen N G, van Sint Annaland M, Kuipers J A M, Multi-scale modeling ofdispersed gas-liquid two-phase flow, Chemical Engineering Science,2004,59:1853~1861.
    [192] Houzeaux G, Eguzkitza B, Vázquez M, A variational multiscale model for theadvection-diffusion-reaction equation, Communications in Numerical Methods inEngineering,2009,25:787~809.
    [193] Dong W, Wang W, Jinghai Li, A multiscale mass transfer model for gas–solidriser flows:Part1Sub-grid model and simple tests, Chemical Engineering Science,2008,63:2798~2810.
    [194] Bharadwaj S P, Modest M F, A multiscale Malkmus model for treatment ofinhomogeneous gas paths, International Journal of Thermal Sciences,2007,46:479~490.
    [195] Makeeva A G, Kevrekidis I G, Equation-free multiscale computations for alattice-gas model: coarse-grained bifurcation analysis of the NO+CO reaction onPt(100), Chemical Engineering Science,2004,59:1733~1743.
    [196] Vicum L, Ottiger S, Mazzotti M, Multi-scale modeling of a reactive mixingprocess in a semibatch stirred tank, Chemical Engineering Science,2004,59:1767~1781.
    [197] Vlachos D G, Mhadeshwar A B, Kaisare N S, Hierarchical multiscalemodel-based design of experiments, catalysts, and reactors for fuel processing,Computers and Chemical Engineering,2006,30:1712~1724.
    [198] Seok J, Kim A T, Sukam C P, et al., Inverse analysis of material removal datausing a multiscale CMP model, Microelectronic Engineering,2003,70:478~488.
    [199] Passerini T, de Luca M, Formaggia L, et al., A3D/1D geometrical multiscalemodel of cerebral vasculature, Journal of Engineering Mathematics,2009,64:319~330.
    [200] Bekkers E J, Taylor C A, Multiscale Vascular Surface Model GenerationFrom Medical Imaging Data Using Hierarchical Features, IEEE Transactions onMedical Imaging,2008,27(3):331~341.
    [201] Barnett R L, Maragakis P, Turner A, et al., Multiscale model of electronicbehavior and localization in stretched dry DNA, Journal of Materials Science,2007,42:8894~8903.
    [202] Moudden Y, McConnell J C, Beagley S R, et al., Meteorological results fromthe Global Mars Multiscale Model at the Viking1lander site, Advances in SpaceResearch,2005,36:2169~2175.
    [203] Appel K W, Bhave P V, Gilliland A B, et al., Evaluation of the communitymultiscale air quality (CMAQ) model version4.5: Sensitivities impacting modelperformance; Part II-particulate matter, Atmospheric Environment,2008,42:6057~6066.
    [204] Appel K W, Bhave P V, Gilliland A B, et al., Evaluation of the CommunityMultiscale Air Quality (CMAQ) model version4.5: Sensitivities impacting modelperformance Part I-Ozone, Atmospheric Environment,2007,41:9603~9615.
    [205] Hu Y, Odman M T, Russell A G, Mass conservation in the CommunityMultiscale Air Quality model, Atmospheric Environment,2006,40:1199~1204.
    [206] O’Neill S M, Lamb B K, Intercomparison of the Community Multiscale AirQuality Model and CALGRID Using Process Analysis, Environmental Science&Technology,2005,39:5742~5753.
    [207] Katartzis A, Vanhamel I, Sahli H, A Hierarchical Markovian Model forMultiscale Region-Based Classification of Vector-Valued Images, IEEETransactions on Geoscience and remote sensing,2005,43(3):548~558.
    [208] Huang X, Zhou Y, Zhang R, A Multiscale Model for MPEG-4Varied BitRate Video Traffic, IEEE Transactions on Broadcasting,2004,50(3):323~334.
    [209] Suna J, Gub D, Chena Y, et al., A multiscale edge detection algorithm basedon wavelet domain vector hidden Markov tree model, Pattern Recognition,2004,37:1315~1324.
