用户名: 密码: 验证码:
高速高精度解析式图像重建算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CT (Computed Tomography),即计算机断层成像技术,是医学和工业中的一种优质无损诊断技术,其本质是利用投影数据重建物体断层图像。高分辨率重建、大物体重建和三维重建的工程需求使得投影数据量激增,使重建出的CT图像的数据量也激增,从而重建速度就成为一个瓶颈。
     精密部件的检测对图像重建提出了更高的精度要求,如何直接重建出满足工程目标的CT图像也是CT应用中亟待解决的关键问题。本文致力于重建精度的提高、重建速度的提高以及目标重建等三个方面的研究。
     论文首先研究了滤波反投影(FBP)算法的离散实现公式,利用信号处理理论及定积分的定义,推导出了它应该包含投影采样间隔和角度采样间隔两个参数,并作为整个公式的因子。利用定积分数值计算方法,并根据反投影的特点,提出了基于辛普森公式的精确反投影方法。将插值方法应用于反投影的过程,仿真结果表明线性插值比样条插值效果更好,并给出了定性解释。
     在分析斜变滤波器特点的基础上,提出了一种斜变滤波器的设计原则,分析了频域加窗和时域加窗对重建的影响,确定了斜变滤波器单位脉冲响应的长度选择方法和一种理想斜变滤波器单位脉冲响应的中心值计算方法。仿真结果表明,频域中指数窗性能最优而时域中矩形窗性能最优,单位脉冲响应的长度为(?)-1时,CT图像无空气伪像。
     根据投影信号和滤波器单位脉冲响应都为长序列的特点,提出了基于算术傅里叶变换(AFT)的滤波过程的加速方法,以及基于快速哈达玛变换(FHT)的滤波过程的加速方法。仿真结果表明,AFT滤波算法比FFT滤波算法快30%,而FHT滤波算法比FFT滤波算法快近50%。
     本文研究了反投影过程的三种加速方法:对每个投影预插值到更精细的间隔,反投影时采用最快的零阶插值方法;采用被动式射线驱动法反投影;以空间换时间的策略来预存储三角函数值而避免反投影时复杂的三角运算。在此基础上,提出了一种组合反投影加速方法。仿真实验表明,比传统方法快4倍多。
     在“特征重建”概念的基础上,提出了“目标重建”的概念,并设计了目标重建的三种实现方法:近似法、空间域精确法、频域精确法。实际实验表明:近似法重建效果一般,而精确法重建效果良好,且可以有效避免非白噪声对CT图像后处理的影响。
     论文从成像理论的角度,以解析式图像重建算法为研究对象,研究了加速方法、精度提高方法以及目标重建的方法,研究结果对解析式图像重建算法具有很好的推动作用。
CT (Computed Tomography) is an excellent non-destructive diagnosis technology in medical and industrial science. Its essence is to reconstruct an object's tomographic image using its projection data. Due to the engineering demands of high resolution reconstruction, big object reconstruction and three-dimensional reconstruction, the data of CT images become larger and larger. So the reconstruction speed becomes a bottleneck.
     CT testing for precise products needs a very high precision and how to reconstruct a CT image directly is also a key and challenging task in CT engineering. This dissertation focuses on reconstruction speedup, precision improving and objective reconstruction.
     Firstly, the discretization formulas of FBP algorithm, proved by using signal processing theory and definite integral's definition, were studied, in which there are two key parameters, projection sampling interval and angle sampling interval. Numerical calculating method of definite integral was studied and a precise back projection method based on the Sampson formula was proposed. Simulation proved that the linear interpolation method is better than the spline interpolation. And a qualitative explanation was also given.
     On the base of analyzing the characteristics of the ramp filter, a design principle of the ramp filter was proposed. The impact of spectrum window-adding and time domain window-adding on reconstruction were analyzed. A length selection method for the unit impulse response of the ramp filter was proposed. A novel calculation method for the central value of the unit impulse response of the ideal ramp filter was adopted. The simulation results demonstrate that the exponent window is the best for spectrum domain and the rectangle window is the best for time domain. There is not air artifact in CT image when the length of the unit impulse response is 2(?)N-1.
     According to the characteristic that the projection and the unit impulse response are both long sequences, arithmetic Fourier transform (AFT) and fast Hadamard transform (FHT) were proposed respectively aiming to speedup methods for filtering process. Simulation results shows that the AFT-filtering method is faster than the FFT-filtering method about 30% and the FHT-filtering method is faster than the FFT-filtering method about 50%.
