用户名: 密码: 验证码:
塔中地区奥陶系碳酸盐岩储层成因机理及主控因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塔中地区奥陶系发育多种类型的碳酸盐岩储层,其均具有非均质性强、影响因素多、勘探难度大等特点,为此,论文以沉积岩石学、储层地质学等为理论指导,综合钻(测)井、岩心、薄片等资料,开展了塔中地区奥陶系碳酸盐岩储层成因机理和主控因素的研究。
     在吸收前人研究成果的基础上,充分利用研究区多口钻井的取心资料,对岩心及薄片进行详细观察,总结了塔中地区奥陶系碳酸盐岩的岩石学特征和成岩作用特点,并建立了相应的成岩序列作为储层成因研究的依据。
     通过对良里塔格组岩相、成岩作用、储集空间及物性特征的分析,认为该组的储层主要与同生岩溶和表生岩溶有关。同生岩溶作用受沉积相控制明显;表生岩溶与不整合面发育特征关系密切,尤其是加里东中期二幕岩溶对良里塔格组储层的发育具有重要影响。塔中南、北坡折带是良里塔格组储层的有利发育部位:优势相带、同生岩溶、表生岩溶的共同作用使该区储层明显优于其他区域,其中又以北坡即塔中I号断裂带附近储层储集条件最好。
     鹰山组储层同生岩溶不发育,主要受表生和埋藏溶蚀作用控制。鹰山组顶部发育的多个不整合面代表了其在地质历史过程中曾受多期表生岩溶的影响,因此该组岩溶作用范围广、纵向分带性明显;埋藏溶蚀作用对下奥陶统白云岩储层具有重要影响,尤其是与二叠纪岩浆活动期间,侵蚀性热液流体对白云岩层进行改造,形成了新的溶蚀孔洞,对于寻找内幕型白云岩储层非常有利。
     塔中地区碳酸盐岩储层受多种因素的控制,特别是沉积相带、岩溶作用及白云石化作用对储层的发育影响深远。沉积相带是储层发育的物质基础,不同的沉积相带,由于沉积物的组成不同、古地理位置各异,从而导致其储集特征存在着明显的差异性。岩溶作用是塔中碳酸盐岩储层形成的关键,研究区主要的溶蚀作用包括同生岩溶、表生岩溶和埋藏岩溶:同生岩溶分布局限,主要发育于良里塔格组中;表生岩溶作用期次多、影响范围广,不同层位均有分布;与热液作用有关的埋藏溶蚀主要受断裂系统控制,对储层改造明显,但层位不稳定。白云石化作用对于下奥陶统白云岩储层的形成演化具有重要意义,白云石结构类型、白云石化程度共同控制了白云岩储层的发育,浅埋藏期形成的直面、自形-半自形、粉-细晶白云岩以及成岩晚期的热液白云岩储集性能最好。
Various types of carbonate reservoir developed in Tazhong region,but many previous studies indicate that the reservoir properties are of the characteristics of strong heterogeneities,multiple influencing factors and petroleum exploration is characterized by large difficulty.Aiming at the shortage,this paper deals with the genetic mechanism of Ordovician carbonate reservoir in Tazhong region and its key controlling factors by integrating drilling and logging date analysis,cores observation,thin section identification,and so on.In addition,all these study are under the theoretical guidance of sedimentary petrology,reservoir geology,etc.
     Based on absorbing the studied results of former geologists, cores and thin section are observed detailedly by fully applying coring data in interesting area.As a result, this paper has generalized petrology characteristic and diagenesis of Ordovician carbonate rock in Tazhong region.And corresponding diagenesis sequence is also established,which could be used as a criterion for discussing the origin of reservoir.
