用户名: 密码: 验证码:
富硅氮化硅薄膜体系电致发光器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着半导体芯片集成度的进一步提高,以电子为信息载体的金属互联存在的RC延迟及热耗散成为制约超大规模集成电路发展的瓶颈。采用光互连代替电互联将有效解决这一问题,而寻找高效的硅基光源更是解决这一问题的关键。近年来,富硅氮化硅(SiN_x)薄膜由于其良好的发光特性及制备工艺与传统CMOS工艺兼容而受到广泛关注,成为硅基光源的候选材料之一。
     本论文研究了富硅氮化硅薄膜体系的电致发光器件,包括基于单层SiN_x薄膜、SiN_x/a-Si/SiN_x三明治结构薄膜以及引入SiO_2电子加速层的SiO_2 on SiN_x结构薄膜的三种电致发光器件,取得以下主要成果:
     (1)SIN_x薄膜电致发光源于禁带内的缺陷态能级的复合,发光峰位位于600nm处,主要来自于E_c→≡Si~-之间的电子辐射跃迁;相同的输入功率下,采用p~-Si作为衬底能够提高器件的EL强度,采用p~+/p Si作为衬底能够有效降低器件的开启电压;经三步热处理后器件的开启电压降低。
     (2)对于SiN_x/a-Si/SiN_x三明治结构薄膜,当a-Si层沉积时间为60s时,高温热处理后器件的开启电压降低且EL积分强度提高。可能原因是a-Si层经过高温热处理后形成了颗粒尺寸较小的Si的非晶纳米颗粒,有利于载流子注入SiN_x薄膜,载流子的浓度提高,一定程度上使得电子与空穴的复合效率提高,EL发光出现增强。
     (3)SiO_2电子加速层的引入能够提高器件的EL强度,原因在于经SiO_2层加速后的高能电子进入发光层后,将对SiN_x进行轰击离化,激发出更多的载流子,导带上的电子浓度提高,电子与空穴的注入水平趋于平衡,使得电子与空穴的复合效率提高;EL强度与SiO_2电子加速层的厚度有关,当SiO_2层厚度减小为25nm,EL强度进一步增强,说明一定厚度范围内,在保证电子加速作用的同时,SiO_2层厚度的减小有利于电子的注入。
With the further improvement of the integration level of semiconductor chip, the traditional electrical interconnection becomes a bottleneck for the development of ultra large scale integrated circuits. Light interconnection is supposed to be an effective solution. The key point is to seek for an efficient silicon-based light source. For the past few years, silicon-rich silicon nitride (SiN_x) has received extensive attention as a candidate material for silicon-based light source because of its good luminescence properties and compatible with CMOS techniques.
     In this thesis, three structrure of the light-emitting devices (LEDs) based on SiNx thin films were investigated. The main results are summarized as follows:
     (1) Electroluminescence (EL) of light-emitting devices consited by single SiNx film wasfound centered at 600nm, which originated from the electronic transitions of E_c→≡Si~- iscentered at 600nm. Using a lightly doped p type silicon wafer as substrate would enhance the EL intensity of LEDs at the same input power, while an epitaxial p-type silicon wafer would reduce the turn on voltage.
     (2) Current of LEDs consited by SiN_x/a-Si/SiN_x film is increased at the same forward bias after post-annealing, meanwhile, the EL integrated intensity is enhanced at the same current density when the deposition time of a-Si layer is 60 seconds. Small amorphous Si clusters which are favorable to the tunneling of carriers formed during the annealing process, result in the raise of electronic injection and recombination efficiency of electronic-hole pairs finally.
     (3) EL intensity is significantly enhanced while SiO_2 electron accelerating layer is introduced to LEDs based on SiN_x film owing to the impact ionization process which inspire more carriers and result in the trend to balance the electron and hole injection. Moreover, EL intensity is closely related to the thickness of SiO_2 layer, the thinner the easier to inject the high energy electrons.
引文
[1] http://en.wikipedia.org/wiki/Moore%27s_Law.
    [2] J. W. Goodman. Optical interconnections for VLSI systems. Proceeding of IEEE. 1984, 72, 850-866.
    