     Three speedup methods were studied. One is that the projection was interpolated to smaller intervals and the zero-order interpolation method was adopted for back projection. And one is that a passive ray-driven method was used for back projection. And the last one is that based on the strategy of "time advantage based on space occupancy", the values of the trigonometric functions were stored in advance to avoid complicated trigonometric calculations. Then a hybrid speedup method was proposed. Simulation results show that the method is faster than the traditional method for more than 4 times.
     The conception of objective reconstruction was proposed based on analyzing the conception of characteristic reconstruction. Three implementation methods were achieved, i.e., approximate method, precise method of space domain and precise method of spectrum domain. Practical experiments illustrate that the effect of the approximate method is not satisfactory and the others are effective, which can avoid effectively the impact of the not-white noise on CT image processing.
     For the analytical image reconstruction, speedup methods, precision development methods and objective reconstruction methods were studied in detail. The research results may provide an effective promotion on present analytical image reconstruction methods.
     The dissertation consists of eight chapters, with 58 figures,25 tables, and 110 references.
引文
[1]Jiang Hsieh. Computed Tomography Principles, Design, Artifacts, and Recent Advances [M]. Bellingham, WA:SPIE Optical Engineering Press,2004
    [2]R R Price, F D Rollo, W E Monahan. Digital Radiography:A Focus on Clinical Utility [M], Grune&Stratton, New York,1982
    [3]W R Brody, Digital Radiography [M], Kaven Press, New York,1984
    [4]J Radon.er die Bestimmung von Funktionen durch Ihre Integralwerte langs gewisser Mannigfaltigkeiten(英译本On the determination of function from their integrals along certain manifold)[J]. Math.Phy.Kl.,1917,69,262-277.
    [5]A M Cormack.Representation of a function by its line integrals with some radiological application [J]. Appl. Phys.,1963,34,2722~2727.
    [6]G N Hounsfield.A method and apparatus for examination of a body by radiation such as X or gamma radiation [J]. Image separation radiosocope scanning, Patent Specification 1283915, The patent office, London, England (1972).
    [7]G N Hounsfield.Computerized transverse axial scanning tomography:Part Ⅰ, description of the system [J]. Br.J.Radiol.,1973,46,1016~1022.
    [8]R.S.Ledley, G.DiChiro, A.J.Luessenhop and H.L.Twigg.Computerized transaxial X-Ray tomography of the human body [J].Science.1974,186,207~212.
    [9]王黎明.基于数字平板探测器的工业DR/CT技术研究[D].中北大学博士学位论文,2005
    [10]王召巴.基于面阵CCD相机的高能X射线工业CT技术研究[D].南京理工大学博士学位论文,2001
    [11]庄天戈.CT原理与算法[M].上海:上海交通大学出版社,1992
    [12]G T Herman. Image reconstruction from projections, the fundamentals of computerized tomography[M], New York:Academic Press,INC,1980
    [13]R Gordon, R Bender, G T Herman. Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography [J]. J.Theo.Biol,1970,29:471-481.
    [14]R M Lewitt. Reconstruction algorithms transform methods [J]. Proc. IEEE,1983,71,390-408.
    [15]D Gordon. Image space shading of 3-dimensional objects[J], Compute. Vision. Graph.& Image Processing,1985,29:361-376
    [16]Feldkamp, Davis, J W Kress. Practical cone-beam algorithm[J].J.Opt.Soc.Am.A, 1984,1(6):612-619.
    [17]B D Smith. Image reconstruction from cone-beam projection:necessary and sufficient condition and reconstruction methords[J]. IEEE Trans Med Imag,1985, MI-4:14-28
    [18]H K Tuy. An inversion formula for cone-beam reconstruction[J]. SIAM J. Appl. Math.,1983,43:546-552
    [19]P Grangeat. Mathematical framework of cone beam 3-D reconstruction via the first derivative of the radon transform[C]. In G T Herman, A K Louis and F Natterer, Eds. Mathmetical Methods in tomography. Springer Verlag,1990.
    [20]P E Danielsson, P Edmolm and M Seger. Towards exact 3d-reconstruction for helical cone-beam scanning of long objects. A new detector arrangement and a new completeness condition[C]. In proceedings of the 1997 international meeting on fully three-dimentionnal image reconstruction in radiology and nuclear medicine, Pittsburgh, D W Townsend and P E Kinahan, Eds, 1997:141-144
    [21]M Defrise, F Noo and H Kudo. A solution to the long-object problem in helical cone-beam tomography [J]. Phys. Med. Biol.,2000,45:623-643
    [22]A Katsevich. Analysis of an exact inversion algorithm for spiral cone-beam CT [J]. Phys. Med. Biol.,2002,47:2583-2597
    [23]A Katsevich. Theoretically exact filtered back-projection-type inversion algorithm for Spiral CT [J]. SIAM Journal on Applied Mathematics,2002,62:2012-2026.