     With the analysis of lithofacies,diagenesis,reservoir space and physical property of Lianglitage formation in interesting area,it is considered that the reservoir of Lianglitage formation is chiefly related to syndepositional karstification and epigenetic karstification. Diagenesis analysis approves that the syndepositional karstification is controlled obviously by sedimentary facies.And epigenetic karstification is closely related to unconformity,especially influenced by the second episode karstification of Middle Caledonian.According to all the study above,it show that slope break belts in the southern and northern of Tazhong region are the favorable position for the reservoir in Lianglitage formation.In conclusion,under the combined action of prevailing face belt,syndepositional karstification and epigenic karstification,the reservior in these zones become more favorable than others.Moreover,the reservior in the northern slope break belt(i.e. the zone close to the Tazhong-ⅠFault) is better between these two slope break belts.
     The syndepositional karstification was not development in reservoir of Yingshan formation, it was mainly controlled by epigenetic karstification and burial karstification. Much unconformity developed on the top of Yingshan formation interprets it was influenced by epigenetic karst in the long history, so the karstification in Yingshan formation influenced a large area and has a significantly longitudinal zonation. Burial dissolution has important influence for the dolomite reservoir of lower Ordovician, especially in the period of Permian magmatism, hydrothermal fluid transformate dolomite and formate more solution pore, this result is better for discover the inner buried dolomite reservoir.
     There are several factors controlling the carbonate reservoir of Tazhong area, such as sedimentary facies, karstification and dolomitization. Sedimentary facies are the material basis for reservoir development. Differences in reservoir characteristics is caused by the different sedimentary facies, sediment composition and ancient geographical location. Variety of dissolution including syndepositional,epigenetic and buried karstification is key to the formation of carbonate reservoirs in the study area. Syndepositional karst with restricted distribution, mainly developed in the Lianglitage formation. Multi-period and large range epigenetic karstifications are distributed in different strata; Buried karstification which relate with hydrothermal fluids is mainly affected by the fault system. This karstification plays an important role on the reservoir reconstruction, however, its distribution is not controlled by strata. Dolomitization is vital to the formation and evolution of the dolomite reservoir in the Lower Ordovician. The structure type of dolomite and the degree of dolomitization control dolomite reservoir development jointly. The dolomite with best reservoir performance is distributed on the planar-e(s), finely crystalline dolomite formed in the shallow burial period and hydrothermal dolomite formed in the deep burial period.
引文
[1]范嘉松.世界碳酸盐岩油气田的储层特征及其成藏的主要控制因素[J].地学前缘,2005,12(3):23-30
    [2]康玉柱.塔里木盆地大油气田勘探方向[J].新疆石油地质,2004,25(6):581-583
    [3]翟光明,何文渊.塔里木盆地石油勘探实现突破的重要方向[J].石油学报,2004,25(1):1-7
    [4]兰光志,江同文.古岩溶与油气储层[M].石油出业版社,北京,1995
    [5]兰光志,江同文,张迁山,等.碳酸盐岩古岩溶储层模式及其特征[J].天然气工业,1996,16(6):13-17
    [6]徐国强.塔里木盆地早海西期风化壳岩溶洞穴层研究[D],成都理工大学,2007
    [7]钱一雄,Conxita Taberner,邹森林,王蓉英.碳酸盐岩表生岩溶与埋藏溶蚀比较——以塔北和塔中地区为例[J].海相油气地质,2007(02):1-7
    [8]黎玉战,徐传会.塔里木盆地塔河油田发现历程及其意义[J].石油实验地质,2004,26(2):180-186
    [9]刘忠宝,于炳松,李廷艳,樊太亮,蒋宏忱.塔里木盆地塔中地区中上奥陶统碳酸盐岩层序发育对同生期岩溶作用的控制[J].沉积学报,2004,22(1):103-109
    [10]刘忠宝,孙华,于炳松.裂缝对塔中奥陶系碳酸盐岩储集层岩溶发育的控制[J].新疆石油地质,2007,28(3):289-291
    [11]高志前,樊太亮,刘忠宝,等.塔里木盆地塔中地区奥陶系关键不整合性质论证及其对储层的影响[J].石油天然气学报,2005,27:567-569
    [12]许效松,杜佰伟.碳酸盐岩地区古风化壳岩溶储层[J].沉积与地质.2005,25(3):1-7
    [13]刘小平,孙冬胜,吴欣松,等.古岩溶地貌及其对岩溶储层的控制—以塔里木盆地轮古西地区奥陶系为例[J].石油实验地质,2006,29(3):265-268
    [14]王宏语,樊太亮,高志前,等.塔中地区奥陶纪古地貌及其对储集层的控制作用[J].新疆石油地质,2007,28(1):15-19
    [15] Loucks R G. Paleocave carbonate reservoirs; origins, burial-depth modifications, spatial complexity, and reservoir implications[J]. AAPG Bulletin, 1999,83(11):1795 -1834.