    [3] http://en.wikipedia.org/wiki/Silicon_photonics.
    
    [4] D.A.G.Bruggeman, Ann. Physik. 1935, 24, 636.
    
    [5] http://techresearch.intel.com/articles/Tera-Scale/1419.htm.
    
    [6] A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia and J. E. Bowers. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt Express. 2006, 14 (20), 9203-9210.
    
    [7] X. K. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer and A. Yariv. Electrically pumped hybrid evanescent Si/InGaAsP lasers. Opt Lett. 2009, 34 (9), 1345-1347.
    
    [8] S. S. Iyer and Y. H. Xie. Light Emission from Silicon. Science. 1993, 260 (5104), 40-46.
    
    [9] L. Pavesi. Routes toward silicon-based lasers. Materials Today. 2005, 8 (1), 18-25.
    
    [10] L. T. Canham. Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers. Appl Phys Lett. 1990, 57 (10), 1046-1048.
    
    [11] J. X. JM Shainline. Optics and Photonics News. 2008, May, 35-39.
    
    [12] N. M. Park, T. S. Kim and S. J. Park. Band gap engineering of amorphous silicon quantum dots for light-emitting diodes. Applied Physics Letters. 2001, 78 (17), 2575-2577.
    
    [13] J. F. Liu, X. C. Sun, L. C. Kimerling and J. Michel. Direct-gap optical gain of Ge on Si at room temperature.Optics Letters. 2009, 34 (11), 1738-1740.
    
    [14] J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling and J. Michel. Ge-on-Si laser operating at room temperature. Opt. Lett. 2010, 35 (5), 679-681.
    
    [15] J. M. Bao, M. Tabbal, T. Kim, S. Charnvanichborikarn, J. S. Williams, M. J. Aziz and F. Capasso. Point defect engineered Si sub-bandgap light-emitting diode. Optics Express. 2007, 15 (11), 6727-6733.
    
    [16] Y. Yasutake, J. Igarashi, N. Tana-ami and S. Fukatsu. An electric-field-active 1377-nm narrow-line Si light-emitting diode at 150 K. Optics Express. 2009, 17 (19), 16739-16744.
    
    [17] M. Jamei, F. Karbassian, S. Mohajerzadeh, Y. Abdi, M. D. Robertson and S. Yuill. The preparation of nanocrystalline silicon by plasma-enhanced hydrogenation for the fabrication of light-emitting diodes. Ieee Electron Device Letters. 2007, 28 (3), 207-210.
    
    [18] G. R. Lin, C. J. Lin and H. C. Kuo. Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array. Applied Physics Letters. 2007, 91 (9).
    
    [19] T.-S. K. N.-M. Park, and S.-J. Park. Appl. Phys. Lett. 2001, 78, 2575.
    
    [20] T.-C. W. J.-J. Wu, and C.-C. Yu. Adv. Mater. sWeinheim, Ger.d. 2002, 12, 1643.
    
    [21] T. P. K. Lutervá, I. Mikulskas, R. Tomasiuas, D.Muller, J.-J. Grob, J.-L. Rehspringer, and B. J. H(o|¨)nerlage. J.Appl. Phys. 2002,91,2896.
    
    [22] K. S. Cho, N. M. Park, T. Y. Kim, K. H. Kim, G. Y. Sung and J. H. Shin. High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer. Applied Physics Letters. 2005, 86 (7).
    
    [23] R. Huang, K. J. Chen, B. Qian, S. Chen, W. Li, J. Xu, Z. Y. Ma and X. F. Huang. Oxygen induced strong green light emission from low-temperature grown amorphous silicon nitride films. Applied Physics Letters. 2006,89 (22).
    