    [24]A Katsevich. Image reconstruction for the circle and line trajectory [J]. Med. Biol. Phys. 2004,49:5059:5072
    [25]A Katsevich. An improved exact FBP algorithm for spiral CT[J]. Adv. Appl. Math., 2004,32:681-697
    [26]A Katsevich. On two versions of a 3PI algorithm for spiral CT[J]. Phys. Med. Biol., 2004,49:2129:2143
    [27]A Katsevich.3PI algorithms for helical computer tomography [J]. Adv. Appl. Math., 2006,36:213:250
    [28]A Katsevich. Improved cone beam local tomography [J]. Inv. Prob.,2006,22:627-643
    [29]F Noo, J Pack and D Heuscher. Exact helical reconstruction using native cone-beam geometries[J]. Phys. Med. Biol.,2003,48:3787-3818
    [30]H Yu and G Wang. Studies on implementation of the katsevich algorithm for spiral cone-beam CT[J]. J X-ray Sci Techn.,2004,12:97-116
    [31]Y Zou and X Pan. Exact image reconstruction on PI-line from minimum data in helical cone-beam CT[J]. Phys. Med. Biol.,2004,49:941-959
    [32]Y Zou and X Pan. An extended data function and its backprojection onto PI-lines in helical cone-beam CT[J]. Phys. Med. Biol.,2004,49:383-387
    [33]M Defrise, F Noo, R Clackdoyle and H Kudo. Truncated Hilbert transform and image reconstruction from limited tomographic data. Inv. Prob.,2006,22:1037-1053
    [34]四维CT查癌专攻漏拍死角[EB/OL]. http://heal.cpst.net.cn/jkzx/2002_10/1035158763.html
    [35]刘杰,施寅,阮秋琦.CT快速图像重建算法研究[J].中国医学物理学杂志,2003,20(3):149-153
    [36]张全红,路宏年,杨民等.用对称反投影及递归迭代实现扇束CT快速重建[J].CT理论与应用研究,2004,13(4):16-19
    [37]张朝宗,郭志平,董宇峰等.用几何参数表方法实现快速重建CT图象[J].清华大学学报(自然科学版),1998,38(7):47-49
    [38]S Basu, Y Bresler.O(N2logN) Filtered Back Projection Reconstruction Algorithm for Tomography [J]. IEEE Trans Image Processing,2000,9(10):1760-1773
    [39]傅健,路宏年.扇束工业CT滤波反投影重构算法的快速实现[J].计算机应用研究,2003,3: 51-53
    [40]杨民,路宏年,黄朝志.用查找表和极坐标反投影法实现计算机断层扫描快速重建[J].兵工学报,2004,25(4):476-479
    [41]过传卫,胡福乔.一种快速的扇束CT滤波反投影重建算法[J].电讯技术,2007,47(1):182-184
    [42]Curtis F.Gerald,Patrick O.Wheatley.吕淑娟译,应用数值分析[M].[第7版],北京:机械工业出版社,2006:121-122
    [43]L A Shepp, B F Logan. The fourier reconstruction of a head section[J]. IEEE Trans. Nucl. Sci, 1974,21:21-42
    [44]Y C Wei, G Wang and J Hsieh. An intuitive discussion on the ideal ramp filter in computed tomography(Ⅰ)[J]. An Intern. J Comp. Math. Appl.,2005,49:731-740
    [45]王璟,李政.离散Radon变换卷积分配性及在从投影直接提取CT图像边缘的应用[J].核电子学与探测技术,2004,24(4):359-362
    [46]王黎明,严壮志,韩焱.基于特征重建的工业CT算法[J].测试技术学报,2007,21(1)49-54
    [47]中国机械工程学会无损检测分会.射线检测[M].北京:机械工业出版社,1997
    [48]刘德镇.现代射线检测技术[M].北京:中国标准出版社,1999
    [49]屠耀元等.射线检测技术[M].北京:世界图书出版公司,1997:32-35
    [50]韩焱.弹药装药高能X射线数字图像处理技术[D].北京理工大学博士学位论文,1998
    [51]N Zayed, B Lawton. Comparative Study on Computed Tomography Algorithms[J]. SPIE, 1994,2308:1005~1015
    [52]A V Oppenheim, et al. Signals and Systems. Prentice-Hall,Inc.1997
    [53]余晓锷.优化CT图像金属伪影消除方法研究[D].南方医科大学博士学位论文,2009
    [54]邹晶.工业X射线CT成像有关问题研究[D].首都师范大学博士学位论文,2009
    [55]曾更生.医学图像重建入门[M].北京:高等教育出版社,2009
    [56]Xu Guanlei, Wang Xiaotong, Xu Xiaogang. Generalized Hilbert transform and its properties in 2D LCT domain. Signal Processing,2009,89(7):1395-1402
    [57]王召巴,金永.高能X射线工业CT技术的研究进展[J].测试技术学报,2002,16(2):79-82
    [58]D Soimu, I Buliev and N Pallikarakis. Studies on circular isocentric cone-beam trajectories for 3D image reconstructions using FDK algorithm[J]. Computerized Medical Imaging and Graphics,2008,32(3):210-220
    [59]R F Yu, R L Ning and B Chen. High Speed Cone Beam Reconstruction on PC[C]. Proc. of SPIE,vol.4322, San Diego, CA, USA, Feb.19-22,2001, pp.964~973.