    [16] Choqutte P W and Steinen R P.Mississippian oolite and non-supratidal dolomite reservoirs in the Genevieve Formation,North Bridgeport Field,Illinois Basin[M]// Roehl P O and Choquette P W,eds.,Carbonate Petroleum Reservoir,New York, Springer-Verlag,1985:207-225
    [17]罗平,张静,刘伟等.中国海相碳酸盐岩油气储层基本特征[J].地学前缘,2008(01): 36-50
    [18]陈学时,易万霞,卢文忠.中国油气田古岩溶与油气储层[J].沉积学报. 2004, 22(2): 244-253
    [19]朱东亚,金之钧,胡文瑄,等.塔里木盆地深部流体对碳酸盐岩储层影响[J].地质论评. 2008, 54(3):348-356
    [20]叶德胜.塔里木盆地北部寒武-奥陶系碳酸盐岩的深部溶蚀作用[J].沉积学报,1994,12(1):66-71.
    [21]夏日元,唐建生,邹胜章,等.碳酸盐岩油气田古岩溶研究及其在油气勘探开发中的应用[J].地球学报,2006,27(5):503-509
    [22] Conxita T D,James P Celestite formation,bacterial sulphate reduction and carbonate cementation of Eocene reefs and basinal sediments (Igualada,NE Spain)[J],Sedimentology,2002,49(2):171-190.
    [23] CaiC F,HuW S,Worden R H. Thermochemical sulphate reduction in Cambro-Ordovician carbonates in Central Tarim[J].Marine and Petroleum Geology,2001, 18(6), 729-741
    [24]王恕一,陈强路,马红强.塔里木盆地塔河油田下奥陶统碳酸盐岩的深埋溶蚀作用及其对储集体的影响[J].石油实验地质,2003,25:557-561
    [25]李忠,韩登林,寿建峰.沉积盆地成岩作用系统及其时空属性[J].岩石学报.2006, 22(8):2151-2164
    [26] Ehrenberg S N,Porosity destruction in carbonate platforms[J]. Journal of Petroleum Geology,2006,29(1): 41-52.
    [27]朱光有,张水昌,梁英波,等. TSR对深部碳酸盐岩储层的溶蚀改造四川盆地深部碳酸盐岩优质储层形成的重要方式[J].岩石学报,2006,22(8):2182-2194
    [28] Krouse H R , Vian C A , Eliuk L S ,et al . Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs[J]. Nature,1988,333(2):415-419.
    [29] Worden R H , Smalley P C. Gas Souring by Thermochemical Sulfate Reduction at 140℃[J]. AAPG Bulletin,1995,79(6):854-863.
    [30]朱光有,张水昌,梁英波,等.川东北飞仙关组H2S的分布与古环境的关系研究[J ] .石油勘探与开发,2005,32(4):65-69.
    [31]丁康乐,李术元,岳长涛,等.硫酸盐热化学还原反应基本步骤与反应机理初探[J ] .燃料化学学报,2008,36 (6) :706 - 711.
    [32]杜春国,郝芳,邹华耀,等.热化学硫酸盐还原作用对碳酸盐岩气藏的化学改造——以川东北地区长兴组-飞仙关组气藏为例[J].地质科技情报,2007,81 (1) :120 - 127.
