用户名: 密码: 验证码:
龙头鱼SSR和SRAP标记筛选及遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龙头鱼(Harpadon nehereus)是我国重要的经济鱼类之一,目前关于龙头鱼的分子遗传学方面的研究报道很少。本文采用SSR和SRAP两种分子标记对不同地理环境的龙头鱼群体进行遗传多样性研究,旨在为龙头鱼种质资源的保护和合理利用提供重要的理论依据。在SSR实验中,本研究首先采用生物素标记的(CA)12寡核苷酸探针,利用磁珠富集法构建了龙头鱼微卫星部分基因组富集文库,从设计的28对微卫星引物中筛选出21对微卫星引物,其中5个为多态的微卫星标记。用筛选的5对微卫星引物对龙头鱼36个个体进行遗传多态性分析。每个位点等位基因数3-4。观测杂合度和期望杂合度分别为0.3500-0.8421和0.5244-0.6244。PIC值0.4403-0.5538,表明这5个微卫星位点在龙头鱼中均有较高的信息含量。5个微卫星多态位点的Hardy-Weinberg平衡检验结果表明,所有位点均处于Hardy-Weinberg平衡(P>0.01)状态。在SRAP实验中,对SRAP引物进行了筛选和优化,分析了SRAP-PCR的影响因子,包括Taq酶、Mg2+、引物、dNTP的浓度对PCR反应的影响,得到了8个重复性好、多态性高的引物组合,对舟山(ZS),象山(XS),宁海(NH),乐清(YQ),温岭(WL),温州(WZ),瑞安(RA),厦门(XM),珠海(ZH)和海口(HK)10个龙头鱼群体进行研究,最终确立了适合于龙头鱼SRAP反应体系为:Taq酶1.0U,Mg2+浓度1.5mmol/L,dNTP浓度的为0.20mmol/L,引物浓度为0.20μmol/L。利用筛选出的引物对龙头鱼群体遗传多样性进行了分析,统计结果表明,在292个个体中共检测到98个清晰稳定的多态位点,多态性条带主要分布在100-2000bp之间,多态位点数在55到83之间,平均多态位点数为73.8;多态位点比例在53.06%到84.69%之间,平均多态比例为75.20%,这一结果表明龙头鱼群体存在较高的遗传多样性。10个群体的Nei's基因多样性指数(H)分别为:0.2740,0.2934,0.2126,0.3026,0.2978,0.1657,0.2654,0.2725,0.1540和0.2398,平均Nei's基因多样性指数(H)为0.2478,其中YQ群体最高,ZS群体最低,这表明在10个群体中YQ群体的遗传多样性是最高的,ZS群体的遗传多样性最低;Shannon信息多样性指数(I)在分别为0.4111,0.4345,0.3529,0.4506,0.4426,0.2525,0.4017,0.4077,0.2396和0.3690,平均Shannon信息多样性指数(I)为0.3735,其中YQ和NH群体最高,ZS群体最低,这同样说明YQ群体的遗传多样性最丰富,ZS群体最低。从整体水平上来看,龙头鱼群体的遗传多样性水平还是相对比较高的。分子方差分析结果表明,群体内个体间的变异是总变异的主要来源(71.74%),28.26%的遗传变异来自群体间(Fst=0.2826)。采用MEGA4.0软件计算了群体间的遗传距离,ZS群体和HK群体的遗传距离最远为0.3841,XS群体和RA群体的遗传距离最近为0.0410。根据群体间的遗传距离进行了NJ法聚类分析,结果显示10个龙头鱼群体明显地分为两支,第一分支包括ZS,WZ,XS,WL,RA,YQ和NH;第二分支包括ZH,XM和HK。这一结果显示龙头鱼群体存在显著的地理差异。SRAP分析结果显示,尽管龙头鱼群体具有相对丰富的遗传多样性,但是在HK和ZS群体中,多态位点数为52和55,多态比例、Nei's基因多样性指数(H)和Shannon信息多样性指数与其他群体相比也是最低的,表明这两个群体的遗传多样性与其他群体相比处于较低水平。因而我们应该对HK群体和ZS群体的种质资源进行保护。
Harpadon nehereus is one of the important fisheries resources in China, the moleculargenetics of H. nehereus has not seen so far. This paper investigated the genetic diversity ofthe H. nehereus which was collected from different geographical regions by using SSR andSRAP molecular markers. The results could provide an important theoretical basis for theprotection and sustainable utilization of H. nehereus. In the research of microsatellitemarkers, first of all, we constructed an enriched microsatellite library by a magnetic-beadenrichment method used biotinylated (CA)12probe, twenty-eight primer pairs weredesigned and twenty-one were successfully amplified; five loci were polymorphic. Usingthe five primer pairs to investigated the genetic diversity of36individuals of the H.nehereus. The number of alleles per locus was3or4; the observed and expectedheterozygosity varied from0.3500to0.8421and from0.5244to0.6244, respectively;polymorphism information content (PIC) ranged form0.4403to0.5538, the resultsindicated that the polymorphism information content at five loci of H. nehereus was rich.Hardy-Weinberg equilibrium probability tests showed that all of the five polymorphic lociwere at Hardy-Weinberg equilibrium (adjusted P value>0.01). In the research ofSequence-related amplified polymorphism, the SRAP primers were screened and optimized.In this study, the effect of Taq DNA polymerase, Mg2+concentration, dNTPs, primerconcentration on the SRAP-PCR amplification was analyzed. And the suitable