用户名: 密码: 验证码:
16MnR钢单轴棘轮效应实验及预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料在循环载荷作用下产生的塑性变形的逐渐累积现象称为棘轮效应。棘轮问题的危害性引起了国内外学者的广泛重视,其研究已经成为热点方向。对于材料低周疲劳行为,绝大多数的实验及理论研究都是在应变循环控制下加载,对于有平均应力存在的应力控制循环加载下的低周疲劳行为研究较少,特别是关于材料全寿命棘轮效应的研究更少。
     为了研究和预测16MnR钢及焊缝金属的棘轮效应,完成室温下压力容器常用钢16MnR钢及焊缝金属的应变对称循环实验和一系列全寿命的单轴棘轮效应实验。实验结果表明:16MnR钢是一种循环稳定材料;焊缝金属由于本身组织的不均匀性,焊缝金属内部存在缺陷,而在循环载荷的作用下,焊缝金属内部的缺陷损伤会进一步增加,降低了材料的强度,因此焊缝金属表现出了循环软化特性。在单轴棘轮效应实验中,随着平均应力和应力幅值的增加,棘轮应变增加;在循环过程中,棘轮应变不能达到饱和,即棘轮应变随循环次数的增加而持续增加。同时,不断增加的棘轮效应带来了附加的疲劳损伤,缩短了疲劳寿命。
     利用Chen和Jiao提出的基于O-W模型的改进模型,通过单轴棘轮效应实验,确定了符合16MnR钢及焊缝金属的常数,该模型很好的预测了16MnR钢及焊缝金属的单轴棘轮应变。
The ratcheting of materials corresponds to progressive inelastic deformation under cyclic stressing. The ratcheting effect has arisen abroad recognition by scholars and the research on the ratcheting has become a hotspot. For the low cycle fatigue of materials, most of the experimental studies concern strain–controlled loading. Ratcheting, a cyclic accumulation of inelastic deformation, will occur under asymmetrical cyclic stressing. It is extremely necessary to consider the ratcheting effect on fatigue life.
     In order to realize and predict the uniaxial ratcheting of 16MnR steel, a seris of experiment study was performed on the uniaxial strain cycling and uniaxial ratcheting deformation on the based metal and weld joint of 16MnR under asymmetrical stress cyclic loading at room temperature. The experiment results have shown that 16MnR steel is a cyclic stable material. As weld metal has defects inside and the defects will increase under the cyclic loading, which would reduce the strength of material, thus weld metal shows clear cyclic softening. The uniaxial ratcheting behaviors of the materials were studied in detail under cyclic stressing. The effects of stress amplitude and mean stress on the ratcheting were discussed under uniaxial asymmetrical stress cycling. It shows that ratcheting increases with mean stress and stress amplitude increasing. At the same time, the increasing ratcheting brought fatigue damage, which reduced fatigue life of the materials.
     In this paper, the modified model based on Ohno-Wang model by Chen and Jiao was used. The results show that the modified model predict the uniaxial ratcheting of 16MnR steel well.
引文
[1] Huang E W, Rozaliya I, Wang Y D, et al. Plastic behavior of a nickel-based alloy under monotonic-tension and low-cycle-fatigue loading. International Journal of Plasticity, 2008, 24(8): 1440~1456
    [2] Seweryn A, Buczyński A, Szusta J. Damage accumulation model for low cycle fatigue. International Journal of Fatigue, 2008, 30(4): 756~765
    [3] Goh C S, Wei J, Lee L C, et al. Ductility improvement and fatigue studies in Mg-CNT nanocomposites. Composites Science and Technology, 2008, 68(6): 1432~1439
    [4] Brown M W, Suker D K, Wang C H. An analysis of mean stress in multiaxial random fatigue. Fatigue Fracture and Engineering Material Structure, 1996, 19:323~333
    [5] Gao Z L, Sun W M, Jin W Y. Fatigue crack growth properties of 16MnR and 316L steels at high temperature . Proceedings of the ASME Pressure Vessels and Piping Conference 2005-Materials and Fabrication, 2005, 6, 205
    [6] Gao Z L, Zhang K D. Comparison of the fracture and fatigue properties of 16MnR steel weld metal, the HAZ and the Base Metal. Journal of Materials Processing Technology, 1997, 63(1-3), 559
    [7] Chen B B, Sun W M, Gao Z L, Fang D M. Study on mechanical behaviors of 16MnR steel after long term used as liquefied petroleum gas vessel. Key Engineering Materials, 2005, 963, 297~300