    [210] Cheng H, Bouman C A, Multiscale Bayesian Segmentation Using a TrainableContext Model, IEEE Transactions on Image Processing,2001,10(4):511~525.
    [211] Tretter D, Bouman C A, Kawaka K W, et al., A Multiscale Stochastic ImageModel for Automated Inspection, IEEE Transactions on Image Processing,1995,4(12):1~32.
    [212] Bouman C A, Shapiro M, A Multiscale Random Field Model for BayesianImage Segmentation, IEEE Transactions on Image Processing,1994,3(2):162~177.
    [213] Krishnan A, Hoo K A, A Multiscale Model Predictive Control Strategy,Industrial&Engineering Chemistry Research,1999,38:1973~1986.
    [214] Debuisschert Q, Uzio D, Nocca J L, et al., Process for the production ofgasoline with a low sulfur content comprising a stage for transformation ofsulfur-containing compounds, an acid-catalyst treatment and a desulfurization,US20020166798A1,2002-11-14.
    [215] Picard F, Danzo T, Process for the desulfurization of olefinic gasolines byincreasing the weight of sulfur-containing compounds with regeneration of thecatalyst. US2007024032A1,2007-10-18.
    [216]李永红,沈昕伟,田然等,一种汽油烷基化脱硫装置,中国专利, CN201241101Y,2009-5-20.
    [217]李永红,沈昕伟,于春梅等,一种汽油烷基化脱硫的催化蒸馏方法,中国专利, CN101597510A,2009-12-09.
    [218]李永红,催化裂化汽油的烃重组烷基化脱硫方法,中国专利, CN101225327,2008-07-23.
    [219] Sapei E, Zaytseva A, Uusi-Kyyny P, et al., Vapor-Liquid Equilibrium forBinary System of Thiophene+n-Hexane at (338.15and323.15) K andThiophene+1-Hexene at (333.15and323.15) K, Journal of Chemical&Engineering Data,2006,51:2203~2208.
    [220] Diaz-Pena M, Compostizo A, Crespo C A, et al., Activity coefficients andexcess Gibbs free energies at348.15K in cyclohexane+chlorobenzene,+fluorobenzene, and+thiophene, The Journal of Chemical Thermodynamics,1980,12:1051~1055.
    [221] Sapei E, Zaytseva A, Uusi-Kyyny P, et al., Vapor-Liquid Equilibrium forBinary System of1-Propanethiol, Thiophene, and Diethyl Sulfide with Toluene at90.03kPa, Journal of Chemical&Engineering Data,2006,51:1372~1376.
    [222] Sapei E, Zaytseva A, Uusi-Kyyny P, et al., Vapor–liquid equilibrium forbinary system of thiophene+2,2,4-trimethylpentane at343.15and353.15K andthiophene+2-ethoxy-2-methylpropane at333.15and343.15K, Fluid PhaseEquilibria,2007,261:115~121.
    [223]高大明,徐娟娟,孙虹等,噻吩-甲苯、乙硫醚-甲苯二元体系汽液平衡,南昌大学学报(工科版),2009,3:223~226.
    [224] Sapei E, Uusi-Kyyny P, Keskinen K I, et al., Phase equilibria of organicsulfur compounds for cleaner fuels, Distillation Absorption,2010,365~370.
    [225] Sapei E, Uusi-Kyyny P, Keskinen K I, et al., Phase equilibria of binarysystems of3-methylthiophene with four different hydrocarbons, Fluid PhaseEquilibria,2010,288:155~160.
    [226] Sapei E, Uusi-Kyyny P, Keskinen K I, et al., Phase equilibria on four binarysystems containing3-methylthiophene, Fluid Phase Equilibria,2009,279:81~86.
    [227] Sapei E, Uusi-Kyyny P, Keskinen K I, et.al., Phase equilibria on five binarysystems containing1-butanethiol and3-methylthiophene in hydrocarbons, FluidPhase Equilibria,2010,293:157~163.