SRAP-PCRreaction system was established, the resulted that the reaction system was as follows: TaqDNA polymerase1.0U, Mg2+1.5mmol/L, dNTPs0.20mmol/L, primer0.20μmol/L. Eightcombinations of primer pairs were chosen to be used in SRAP analysis. These primersamplified good repeatability, and their polymorphism is also very high. Using these primersto studied the genetic diversity of the H. nehereus which were collected from tengeographic locations which locations of Zhoushan (ZS), Xiangshan (XS), Ninghai (NH),Yueqing (YQ), Wenling (WL), Wenzhou (WZ), Ruian (RA), Xiamen (XM), Zhuhai (ZH)and Haikou (HK). The results suggested that a total of98loci ranging from100to2000bpwere produced from292individuals by eight SRAP primers. The number of polymorphicloci (POLs) was spread from55to83, with an average of73.8; the proportion of polymorphic loci (PPB) was varied from53.06%to84.69%, with an average of75.20%.High percentage of polymorphism observed by these markers indicated a high level ofgenetic diversity existed among different populations of H. nehereus. This indicationshowed that the genetic exchanges among these populations were relatively frequent; TheNei's gene diversity (H) of the ten populations was0.2740,0.2934,0.2126,0.3026,0.2978,0.1657,0.2654,0.2725,0.1540, and0.2398, with an average of0.2478. It suggested thatthe YQ population was in the highest level of genetic diversity, and the smallest was ZSpopulation; The Shannon’s information indices (I) of the ten populations were0.4111,0.4345,0.3529,0.4506,0.4426,0.2525,0.4017,0.4077,0.2396and0.3690, with theaverage of0.3735. The results revealed that the genetic diversity of the NH and YQpopulation is rich, and the ZS population is poor; the whole values showed the geneticdiversity is relatively high among all these ten populations. AMOVA showed that most ofthe variation was within populations (71.74%), and only28.26%variations betweenpopulations. The genetic distance calculated by MEGA4.0software between ZS and HKstocks is the greatest at0.3841, while that between XS and RA ones is the smallest at0.0410. The NJ tree based on genetic distance revealed that two main clusters wereidentified. The first cluster is composed of seven populations from ZS, WZ, XS, WL, RA,YQ and NH; the second cluster is composed of three populations from ZH, XM and HK.The result suggested that significant genealogical structure existed throughout the examinedrange of the H. nehereus. Although the results above showed that the genetic diversity of H.nehereus is relatively rich. However, in ZS and HK populations, the number ofpolymorphic loci was52and55severally, which were obviously lower than the other8populations. The percentage of polymorphic loci in HK population was the lowest amongthe ten studied populations, ZS population was followed. The other populations were nearlyat the same level and were higher than the two populations. The results suggested that thegenetic diversity of HK and ZS populations were counter-low. So we should pay moreattention to HK and ZS populations for the further germplasm resources protection.
引文
[1]朱元鼎,张春霖,成庆泰,等.东海鱼类志[M].北京:科学出版社,1963.132-133.
    [2]孙丽阳,刁全平,陶静,龙头鱼中脂肪酸的GC/MS分析.吉林师范大学学报(自然科学版),2010,(2):99-101.