    [24] R. Huang, K. J. Chen, P. G. Han, H. P. Dong, X. Wang, D. Y. Chen, W. Li, J. Xu, Z. Y. Ma and X. F. Huang. Strong green-yellow electroluminescence from oxidized amorphous silicon nitride light-emitting devices.Applied Physics Letters.2007,90(9).
    [25]K.C.Min Dai,Xinfan Huang,et al.Formation and charging effect of Si nanocrystals in a-SiNx/a-Si/a-SiNx structures.Journal of Applied Physics.2004,95(2),640-645.
    [26]J.Warga,R.Li,S.N.Basu and L.Dal Negro.Electroluminescence from silicon-rich nitride/silicon superlattice structures.Appl Phys Lett.2008,93(15).
    [27]J.Zhou,G.R.Chen,Y.Liu,J.Xu,T.Wang,N.Wan,Z.Y.Ma,W.Li,C.Song and K.J.Chen.Electroluminescent devices based on amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures.Optics Express.2009,17(1),156-162.
    [28]H.P.Dong,D.Q.Wang,K.J.Chen,J.Huang,H.C.Sun,W.Li,J.Xu and Z.Y.Ma.Field dependent electroluminescence from amorphous Si/SiNx multilayer structure.Appl Phys Lett.2009,94(16).
    [29]Z.W.Pei,Y.R.Chang and H.L.Hwang.White electroluminescence from hydrogenated amorphous-SiNx thin films.Applied Physics Letters.2002,80(16),2839-2841.
    [30]L.Y.Chen,W.H.Chen and F.C.N.Hong.Visible electroluminescence from silicon nanocrystals embedded in amorphous silicon nitride matrix.Applied Physics Letters.2005,86(19).
    [31]T.C.Tsai,L.Z.Yu and C.T.Lee.Electroluminescence emission of crystalline silicon nanoclusters grown at a low temperature.Nanotechnology.2007,18(27).
    [32]R.Huang,K.J.Chen,H.P.Dong,D.Q.Wang,H.L.Ding,W.Li,J.Xu,Z.Y.Ma and L.Xu.Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N ratio.Applied Physics Letters.2007,91(11).
    [33]Z.H.Cen,T.P.Chen,L.Ding,Y.Liu,J.I.Wong,M.Yang,Z.Liu,W.P.Goh,F.R.Zhu and S.Fung.Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing.Journal of Applied Physics.2009,105(12).
    [34]Z.H.Cen,T.P.Chen,L.Ding,Y.Liu,J.I.Wong,M.Yang,Z.Liu,W.P.Goh,F.R.Zhu and S.Fung.Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions.Applied Physics Letters.2009,94(4).
    [35]H.E.Romero and M.Drndic.Coulomb Blockade and Hopping Conduction in PbSe Quantum Dots.Physical Review Letters.2005,95(Copyright(C) 2010 The American Physical Society),156801.
    [36]刘文龙.氮化硅薄膜的制备技术综述.高校理科研究.2009,427.
    [37]W.K.John L.Vossen.Thin film processes New York:Academic Press.1978,526-532.
    [38]王明华.富硅氮化硅和纳米硅多层量子阱硅基发光薄膜与器件.浙江大学博士学位论文.2009,72-73.
    [39]http://www.hudong.com/wiki/%E7%A3%81%E6%8E%A7%E6%BA%85%E5%B0%84:
    [40]张广英,吴爱民,秦福文,公发全,姜辛.氮化硅薄膜的沉积速率和表面形貌.SEMICONDUCTOR OPTOELECTRONICS.2009,30(4),558-561.
    [41]D.S.L.M.H.Wang,Z.Z.Yuan,et al.Photoluminescence of Si-rich silicon nitride:defect-related states and silicon nanoclusters.Applied Physics Letters.2007,90(13),131903-131901-131903-131903.
    [42]http://ece-www.colorado.edu/~bart/book/ellipstb.htm.
    [43]黄建浩,李东升,王明华,杨德仁.富硅氮化硅的光致发光及电致发光研究.半导体技术.2008,(5),388-390.
    [44]S.V.Deshpande,E.Gulari,S.W.Brown and S.C.Rand.Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition.J.Appl.Phys.1995,77(12),6534-6541.