    [8]范志超,陈学东,蒋家羚,环境温度对16MnR钢应力疲劳的影响,压力容器,2006,23(9):16~20
    [9]范志超,蒋家羚,16MnR钢中温低周疲劳行为研究,浙江大学学报,2004,38(9):1190~1195
    [10] Wang X G, Gao Z L, Jiang Y Y, et al. An experimental study of the crack growth behavior of 16MnR pressure vessel steel. Journal of Pressure Vessel Technology, 2007, 3
    [11]庄力健,高增梁,16MnR钢在不同应力比下疲劳裂纹扩展的试验研究及模拟,压力容器,2007,24(3):1~7
    [12]徐鹏,周道祥,16MnR材料应变疲劳损伤与能量的本构关系研究,压力容器,2006,23(5):22~25
    [13]杜洪奎,孔凡玉,低周疲劳下16MnR微孔的裂纹萌生与扩展,材料工程,2008,3:40~43
    [14] Gong S H, Sheng G M, Li W, et al. Low cycle fatigue property of pressure vessel steel 16MnR under earthquake load. Iron Steel (China), 1995, 30 (10): 48~52
    [15] Hong Y J, Xing J, Wang J B. Statistical analysis of fatigue crack growth for 16MnR steel under constant amplitude loads. Pressure Vessels and Piping, 1999, 76: 379~385
    [16]尹士科,王征林,焊接接头性能调控与应用—碳钢及低碳钢,兵器工业出版社,1993,2:l~20
    [17] Gao Z L, Zhang K D. Comparision of the fracture and fatigue properties of 16MnR steel weld metal, the HAZ and the base metal. Journal of Materials Processing Technology, 1997, 36(1~3): 559~562
    [18] You B R, Lee S B. A critical review on multiaxial fatigue assessments of metals. International Journal of Fatigue, 1996, 18(4): 235~244
    [19] Sonsino C M, Lagoda T. Assessment of multiaxial fatigue behaviour of welded joints under combined bending and torsion by application of a fictitious notch radius. International Journal of Fatigue, 2004, 26(3): 265~279
    [20]唐建群,巩建鸣,张礼敬等,16MnR钢在含H2S液化石油气中服役后性能的变化,机械工程材料,2005,29(11):31~34
    [21] Gao Z L, Zhang K D. Research on fatigue crack growth in high strain region of SCT specimens. Journal of Pressure Vessel & Piping, 1997, 72: 165~169
    [22]陈旭,赵志芳,16MnR钢焊接接头低周疲劳性能,化工生产与技术,2000,3:10~11
    [23]杨冰,赵永翔,邬平波等,16MnR钢焊接头概率循环应变-寿命模型的综合分析,核动力工程, 2005(3):241~245
    [24]于琴,霍宏发,巩水利,16MnR焊接接头动态冲击断裂韧性试验研究,西南交通大学学报,2003,38(5):509~512
    [25]段权,压力容器用16MnR钢焊接接头疲劳裂纹扩展规律的研究,第十届全国疲劳与断裂学术会议论文集,气象出版社,广州,2000:131~134
    [26] Armstrong P J, Frederick C O. A mathematical representation of the multiaxial Bauschinger effect[R]. CEGB Report RD/N731,Berkely Nuclear Laboratories,Berkely,UK,1996
    [27] Abdel-Karim M , Ohno N K. Kinematic hardening model suitable for ratcheting with steady-state [J]. International Journal of Plasticity, 2000,16:225~240
    [28] Chaboche J L. On some modifications of kinematic hardening to improve thr description of ratcheting effects [J]. International Journal of Plasticity, 1991, 7(7):661~678
    [29] Chaboche J L, Nouailhas D. Constitutive modeling of ratcheting effect:PartΙ, Experimental facts and properties of classical models[J]. ASME Journal of Applied Mechanics, 1989,111(4):384~392
    [30] McDowell D L. A two surface model for transient nonproportional cyclic plasticity[J]. ASME Journal of Applied Mechanic, 1985, 52:298~308
    [31]蔡力勋,刘宇杰,叶裕明等,T225NG合金材料单轴棘轮行为研究,金属学报, 2004, 40(11):1155-1164
    [32]蔡力勋,程兆年,描述不锈钢材料单轴棘轮行为的一元参量体系,金属学报,2002,38(9):966~973
    [33] Valanis K C. A theory of viscoplasticity without a yield surface, Part 1: General theory; Part 2: Application of mechanical behavior of metals. Archives of Mechanics, 1971, 23:517~551
    [34] Chaboche J L, Nouailhas D. Constitutive modeling of ratchetting effects-Part I: Experimental facts and properties of the classical models. ASME Journal of Engineering Materials and Technology, 1989, 111:384~392