    [3]Whitehead, PJP.1984. Harpadontidae. In W. Fischer and G. Bianchi (eds.) FAO species identificationsheets for fishery purposes. Western Indian Ocean Fishing Area51(2). FAO, Rome.
    [4]靳挺,武玉学,徐东.龙头鱼海鲜调味料的制备研究.中国食品学报,2010,10(1):27-132.
    [5]林龙山.东海区龙头鱼数量分布及其环境特征.上海海洋大学学报,2009,18(1):66-71.
    [6]潘绪伟,程家骅.长江口外海域龙头鱼营养生态学特征.中国水产科学,18(5):1132-1140.
    [7]陈惠群,焦海峰,竺俊全,等.龙头鱼的外形特征与消化系统结构[J].宁波大学学报:理工版,2004,17(4):389392.
    [8]孙亮,陈娜,沈向红,等.龙头鱼甲醛本底含量及其影响因素的研究[J].中国卫生监督杂志,2009(3):254257.
    [9]陈新新.龙头鱼鱼片加工工艺技术[J].海洋科学,2000,24(11):1012.
    [10]Bhat JV, Albuquerque MJ (1953) Micro-organisms associated with the “Bombay Duck” or Bombil(Harpodon nehereus Buch). Plant Sci38:101108.
    [11]Shankar T J, Sokhansanj S, Bandyopadhyay S, et al. Storage properties of low fat fish and rice flourcoextrudates [J]. Food Bioproc Technol,2008,3:481490.
    [13]Xu T-J, Sun D-Q, Li H-Y, Wang R-X (2011) Development and characterization of microsatellitemarkers for the lizardfish known as the Bombay duck, Harpadon nehereus (Synodontidae). GenMol Res10:1701-1706.
    [14]Li A-X, Liu Q-C, Wang Q-M, Zhang L-M, Zhai H, Liu S-Z (2010) Construction of MolecularLinkage Maps Using SRAP Markers in Sweetpotato. Acta Agr Sin36:1286-1295
    [15]李娟.中国茶树核心种质的初步构建及其RAPD分析.安徽农业大学硕士学位论文,2004年.
    [16]Liu ZJ, Cordes JF. DNA marker technologies and their applications in aquaculture genetics[J].Aquaculture,2004,238:1-37.
    [17]叶丽平,劳沈颖,吕耀平,杨燕波.ISSR分子标记及其在水产生物遗传学中的应用.丽水学院学报,2009,31(5):17-22.
    [18]赵亚华.生物化学实验技术.广州:华南理工大学出版社2008.8.
    [19]熊庆娥.植物生理实验.四川农业大学农学院印,2007.7.
    [20]Dodgson JB, Cheng HH, Okimoto R. DNA marker technology: a revolution in animal genetics [J].Poult.Sci.,1997,76,1108-1114.
    [21]Vignal A, Milan D, San Cristobal M, et al. A review on SNP and other types of molecular markersand their use in animal genetics [J]. Genet. Sel. Evol.,2002,34:275-305.
    [22]Tautz D, Renz M. Simple sequence are ubiquitous repetitive components of eukaryotic genomes[J].Nucleic Acids Res1984,12:4127-4138.
    [23]Tautz D. Hypervariability of simple sequence as a general source for polymorphic DNA markers [J].Nucleic Acids Res,1989,17:6463-6471.
    [24] Lift M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification of adinueleotiderepeatwithin the cardiac muscle actin gene [J].Am J Hum Genet.,1989,44:397-401.
    [25]Skinner DM, Beattie WG, Blattner FR, et al. The sequence of a herm it crabsatellite DNA in(-TAGG-)n(-TAGG-)n[J]. Biochemistry,1974,13:3930-3970.
    [26]Miesfeld R, Krystal M, Arnheim N. A member of a new repeated sequence family which isconserved throughout eucaryotic evolution is found between the human delta and beta globin genes[J]. Nucleic Acids Res,1981,9:5931-5947.
    [27]Spritz RA. Duplication/deletion polymorphism5'-to the human beta globin gene [J]. Nucleic AcidsRes,1981,9:5037-5047.
    [28]Hamada H, Petrino MG, Kakunaga T. A novel repeated element with Z-DNA-forming potential iswidely found in evolutionarily diverse eukaryotic genomes [J]. Proc. Natl. Acad. Sci.,1982,79:6465-6469.