    [33]朱光有,张水昌,梁英波,等.四川盆地高含H2S天然气的分布与TSR成因证据[J].地质学报, 2006,80(8):1208 -1218.
    [34] Machel H G. Bacterial and thermochemical sulfate reduction indiagenetic settings: Old and new insights[J].Sedimentary Gelology,2001,140:143-175.
    [35]谢增业,田世澄,李剑.川东北飞仙关组鲕滩气藏成藏作用研究[J].地学前缘,2005,12(1):68.
    [36]黄思静,QING Hairuo,胡作维,等.四川盆地东北部三叠系飞仙关组硫酸盐还原作用对碳酸盐成岩作用的影响[J] .沉积学报,2007 ,25 (6) :815 - 824.
    [37]焦伟伟,李建交,田磊.中国海相碳酸盐岩优质储层形成的地质条件[J].地质科技情报, 2009(06):64-70.
    [38] Bell D R,Rossman G R. Water in Earth’s mantle:the role of nominally anhydrous minerals[J]. Science,1992,255(6):1391-1397
    [39] Bagdasarova M V. The role of hydrothermal processes in oil and gas reservoirs formation[J].Geol Nefti Gaza,1997,322(9):42-46
    [40]金之钧,王清晨.中国典型叠合盆地与油气成藏研究新进展——以塔里木盆地为例.中国科学D辑:地球科学[J],2004,34(增刊Ⅰ):1-12
    [41] White D E. Thermal waters of volcanic origin[J]. Geological Society of America Bulletin,1957,68:1637-1658
    [42] Davies G R ,Smith J L B. Structurally controlled hydrothermal dolomite reservoir facies :An Overview[J]. AAPG Bulletin,2006,90(11):1641-1690.
    [43]吴茂炳,王毅,郑孟林.等.塔中地区奥陶纪碳酸盐岩热液岩溶及其对储层的影响[J].中国科学(D辑:地球科学), 2007(增刊I):83-92
    [44] Wierzbicki R., J. J. Dravis, I. Al-Aasm, and N. Harland, Burial dolomitization and dissolution of Upper Jurassic Abenaki platform carbonates, Deep Panuke reservoir, Nova Scotia, Canada[J].AAPG Bulletin, 2006,90:1843–1861.
    [45] Cantrell, D. L., P. K. Swart, and R. M. Hagerty. Genesis and characterization of dolomite, Arab-D reservoir, Ghawar field,Saudi Arabia[J]. GeoArabia, 2004, 9(2):1–26.
    [46] Land L S. The origin of massive dolomite[J].Journal of Geological Education,1985,33:112-125
    [47] Folk R L,Land L S.Mg/Ca Ratio and Salinity:Two Controls on Crystallization of Dolomite[J].AAPG Bulletin,1975,59:6O-68.
    [48] Warren J.Dolomite:Occurrence,Evolution and Economically Importent Associations[J].Earth-Science Review,2000,52:1-81
    [49] Machel H G. Concepts and models of dolomitization: A critical reappraisal[C] //The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. London: Geological Society Special Publication,2004,235:7-63.
    [50] Luczaj J A. Evidence against the Dorag(mixing-zone)model for dolomitization along the Wisconsin arch—A case for hydrothermal diagenesis[J].AAPG Bulletin, 2006,90(11):1719-1738.
    [51] Lavoie D and Morin C. Hydrothermal dolomitization in the Lower Silurian Sayabec Formation in north Gaspe-Matapedia(Quebec): Constraint on timing of porosity and regional significance for hydrocarbon reservoirs [J]. Bulletin of Canadian Prtroleum Geology, 2004, 52(3): 256-269.
    [52] Smith L B. Origin and reservoir characteristics of upper Ordovician Trenton -black river hydrothermal dolomite reservoirs in New York[J].AAPG Bulletin, 2006, 90(11):1691-1718.