    [35] Chaboche J L, Nouailhas D. Constitutive modeling of ratchetting effects-Part II: Possibilities of some additional kinematic rules. ASME Journal of Engineering Materials and Technology, 1989, 111:409~416
    [36] Hassan T, Corona E, Kyriakides S. Ratcheting in cyclic plasticity Part I: Uniaxial behavior. International Journal of Plasticity, 1992, 8(1): 91~116
    [37] Hassan T, Kyriakides S. Ratcheting in cyclically hardening and softening materials Part I: Uniaxial behavior. International Journal of Plasticity, 1994, 10:149~184
    [38] Jiang Y Y, Sehitoglu H. Cyclic ratchetting of 1070 steel under multiaxial stress states. International Journal of Plasticity, 1994, 10(5):579~60
    [39]田涛,陈旭,安柯,1Cr18Ni9Ti不锈钢进行了多轴棘轮效应试验研究,机械工程材料,2002,26(1):19~21
    [40] Yang X J, Chow C L, Lau K J. Time-dependent cyclic deformation and failure of 63Sn/37Pb solder alloy. International Journal of fatigue, 2003, 25:533~546
    [41] Chen X, Yu D H, Kim K S. Experimental study on ratcheting Behavior of eutectic tin-lead solder under multiaxial loading. Material Science and Engineering: A 2005, 406:86~94
    [42] Kang G Z, Kan Q H, Zhang J. Experimental study on the uniaxial cyclic deformation of 25CDV4.11 steel. Journal of Material Science and Technology, 2005,21(1):5~9
    [43] Yaguchi M, Takahashi Y. Ratcheting of viscoplastic material with cyclic softening, part1: experiments on modied 9Cr-1Mo steel. International Journal of plasticity, 2005,21:43~46
    [44] Kwofie S. Cyclic creep behavior described in terms of one-parameter kinetic model. Material Science and Engineering: A, 2005, 392:23~30
    [45] Jansson S, Leckie F A. Mechanical behavior of a continuous fiber reinforce aluminum matrix composite subjected to transverse and thermal loading. Journal of Mechanic Physics Solid ,1992,12:593~612
    [46] Daehn G S, Zhang H, Chen C Y, Wagoner R H. Approaches to modeling the plastic deformation of metal matrix composites under thermal cycling conditions. In: Lowe TC et al, editors. Modeling the deformation of crystalline solids: physicaltheory, applications, and experimental comparisons. New Prleans, Louisiana: TMS, 1991
    [47] Zhang H, Daehn G S, Wagoner R H. The temperature-cycling deformation of particle reinforce metal matrix composites: anite element study. Scripta Metal, 1990, 24:1~5
    [48] Zhang H, Daehn G S, Wagoner R H. Simulation of the plastic response of whisker reinforced metal matrix composites under thermal cycling conditions. Scripta Metal, 1991, 25:1~6
    [49] Kang G Z. Uniaxial time-dependent ratcheting of SiC/6061Al alloy composites at room and high temperature. Composites Science and Technology 2006, 66(14): 18~30
    [50] Kang G Z, Liu Y J. Uniaxial and multiaxial cycling deformation behaviors of SiC/6061Al alloy composites at room temperature. Key Engineering Material, 2007, 353: 47~50
    [51] Chen X, Hui S C. Ratcheting behavior of PTFE under cyclic compression. Polym Test 2005, 24: 29~33
    [52] Xia Z, Kujawki D, Ellyin F. Effect of mean stress and ratcheting strain on fatigue life of steel. International Journal of Fatigue,1996,18:335~341
    [53] Rider R J, Harvey S J, Chandler H D. Fatigue and ratcheting interactions. International Journal of Fatigue,1995,17(7):507~511
    [54] Yang X Y. Low cycle fatigue and cyclic stress ratcheting failure behavior of carbon steel 45 under uniaxial cyclic loading. International Journal of Fatigue, 2005, 27(9):1124~1132
    [55] Kwofie S, Chandler H D. Low cycle fatigue under tensile mean stress where cyclic life extension occurs. International Journal of Fatigue, 2001,23:341~345