    [29]Ali S, Muiller CS, Epplen JT. DNA finger printing by oligonucleotide probes specific for simplerepeats [J]. Human Genetics,1986,74:239-243.
    [30]Jeffreys AJ, Murray J, Neumann R. High-resolution mapping of crossovers in human sperm definesa minisatellite-associated recombineation hotspot [J]. Mol. Cell,1998,2:267-273.
    [31]AKKAYA M S, BHAGWAT A A, CREGAN P B. Length polymorphisms of simple sequence repeatsDNA in soybean [J]. Genetics,1992,132:1131-1139.
    [32]MORGANTEM, OLIVIERI A M. PCR amplified microsatellites as markers in plant genetics [J].Plant J,1993,3:175-182
    [33]WANG Z, WEBER J L, ZHONG G, et al. Survey of plant short tandem repeats [J]. Theor ApplGenet,1994,88:1-6.
    [34]Wang S, Bao Z, Pan J, et al. AFLP linkage map of an intraspecific cross in Chlamys farreri [J].Journal of Shellfish Research,2004,23:491-499.
    [35]Weber JL. Informativeness of human (dC-dA)n(dG-dT)n polymorphisms[J]. Genomics,1990,7:524-530.
    [36]Zane L, Bargelloni L, Patarnello T. Strategies for microsatellites isolation: a review [J]. Mol Ecol,2002,11:1-16.
    [37]李春艳,常亚青,孙效文,等.虾夷扇贝微卫星标记的分离及其养殖群体的遗传结构分析.中国水产科学,2009,16(1):39-46.
    [38]夏军红,朱彩艳,苏天凤,等.黄鳍鲷基因组微卫星的分离.中国水产科学,2007,14(2):321-325.
    [39]李琪,木岛明博.长牡蛎(Crassostrea gigas)微卫星克隆快速分离及特性分析.海洋与湖沼,2004,35(4):364-370.
    [40]李小宁,张殿昌,朱彩艳,苏天凤,江世贵.合浦珠母贝微卫星DNA标记的分离与筛选.安徽农业科学,2009,37(15):6899-6902,6922.
    [41]赵莹莹,朱晓琛,孙效文,梁利群.磁珠富集法筛选虾夷扇贝微卫星序列.中国水产科学,2006,13(5):749-755.
    [42]Gordos K, Kenchington E L, Hamilton L C, et al. At lantic capelin (Mallotus villosus) tetranucleotide microsatellites [J]. Molec Ecol Notes,2005,5:220-222.
    [43]Dehaan P W, Ardren W R. Charact erizat ion of20highly variable tetranucleotide microsatellite locifor bull trout (Salvelinus confluentus) and cross-amplification in other Salvelinus species[J]. MolecEcol Not es,2005,5:582-585.
    [44]Spies N B, Low e S,Hong Y, et al. Development and characterization of seven novel di-, tri-, andtetranucleotide microsatellite markers in Atka mackerel (Pleurogrammus monopterygius)[J].MolecEcol Notes,2005,5:469-471.
    [45]Karagyozov L, Kalcheva ID, Chapman VM. Construction of random small-insert genomic librarieshighly enriched for simple sequence repeats [J]. Nucleic Acids Research,1993,21:3911-3912.
    [46]Armour JA, Neumann R, Gobert S, et al. Isolation of human simple repeat loci by hybridizationselection [J]. Human Molecular Genetics,1994,3:599-565.
    [47]Li Q, Park C, Kijima A. Isolation and characterization of microsatellite loci in the Pacific abalone,Haliotis discus hannai [J]. J Shellfish Res,2002,21:811-815.
    [48]Li Q, Park C, Kijima A. A llelic transmission of microsatellites and application to kinship analysis innewly hatched Pacific abalone larvae [J].fish Sci,2003,69(5):881-887.
    [49]Ostrander EA, Jong PM, Rine J, et al. Construction of small-insert genomic DNA libraries highlyenriched for microsatellite repeat sequences [J]. Proc Natl Acad Sci USA,1992,89:3419-3423.
    [50]Hatanaka T, Henrique-Silva F, and Galetti J.P.M. A polymorphic, telomeric-like sequencemicrosatellite in the Neotropical fish Prochilodus, Cytogenet. Genome Res.,2002,98(4):308-310.