    [53]黄思静,QING Hairuo,胡作维,等.封闭系统中的白云石化作用及其石油地质学和矿床学意义——以四川盆地东北部三叠系飞仙关组碳酸盐岩为例[J].岩石学报,2007 ,23 (11):2955-2962.
    [54] Lonnee J and Machel H G. Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field,Middle Devonian Slave Point Formation, British Columbia,Canada[J].AAPG Bulletin, 2006, 90(11):1739-1761.
    [55]朱井泉,吴仕强,王国学,等.塔里木盆地寒武-奥陶系主要白云岩类型及孔隙发育特征[J].地学前缘,2008,15(2):67-79
    [56]陈强路,何治亮,李思田.塔中地区奥陶系碳酸盐岩储层与油气聚集带[J].石油实验地质, 2007(4):367-372
    [57]陈新军,蔡希源,等.塔中奥陶系大型不整合面与风化壳岩溶发育[J].同济大学学报:自然科学版, 2007. 35(8):1122-1127
    [58]何碧竹,焦存礼,贾斌峰,等.塔里木盆地塔中西部地区奥陶系岩溶作用及对油气储层的制约[J].地球学报, 2009(3): 395-403
    [59]金之钧;朱东亚;胡文瑄,等.塔里木盆地热液活动地质地球化学特征及其对储层影响[J].地质学报, 2006. 80(2):245-254
    [60]李开开,蔡春芳,蔡缪璐,等.塔中地区上奥陶统热液流体与热化学硫酸盐还原作用[J].石油与天然气地质. 2008, 29(2):217-222
    [61]吕修祥,杨宁,解启来,等.塔中地区深部流体对碳酸盐岩储层的改造作用[J].石油与天然气地质. 2005, 26(3):284-296
    [62]潘文庆,刘永福, Dickson J A D,等.塔里木盆地下古生界碳酸盐岩热液岩溶的特征及地质模型[J].沉积学报. 2009(05):983-994
    [63]孙玉善,韩杰,张丽娟,等.塔里木盆地塔中地区上奥陶统礁滩体基质次生孔隙成因——以塔中62井区为例[J].石油勘探与开发. 2007, 34(5):541-547
    [64]郑和荣,刘春燕,吴茂炳,等.塔里木盆地奥陶系颗粒石灰岩埋藏溶蚀作用[J].石油学报. 2009, 30(1):9-15
    [65]张天付,鲍征宇,马明,等.鲕粒灰岩的溶解动力学特征和微观形貌的发育演化[J].沉积学报. 2009(06): 1033-1042.
    [66]李凌,谭秀成,陈景山,等.塔中北部中下奥陶统鹰山组白云岩特征及成因[J].西南石油大学学报. 2007, 29(1):34-36
    [67]陈永权,周新源.白云岩埋藏成岩作用过程中的金属元素与同位素再分配规律与受控因素[J].海相油气地质. 2009(03):65-67
    [68]顾家裕.塔里木盆地下奥陶统白云岩特征及成因[J].新疆石油地质. 2000, 21(2):120-122
    [69]朱东亚,金之钧,胡文瑄.塔中地区热液改造型白云岩储层[J].石油学报. 2009(05): 698-704
    [70]钱一雄,尤东华.塔中地区西北部奥陶系白云岩(化)成因分析[J].新疆石油地质. 2006, 27(2):146-150
    [71]张学丰,胡文瑄,张军涛,等.塔里木盆地下奥陶统白云岩化流体来源的地球化学分析[J].地学前缘. 2008, 15(2): 80-89
    [72]陈永权,周新源,赵葵东,等.塔里木盆地塔中19井奥陶系蓬莱坝组云灰互层岩性旋回特征与顶侵型埋藏云[J].沉积学报.2009,27(2): 202-212
    [73]贾承造.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社,1997.
    [74]计雄飞.塔里木盆地主干断裂特征及其演化过程研究[D].成都:成都理工大学,2008.
    [75]丁文龙,林畅松,漆立新.塔里木盆地巴楚隆起构造格架及形成演化[J].地学前缘,2008,15(2):242-252.