    [45]T.Noma,K.S.Seol,H.Kato,M.Fujimaki and Y.Ohki.Origin of photoluminescence around 2.6-2.9 eV in silicon oxynitride.Appl.Phys.Lett.2001,79(13),1995.
    [46]C.-M.Mo,L.Zhang,C.Xie and T.Wang.Luminescence of nanometer-sized amorphous silicon nitride solids.J.Appl.Phys.1993,73(10),5185-5188.
    [47]K.S.Z.V.A.Gritsenko,A.D.Milov,et al.Silicon dots clusters in silicon nitride photoluminescence and electron spin resonance.Thin Solid Films.1999,353(1-2),20-24.
    [48]曾友华.富硅氮化硅薄膜的制备及其发光特性.半导体光电.2007,28(2),209-212.
    [49]J.Robertson and M.J.Powell.Gap states in silicon nitride.Appl.Phys.Lett.1984,44(4),415.
    [50]L.Z.C.-M.Mo,C.Xie,and T.Wang.Luminescence of nanometer-sized amorphous silicon nitride solids.J.Appl.Phys.1993,73,5185.
    [51]E.G.S.V.Deshpande,S.W.Brown,and S.C.Rand.Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition.J.Appl.Phys..1995,77,6534.
    [52]Z.A.Weinberg.On tunneling in metal-oxide-silicon structures.J.Appl.Phys.1982,53,5052.
    [53]T.Hori.Gate Dielectrics and MOS ULSIs.Heidelberg,Germany:Springer-Verlag.1997.
    [54]S.M.Sze.Current Transport and Maximum Dielectric Strength of Silicon Nitride Films.J.Appl.Phys.1967,38(7),2951.
    [55]R.Perera,A.Ikeda,R.Hattori and Y.Kuroki.Trap assisted leakage current conduction in thin silicon oxynitride films grown by rapid thermal oxidation combined microwave excited plasma nitridation.Microelectron.Eng.2003,65,357-370.
    [56]B.L.Yang,P.T.Lai and H.Wong.Conduction mechanisms in MOS gate dielectric films.Microelectron.Reliab.2004,44,709-718.
    [57]R.H.F.a.L.Nordheim.Electron emission in intense electric fields.Proceedings of Royal Society A.1928,119(781),173-181.
    [58]C.C.K.K.F.Schuegraf,and C.Hu.Ultra-thin silicon dioxide leakage current and scaling limit.Symposium on VLSI Technology Digest of Technical Papers.Symposium on VLSI Technology Digest of Technical Papers.1992,18.
    [59]S.M.Sze.Current Transport and maximum dielectric strength of silicon nitride films.Journal of Applied Physics.1967,38(7),2951-2956.
    [60]E.Suzuki,D.K.Schroder and Y.Hayashi.Carrier conduction in ultrathin nitrided oxide films.J.Appl.Phys.1986,60(10),3616-3621.
    [61]S.Fleischer,P.T.Lai and Y.C.Cheng.Simplified closed-form trap-assisted tunneling model applied to nitrided oxide dielectric capacitors.J.Appl.Phys.1992,72(12),5711-5715.
    [62]J.H.M.Wang,Z Yuan,Anopchenko,D.Li,D.Yang,L.Pavesi,.Light emission properties and mechanism of low-temperature prepared amorphous SiNX films.Ⅱ.Defect states electrotuminescence.JOURNAL OF APPLIED PHYSICS.2008,104(083505).
    [63]Z.X.F.J.Zhang,F.Teng,et al.Accurate comparison on acceleration ability of electrons in SiO2 with ZnS based on ZnS:Er phosphor.Materials Science and Engineering B.2005,123(1),84-86.
    [64]厉军明,徐征,赵谡玲,张福俊,宋丹丹,刘晓东,宋晶路,徐叙,王永生.不同加速层材料对固态阴极射线发光的影响.光谱学与光谱分析.2009,29(11),2893-2896.
    [65]王文静,蔡军,徐叙珞.电致发光中SiO_2加速层中电子的输运特性.物理学报.1994,44(7),1164-1170.
    [66]王平,刘勇,马义,杨波,楼立人,夏上达.薄膜电致发光器件中SiO_2层加速机制的研究.发光学报.1997,18(4),289-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700