    [51]Acquadro A, Portis E, Albeitini E, et al. M-AFLP based protocol for microsatellite loci islation inCynara cardunculus L.(Asteraceae). Molecular Ecology Notes,2005a,5:272-274.
    [52]Acquadro A, Portis E, Lee D, et al. Development and characterization of microsatellite markers inCynara cardunculus L. Genome,2005b,48:217-225.
    [53]Keiper FJ, Hayden MJ, Wallwork H. Development of sequence tagged microsatellite (STMs) for thebarley scald pathogen Rhynchosporium secalis. Molecular Ecology Notes,2006,6:543-546.
    [54]孙波,鲍毅新,赵庆洋,张龙龙,胡知渊.微卫星位点获取方法的研究进展.生态学杂志,2009,28(10):2130-2137.
    [55]Spiess EB.Genes in population(2ndedition)[M].New York:john wiley&Sons,1989:773-774.
    [56]Barbier EB, Burgess JC, Folke C.Paradise Iost [M]. London: Earthscan Publications Ltd,1994.CoyneJA.1994Ernst Mayr and oringin of species.Evolution,1994,48:19-30.
    [57]沈浩,刘登义,遗传多样性概述[J].生物学杂志,2001,18(3):5-8.
    [58]施立明.遗传多样性及其保护[J].生物科学信息,1990,2:158-164.
    [59]胡守荣,夏铭.林木遗传多样性研究方法概况[J].东北林业大学学报,2001,29(3):72-75.
    [60]张玲.微卫星DNA标记研究进展及应用.安徽农业科学,2007,35(4):972-975.
    [61]Sekino M, Hara M. Isolation and characterization of microsatellite DNA loci in Japanese flounderParalichthys olivaceus (Pleuronectiformes, leuronectoidei, Paralicht hyidae)[J]. Mol Ecol,2000,9:2200-2202.
    [62]Sekino M, Hara M. Application of microsatellite markers to population genetics studies of Japaneseflounder Paralichthys olivaceus [J]. Marine Biotechnology,2001,3:572-589.
    [63]Huang BX, Peakall R, Hanna PJ. Analysis of genetic structure of blacklip abalone (Haliotis rubra)populations using RAPD, minisatellite and microsatellite markers [J]. Mar Biol,2000,136:207-216.
    [64]李成华,李太武,宋林生.微卫星DNA技术及其应用的探讨.浙江海洋学院学报,2003,22(4):52-355.
    [65]Knapik EW, Goodman A, Atkinson OS, et a1. A reference cross DNA panel for zebrafish (Daniorerio) anchored with simple sequence length polymorphisms [J]. Development,1996,123:451-460.
    [66]Shimoda N, Knapik EW, John Z, et a1. Zebrafish genetic map with2000microsatellite markers [J].Genomics,1999,58:219-232.
    [67]Walter, R. B., Rains, J. D., Russell, J. E., Guerra, T. M., Daniels, C., Johnston, D.A., Kumar, J.,Wheeler, A., Kelnar, K., Khanolkar, V. A., Williams, E. L.,Hornecker, J. L., Hollek, L., Mamerow,M. M., Pedroza, A., Kazianis, S. A microsatellite genetic linkage map for Xiphophorus. Genetics,2004,168,363-372.
    [68]Chistiakov, B.H., Dimitry, A., Chris, S. A Microsatellite Linkage Map of the European SeabassDicentrarchus labrax L. Genetics,2005,170,1821-1826.
    [69]Agresti JJ, Seki S, and Cnaani A, et al. breeding new strains of tilapia: development of an artificialcenter of origin and linkage map based on AFLP and microsatellite loci [J]. Aquaculture,2000,185:43-56.
    [70]Cnaani A, Hallerman EM, Ron M, et al. Detection of a chromosomal region with two quantitativetrait loci, affecting cold tolerance and fish size, in an F2tilapia hybrid [J]. Aquaculture,2003,223:117-128.
    [71]Shirak A, Palti Y, Cnaani A, et al. Association between loci with deleterious alleles and distorted sexratios in an inbred line of tilapia (Oreochromis aureus)[J]. J. Heredity,2002,93:270-276.