    [76]李曰俊,吴根耀,孟庆龙,等.塔里木盆地中央地区的断裂系统几何学运动学和动力学背景[J].地质科学,2008,43(1):82-118.
    [77]周小军.塔里木盆地卡塔克古隆起不整合和构造特征及其演化[D].北京:中国地质大学,2006.
    [78]陈清清.卡塔克隆起带早古生代构造样式和构造演化研究[D].北京:中国地质大学,2007.
    [79]张克银.卡塔克古隆起多旋回构造演化与油气多期动态成藏[D].成都:成都理工大学,2006.
    [80]汤良杰.略论塔里木盆地主要构造运动[J].石油实验地质,1997,19(2):108-114
    [81]王子煌,陆克政,漆家福.塔里木盆地塔中凸起的构造演化及其与油气藏的关系[J].石油大学学报(自然科学版),1998,22(4):14-17.
    [82]马锋.塔中Ⅱ号构造带演化及其对油气藏的控制作用[D].东营:中国石油大学,2007.
    [83]钱利.塔中地区1区块构造演化与油气成藏关系[D].北京:中国地质大学,2006.
    [84]李传新,贾承造,李本亮,等.塔里木盆地塔中低凸起北斜坡古生代断裂展布与构造演化[J].地质学报. 2009(08):1073-1065
    [85] Flügel,E.Microfacies of Carbonate Rocks.[M].Berlin,Springer,2004.
    [86] Ahr.W.M,Geology of Carbonate Reservoir[M].Wiley,New jersey,2008.
    [87] Adam J E, Rhodes M L. Dolomitization by seepage reflux[J].AAPG Bulletin, 1960, 44(12):1912- 1920.
    [88]黄思静,王春梅,黄培培,等碳酸盐成岩作用的研究前沿和值得思考的问题[J]成都理工大学学报(自然科学版),2008,35(1):1-10
    [89]王振宇,吴丽,张云峰,等.塔中上奥陶统方解石胶结物类型及其形成环境[J].地球科学与环境学报. 2009, 31(3):265-271
    [90]王嗣敏,金之钧,解启来.塔里木盆地塔中45井区碳酸盐岩储层的深部流体改造作用[J].地质论评. 2004, 50(5):543-547
    [91]陈景山,李忠,王振宇,等.塔里木盆地奥陶系碳酸盐岩古岩溶作用与储层分布[J].沉积学报. 2007, 25(6):858-868
    [92] N.P James and P W Choquette. Paleokarst[M].Springer-Verlag,1985
    [93]王宝清.古岩溶与储层研究[M].北京:石油工业出版社,1995
    [94]樊太亮,于炳松,邓宏文.塔里木盆地寒武-奥陶系沉积体系及储层评价研究.中国石化西部新区勘探指挥部项日报告,2004
    [95] Hardie,L.A. Dolomitization:a critical view of some current views[J]. Journal of Sedimentary Petrology,1987,57(1):166-183.
    [96]王丹,陈代钊,杨长春,等.埋藏环境白云石结构类型[J].沉积学报,2010,28(1):17-25
    [97]Sibly D.F, Gregg, J.M. Classification of dolomite rock textures[J]. Journal of Sedimentary Petrology, 1987. 57,967-975
    [98]Gao G, Land L S, Elmore R D. Multiple Episodes of Dolomitization in the Arbuckle Group,Arbuckle Mountains,South-Central Oklahoma:Field, Petrographic, and Geochemical Evidence[J]. Journal of Sedimentary Research,1995,65(2): 321-331
    [99]Choquette P W, Hiatt E E. Shallow-burial dolomite cement: a major component of many ancient sucrosic dolomites[J]. Sedimentology,2007,55(2):423-460
    [100]Machel H G. Effects of groundwater flow on mineral diagenesis, with emphasis on carbonate aquifers[J].Hydrogeology Journal,1999,7:94-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700