    [60]同济大学数学教研室.高等数学[M].北京:高等教育出版社,2003
    [61]陈后金,薛健,胡健.数字信号处理[M].北京:高等教育出版社,2004
    [62]Cheney, Ward and K David. Numerical Mathematics and Computing. Pracific Grove, CA: Brooks/Cole,1999
    [63]C F Gerald and P O Wheatley著,吕淑娟译.应用数值分析[M].北京:机械工业出版社,2006
    [64]周铁,徐树方,张平文等.计算方法[M].北京:清华大学出版社,2006
    [65]李铮.CT重建算法的理论及综合应用研究[D].东北大学硕士学位论文,2002
    [66]宋文廉.基于三次样条插值的采样数据光滑曲线形成法[J].数据采集与处理,1999,14(2):193-196
    [67]游性恬.几种数值插值方法的试验比较[J].气象,1996,22(4):3-7
    [68]赵彤,吕强,张辉等.三次均匀B样条曲线高速实时插补研究[J].计算机集成制造系统,2008,14(9):1830-1836
    [69]H Heras, O Tischenko, Y Xu,et al. Comparison of interpolation functions to improve a rebinning-free CT-reconstruction algorithm[J]. Z. Med. Phys.2008,18:7-16
    [70]D Giansanti. Improving spatial resolution in skin-contact thermography:Comparison between a spline based and linear interpolation[J]. Medical Engineering & Physics,2008,30(6):733-738
    [71]李海芳.X-CT卷积后投影再建算法内插函数的选取[J].太原理工大学学报,2000,31(2):221-223
    [72]何江平,瞿中,陈昌志.卷积反投影算法中内插函数研究[J].计算机工程与设计,2005,26(8):2036-2039
    [73]谷建伟,张丽,陈志强等.常用的几种插值方法在CT系统金属伪影校正中的性能比较[J].核电子学与探测技术,2006,26(6):905-907
    [74]杨民,路宏年,傅健.基于卷积反投影CT重建的一种新型实用滤波函数[J].CT理论与应用研究,2000,9(s1):29-32
    [75]范惠荣,徐茂林,邱钧等.关于CBP算法的一种新型滤波函数和它的性质[J].电子学报,2004,32(2):232-235
    [76]徐茂林,邱钧,范惠荣等.用一种新滤波函数作CT图像局部重建[J].计算物理,2004,21(3):362-368
    [77]XU Mao-lin, QIU Jun, FAN Hui-rong, etc. Local tomography with a new filter[J].CT理论与应用研究,2004,13(1):54-58
    [78]张斌,潘晋孝.CT图像重建的新型混合滤波器[J].微计算机信息,2009,25(9):298-230
    [79]刘晓,杨朝文.RL滤波函数的改进对卷积反投影图像重建的影响[J].四川大学学报(自然科学版),2004,41(1):112-117
    [80]马腾.基于平板探测器的CT重建技术研究[D].中北大学硕士学位论文,2008
    [81]张东平.锥束CT高质量断层成像重建方法研究[D].西北工业大学硕士学位论文,2007
    [82]H T Shim, H Volkmer and G Gwalter.Gibbs phenomenon in higher dimensions [J]. Journal of Approximation Theory,2007,145 (1):20-23.
    [83]L Colzani and M Vignati. The Gibbs phenomenon for multiple Fourier integrals [J]. Journal of Approximation Theory.1995,80 (1):119-131.