    [72]Anastasia M, Zimmerman, et al. Composite interval mapping reveals three QTL associated withpyloric caeca number in rainbow trout, Oncorhynchus mykiss [J]. Aquaculture,2005,247:85-95.
    [73]Poompuang S, Hallerman EM. Toward detection of quantitative trait loci and marker-assistedselection in fish [J]. Rev. Fish. Sci.1997,5:253-277.
    [74]王红梅,张正英,陈玉梁.SSR标记技术及其在植物遗传学中的应用.西北师范大学学报,2003,39:113-116.
    [75]相吉山,谢宗铭,董永梅,等.SSR分子标记辅助选择转育棉花胞质雄性不育系的回交亲本[J].棉花学报,2011,23(2):127-133.
    [76]梁俊,李道季,卢莉琼.日本鳗鲡(Anguilla japonica)和欧洲鳗鲡(A. anguilla)的微卫星差异[J].海洋与湖沼,2003,34(4):414-421.
    [77]鲁双庆,刘少军,刘红玉,等.黄鳝微卫星引物筛选及其在保护遗传学上的应用[J].水产学报,2005,29(5):612-618.
    [78]Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based ona simple PCR reaction: its application to mapping and gene tagging in Brassica [J]. Theoretical andApplied Genetics,2001,103:455-461.
    [79]王从彦,李晓慧,胡颖,郭二辉,田朝阳.SRAP分子标记分析芫花遗传多样性.河南科学,2008,26(5):554-556.
    [80]李丽,郑晓鹰,柳李旺.用SRAP标记分析黄瓜品种遗传多样性及鉴定品种[J].分子植物育种,2006,4(5):702-708.
    [81]FERRIOL M, PICOB, NUEZ F. Genetic diversity of a germplasm collection of Cucurbita pepousing SRAP and AFLP markers [J]. Theoretical and Applied Genetics,2003,107:271-282.
    [82]林忠旭,张献龙,聂以春,等.棉花SRAP遗传连锁图构建[J].科学通报,2003,48(15):1676-1679.
    [83]刘志文,单连民,韩旭,等.现代生物技术在油菜遗传改良上的应用和进展[J].华中农业大学学报,2007,26(6):900-906.
    [84]LIN Z X, ZH ANG X L, NIE Y C, et al. Construction of a genetic linkage map for cotton based onSRAP[J]. Chinese Science Bullet in,2003,48:2063-2067.
    [85]王刚,潘俊松,李效尊,等,黄瓜SRAP遗传连锁图的构建及侧枝基因定位[J].中国科学C辑:生命科学版,2004,34(6):510-516.
    [86]LI G, GAO M, YANG B, et al. Gene for gene alignment between the Brassica and Arabidopdsisgenomes by direct transcriptome mapping [J]. Theor Appl Genet,2003,107(1):168-180.
    [87]丁炜东,曹丽萍,曹哲明.草鱼种质退化相关SRAP分子标记的筛选[J].广东海洋大学学报,2007,27(6):13-17.
    [88]丁炜东,曹丽萍,曹哲明.草鱼种质相关SRAP及SCAR的分子标记[J].动物学报,2008,54(3):475-481.
    [89]张志伟,韩曜平,仲霞铭,等.草鱼野生群体和人工繁殖群体遗传结构的比较研究[J].中国水产科学,2007,14(5):720-725.
    [90]周劲松,曹哲明,杨国梁,等.罗氏沼虾缅甸引进种和浙江本地种及其杂交种的生长性能与SRAP分析[J].中国水产科学,2006,13(4):667-673.
    [91]辛文婷,孙中武,尹洪滨,等.黄颡鱼雌雄差异的SRAP标记[J].东北林业大学学报,2009,37(5):112-113.
    [92]张红玉,何毛贤.SRAP标记在马氏珠母贝家系F1代中的分离[J].海洋通报,2009,28(2):50-56.
    [93]唐玉海,郭春芳,张木清.相关序列扩增多态性(SRAP)标记及其应用研究进展.生物技术通报,2006,237-241.
    [94]张安世,邢智峰,刘永英,张为民.SRAP分子标记及其应用.安徽农业科学,2007,35(9):2562-2563.