    [56] Tao G, Xia Z H. Ratcheting behavior of an epoxy polymer and its effect on fatigue life. Polym Test, 2007,26:451~460
    [57]陈旭,焦荣,田涛,棘轮效应预测及其循环本构关系模型研究进展,力学进展,2003,33(4):461~470
    [58] Ohno N. Recent topics in constitutive modeling of cyclic plasticity and viscoplasticity. Applied Mechanics Reviews, 1990,43(11): 283~295
    [59] Besselling J F. A theory of elastic, plastic and creep deformation of an initially isotropic material showing anisotropic strain hardening creep recovery and secondary creep. ASME Journal of Applied Mechanics,1958, 25:529~536
    [60] Mroz Z. On the description of anistropic work hardening. Journal of theMechanics and Physics of Solids,1967, 15: 163~175
    [61] Dafalias Y F, Popov E, Plasticity internal variable formalism of cyclic plasticity, Applied Mechanics, 1976, 43:645~651
    [62] Armstrong P J, Frederick C O, A mathematical representation of the multiaxial Bauschinger effect. Materials at High Temperatures, 2007, 24, 1~26
    [63] Ohno N, Wang J D. Kinematic hardening rules with critical state of dynamic recovery, PartΙ: Formulation and basic features for ratcheting behavior, International Journal of Plasticity, 1993,9(3):375~391
    [64] Ohno N, Wang J D. Kinematic hardening rules with critical state of dynamic recovery, PartΠ: application to experiment of racheting behavior, International Journal of Plasticity, 1993, 9(3):391~403
    [65] Jiang Y Y, Sehitoglu H. Modeling of cyclic racheting plasticity, PartΙ: development of constitutive relations. ASME Journal of Applied Mechanics, 1996, 63:720~725
    [66] Jiang Y Y, Sehitoglu H. Modeling of cyclic racheting plasticity, PartΠ: comparasion of model simulation with experiments. ASME Journal of Applied Mechanics, 1996,63:726~733
    [67] Rousselier G, Engel J J, Masson J C. Etude Comparative demodeles de Comportement Pour la Simulation d’essais en Traction-pression Sur Tubes en Acier Inoxydable.Document EDF-DER. Annexe du Rapport No.8 du GIS Rupture a Chaud, 1985
    [68] McDowell D L. Description of nonproportional cyclic ratchetting behavior. Eur European Journal of Mechanics, A/Solids, 1994, 13(5): 593-604
    [69] Ohno N, Abdel-Karim M. Uniaxial ratchetting of 316FR steel at room temperature-Part II: Constitutive modeling and simulation. ASME Journal of Engineering Materials and Technology, 2000, 122: 35-41
    [70] Chen X, Jiao R, Modified kinematic hardening rule for multiaxial ratcheting prediction. International Journal of Plasticity, 2004, 20(5): 871-898
    [71]孙云波,16MnR焊缝接头低周疲劳实验研究:[本科学位论文],天津;天津大学,2003
    [72] Gao Z L, Zhao T W, Wang X G, Jiang Y Y. Multiaxial Fatigue of 16MnR Steel. Journal of Pressure Vessel Technology, 2009, 131:1-9
    [73] Burlet H, Cailletaud G. Numerical techniques for cyclic plasticity at variable temperature. Engineering Compution, 1986, 3, 143~153.
    [74] Burlet H, Cailletaud G. Modeling of cyclic plasticity in finite element codes. Process of 2nd International Conference on Constitutive Laws for Engineering Materials: Theory and Applications, 1987, 1157~1164.
    [75] Delobelle P, Robinet P, Bocher L. Experimental study and pheno-melogicalmodelization of ratcheting under uniaxial and biaxial loading on an austenite stainless steel. International Journal of Plasticity, 1995, 11, 295~330.
    [76] Bari S, Hassan T. An advancement in plasticity modeling for multiaxial ratcheting simulation. International Journal of Plasticity, 2002, 18, 873~894.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700