    [228] Gmehling J, Onken U, Arlt W, Vapor-liquid Equilibrium Data Collection, pt.7,aromatic hydrocarbons, DECHEMA,1980,279~289
    [229] Van Krevelen D W, Chermin H A G, Estimation of the free enthalphy (Gibbsfree energy) of formation of organic compounds from group contributions,Chemical Engineering Science,1951,1:66~80.
    [230] Joback K G, Reid R C, Estimation of pure-component properties fromgroup-contributions, Chemical Engineering Communications,1987,57:233~243.
    [231] Richard L, Calculation of the standard molal thermodynamic properties as afunction of temperature and pressure of some geochemically important organicsulfur compounds, Geochimica et Cosmochimica Acta,2001,65(21):3827~3877.
    [232]韩德奇,杜兰英,蔡驰等,固体酸烷基化工艺研究进展,化工生产与技术,2001,2(8):36~39.
    [233] Huff G A, Alexander B D, Rundell D N, et al., Sulfur removal process, US6048451,2000-04-11.
    [234] Huff G A, Owen O S, Alexander B D, et al., Sulfur removal by catalyticdistillation, US5863419,1999-01-26.
    [235] Pe′rez-Cisneros E S, Gani R, Michelsen M L, Reactive separation systems.Part I. Computation of physical and chemical equilibrium, Chemical EngineeringScience,1997,52:527~543.
    [236] Cruz V Z, Izquierdo J F, Cunill F, et al., Kinetic modeling of the liquid-phasedimerization of isoamylenes on Amberlyst35, Reactive&Functional Polymers,2007,67:210~224.
    [237] Schwarzer R, du Toit E, Nicol W, Kinetic model for the dimerisation of1-hexene over a solid phosphoric acid catalyst, Applied Catalysis A: General,2008,340:119~124.
    [238]王帅,钟宏,金一粟等, Aspen Plus在化工专业教学中的应用,化工时刊,2010,24(2):67~73.
    [239]颜亚盟,渗流型催化蒸馏塔内件结构及流体力学性能研究,硕士学位论文,天津大学,2009.
    [240]李静海,葛蔚,郭友良,颗粒流体系统的非线性行为,化学进展,1995,7(3):231~234.
    [241]李静海,葛蔚,郭友良等,颗粒流体系统的非线性行为及其计算机仿真,科学通报,1996,41:10~21.
    [242]王琳娜,李静海,非均匀气固两相系统中多尺度传质模型,化工学报,2001,52(8):708~714.
    [243]李静海,葛蔚,过程工业中的多尺度效应及离散化单元模拟,化工进展,1999,5:11~15.
    [244]李静海,郭慕孙,过程工程量化的科学途径,自然科学进展,1999,9(12):1073~1078.
    [245] Li J, Cheng C, Zhang Z, et al., The EMMS model-its application,development and updated concepts, Chemical Engineering Science,1999,54:5409~5425.
    [246]傅吉全,特殊体系的相平衡和精馏模拟计算,北京:中国石化出版社,2001,158~190.
    [247]许锡恩,郑宇翔,王保国,催化蒸馏塔中的有效相界面积,化工学报,1996,4:505~509.
    [248] Krishnamurthy R, Taylor R A, Nonequilibrium stage model ofmulticomponent separation processes, Part I: model description and methanol ofsolution, AIChE Journal,1985,31(3):449~456.
    [249] Krishnamurthy R, Taylor R A, Nonequilibrium stage model ofmulticomponent separation processes, Part II: comparison with experiment,AIChE Journal,1985,31(3):456~465.
    [250] Krishnamurthy R, Taylor R A, Nonequilibrium stage model ofmulticomponent separation processes, Part III: the influence of unequalcomponent-efficiencies in process design problems, AIChE Journal,1985,31(12):1973~1985.
    [251] Ngigi G, Hildebrandt D, Glasser D, Evaluation of phase equilibria for dilutemixtures for design purposes, IChemE Symposium Series,2006,152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700