    [95]Kaul S, Lin X, Rounsley S, et al. Sequence and analysis of chromosome of the plant Arabidopsisthaliana [J]. Nature,402:761-768
    [96] EU Arabidopsis Genome Sequencing Consortium and Cold Spring Harbor,Washington Universityin St. Louis, and the PE Biosystem Arabidopsis Sequencing Consortium.Analysis of1.9Mb ofcontiguous sequence from chromosome4of Arabidopsis thaliana [J]. Nature,1999,291:485-488.
    [97]Nickel K, Copenhaver G.P, and Kuromori T, Genetic definition and sequence analysis of Arabidopsiscentromeres [J], Science,1999,286:2468-2474.
    [98]任羽,王得元,张银东.相关序列扩增多态性(SRAP)一种新的分子标记技术[J].中国农学通报,2004,20(6):11-13,22.
    [99]胡伟.SRAP分子标记在棉花遗传育种中的应用.河北农业科学,2010,14(12):54-57.
    [100]孙佳琦,梁建国,石少川等.SRAP标记在观赏植物遗传育种中的应用.分子植物育种,2010,8(3):577-588.
    [101]Wen Y.C., Wang H.Z., Shen J.X., Liu G.H., and Zhang S.F.,2006, Analysis of genetic diversity andgenetic basis of chinese rapeseed cultivars (Brassica Napus L.) by sequence-related amplifiedpolymorphism markers, Zhongguo Nongye Kexue (Scientia Agricultura Sinica),39(2):246-256.
    [102]Ma M, Yang K.Q, Liu X.J, Sun M.G., and Guo Q.R., Establishment of SRAP marker reactionsystem in walnut, Shan dong Nongye Daxue Xuebao (Journal of Shandong Agricultural University(Natural Science Edition)),2007,38(2):189-192
    [103]赵光伟,徐志红,徐永阳.SRAP分子标记及其在蔬菜作物上的应用,农业生物技术科学,2008,24(8):69-73.
    [104]Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spainusing RAPD and SBAP markers. Genetic Resources and Crop Evolution,2003,50(3):227-238.
    [105]Botstein D, White RL, Skolnick M, et al.Construction of a genetic linkage map in man usingrestriction fragment length polymorphisms [J].Am J Hum Genet.1980,32(3):314-331.
    [106]柳李旺,龚义勤,黄浩,等.新型分子标记——SRAP与TRAP及其应用.遗传,2004,26(5):777-781.
    [107]谭碧,王源秀,徐立安,分子标记SRAP及其在林木研究中的应用.世界林业研究,2009,22(5):45-50.
    [108]祁建民,吴为人,方平平,等.RAPD和ISSR标记检测黄麻属遗传多样性的比较研究[J].中国农业科学,2004,37(12):2006-2011.
    [109]钱韦,葛颂,洪德元.采用RAPD和ISSR标记探讨中国疣粒野生稻的遗传多样性.植物学报,2000,42(7):741-750.
    [110]李忠超,特有濒危植物八角莲遗传多样性研究(硕士学位论文)[D].杭州:浙江大学,2002,57-58.
    [111]Mickett K, Morton C, Feng J, et al. Assessing genetic diversity of domestic populations of channelcatfish(Ictalurus punctatus)in Alabama using AFLP markers[J].Aquaculture,2003,228:91-105.
    [112]王彩虹,束怀瑞.利用分子标记研究苹果资源与基因组的进展.果树学报,2001,18(2):104-109.
    [113]Lin Z, He D, Zhang X, et al. Linkage map construction and mapping QTL for cotton fibre qualityusing SRAP, SSR and RAPD [J]. Plant Breeding,2005,124(2):180-187.
    [114]林忠旭,张献龙,聂以春.新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析[J].遗传学报,2004,31(6):622-626.
    [115]金梦阳,刘列钊,付福友,等.甘蓝型油菜SRAP、SSR、AFLP和TRAP标记遗传图谱构建[J].分子植物育种,2006,4(4):520-526.
    [116]王刚,潘俊松,李效尊,等.黄瓜SRAP遗传连锁图谱的构建及侧枝基因定位.中国科学(C辑),2004,34(6):510-516.
    [117]Yeboah MA, Xuehao C, Feng CR, et al. A genetic linkage map of cucumber (Cucumis sativus L)combining SRAP and ISSR markers. African Journal of Biotechnology,2007,6(24):2784-2791.
    [118]李媛媛,沈金雄,王同华,等.利用SRAP、SSR和AFLP标记构建甘蓝型油菜遗传连锁图谱.中国农业科学,2007,40(6):1118-1126.