    [84]陈明军,毛樟梅.改进窗函数在FIR数字滤波器设计中的应用[J].继电器,2007,35(13):65-67
    [85]李茂清,王洁,陈强.基于MATLAB程序的FIR滤波器设计与实现[J].电力学报,2008,23(2):87-90
    [86]虞湘宾,毕光国.长序列信号快速相关及卷积的算法研究[J].电路与系统学报,2001,6(4):78-82
    [87]吕新华,武斌.基于圆周卷积的长序列小波变换快速实现[J].信号处理,2006,26(2):903-905
    [88]D W Tufts, G. Sadasiv. The arithmetic Fourier transform [J]. IEEE APPS Mag.1988,5(1):13-17.
    [89]I S Reed, D W Tufts, Xiao Yu, et al. Fourier analysis and signal processing by use of Mobius inversion formula[J]. IEEE Trans. on Acoust.Speech Signal Processing,1990,38(3):458-470.
    [90]I S Reed, M T Shih, T K Truong, et al. A VLSI architecture for simplified arithmetic Fourier transform algorithm[J]. IEEE Trans. On Signal Processing,1992,40(5):1122-1132.
    [91]Ge xi-Jin, Chen Nan-Xian, Chen Zhao-Dou. Efficient algorithm for 2-D arithmetic Fourier transform [J]. IEEE Trans. on Signal Processing,1997,45(8):2136-2140.
    [92]H Park, V K Prasanna. Modular VLSI architectures for computing the arithmetic Fourier Transform[J].IEEE Trans. on Signal Processing,1993,41(6):2236:2246
    [93]L Knockaert. A generalized mobius transform, arithmetic Fourier transform, and primitive roots[J]. IEEE Trans. on Signal Processing,1996,44(5):1307-1310
    [94]W Walker. A summability method for the arithmetic Fourier transform[J]. BIT,1994,34(2): 304-309.
    [95]W N Jullien. A sampling reduction for the arithmetic Fourier transform[C]. Proc.32nd Midwest Symposium on Circuits and Systems, Champaign, IL,1990:841-844.
    [96]N M Wigley, G A Jullien. On implementing the arithmetic Fourier transform [J]. IEEE Trans. on Signal Processing,1992,40(9):2233-2242
    [97]张宪超,武继刚,蒋增荣,陈国良.离散傅里叶变换的算术傅里叶变换算法[J].电子学报,2000,28(5):105-107.
    [98]张宪超,李宁,陈国良.离散余弦变换的改进的算术傅里叶变换算法[J].电子学报,2000,28(9):88-90.
    [99]张宪超,陈国良,李宁.改进的算术傅里叶变换算法[J].电子学报,2001,29(3):329-331.
    [100]张宪超,徐大杰,谢幸.一种更有效的素数长度DFT快速算法[J].烟台大学学报,2000,13(1):54-59
    [101]李萍,胡光锐.算术傅里叶变换中非均匀采样点信号值的一种分段估计法[J].上海交通大学学报,2000,34(7):881-884
    [102]张宪超,徐云,陈国良.算术傅里叶变换的实际实现方法[J].电子与信息学报,2004,24(6):935-940
    [103]黄晓萍,桑恩方,乔钢.H序沃尔什变换及其在水声扩频通信中的应用[J].声学技术,2007,26(3):477-482
    [104]李何明,张大兴.一种基于Hadamard变换的快速盲水印算法[J].杭州电子科技大学学报,2009,29(01):67-70
    [105]杨靓,徐炜,黄士坦.卷积的一种快速算法分析[J].微电子学与计算机,2003(3):55-57
    [106]Guoqing Liu, V Kreinovich. Fast convolution and Fast Fourier Transform under interval and fuzzy uncertainty [J]. Journal of Computer and System Sciences,2010,76 (1):63-76
    [107]朱晓冬,刘静,苑森淼等.一种基于置乱和哈达玛变换的空域图像水印算法[J].仪器仪表学报,2003,24(4)
    [108]赵峰,李剑,李生红.基于沃尔什-哈达玛变换和卷积编码的半脆弱水印算法[J].通信学报,2009,30(10)
    [109]C J Zarowski, M Yunik. Spectral Filtering Using the Fast Walsh Transform[J].IEEE Transactions on Acoustics, Speech, and Signal Processing,1985,33(4):1246-1252
    [110]G Thomas, V K Govindan. Computationally Efficient Filtered-backprojection Algorithm for Tomographic Image Reconstruction Using Walsh Transform [J].Journal of Visual Communication & Image Representation,2006,17 (3):581-588

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700