    [119]耿建峰,侯喜林,张晓伟,等.利用DH群体构建不结球白菜遗传连锁图谱.南京农业大学学报,2007,30(2):23-28.
    [120]Gao M, Li G, Yang B, et al. High-density Brassica olerace linkage map: identification of usefulnew linkages. Theoretical and Applied Genetics,2007,115(2):277-287.
    [121]张广庆.应用SRAP和ISSR分子标记构建红麻的遗传连锁图谱[D].福州:福建农林大学,2007.
    [122]Alwala S, Kimbeng C, Veremis J, et al. Linkage mapping and genome analysis in a Saccharuminterspecific cross using AFLP, SRAP and TRAP markers. Euphytica,2008,164(1):37-51.
    [123]世界资源研究所.全球生物多样性策略M].北京:中国标准出版社,1993:5-7.
    [124] Budak H, Shearman RC, Parmaksiz I, et al. Molecular characterization of Buffalograss germplasmusing sequence-related amplified polymorphism markers [J]. Theor Appl Genet,2004,108(2):328-34.
    [125]胡铁柱,王玲,冯熙路,等.稻瘟病菌群体的分子遗传学研究——由5个亚群体组成的广东省稻瘟病菌群体结构的分析[J].中国农业科学,2003,36(12):1476-1483.
    [126]吴伟怀,王玲,潘庆华,等.稻瘟病菌群体的分子遗传学研究——广东省与云南省稻瘟病菌群体遗传及致病型结构的比较分析[J].中国农业科学,2004,37(5):675-680.
    [127]潘庆华,胡铁柱,王玲,等.稻瘟病菌群体的分子遗传学研究——广东地区特异性宗谱菌株的分子指纹和致病型分析[J].中国农业科学,2004,37(1):57-64.
    [128]周良彬,卢欣石,王铁梅,等.杂花苜蓿种质SRAP标记遗传多样性研究.草地学报,2010,18(4).544-549.
    [129]刘志远,范卫红,沈世华.构树SRAP分子标记.林业科学,2009,45(12):54-58.
    [130]郭大勇,徐育海,张靖国,等.湖北海棠种内遗传变异的SRAP分析.果树学报,2009,26(6):886-890.
    [131]Guo D L, Hou X G, Zhang J. Sequence-related amplified polymorphism analysis of tree peony(Paeonia suffruticosa Andrews) cultivars with different flower colours. Journal of HorticulturalScience and Biotechnology,2009,84(2):131-136.
    [132]王燕青.利用SRAP标记构建菏泽牡丹优良品种指纹图谱[D].南京:南京林业大学,2008.
    [133]邹枚伶,夏志强,吉家敏,等.白木香SRAP-PCR反应体系的建立.基因组学与应用生物学,2009,28(1):137-140.
    [134]Bertrand A, Castonguay Y, Cloutier J, et al.Genetic diversity for pink snow mold resistance ingreens type annual bluegrass. Crop Science,2009,49:589-599.
    [135]Gulsen O, Sever-mutlu S, Mutlu N, et al. Poly-ploidy creates higherdiversity among Cynodonaccessions asassessed by molecular markers. Theor Appl Genet,2009,118(7):1309.
    [136]张四普,汪良驹,曹尚银,等.23个石榴基因型遗传多样性的SRAP分析.果树学报,2008,25(5):655-660.
    [137]徐进,张西西,董爱香,等.部分矮牵牛品种亲缘关系的SRAP分析.园艺学报,2008,35(12).1837-1842.
    [138]张瑜,陈斌,赵泓,等.七份观赏羽衣甘蓝品种遗传相似性的分析.分子植物育种,2008,6(2):309-315.
    [139]张西西,徐进,王涛,等.万寿菊杂交一代遗传多态性的SRAP标记分析.园艺学报,2008,35(8):1221-1226.
    [140]贺随超.红花玉兰形态变异居群遗传与种间关系研究[D].北京:北京林业大学,2008.
    [141]Zeng B, Zhang XQ, Lan Y, et al. Evaluation of genetic diversity and relationships in orchardgrass(Dactylis Glomerata L.) germplasm based on SRAP markers. Canadian Journal of Plant Science,2008,88:53-60.
    [142]Fu XP, Ning GG, Gao LP, et al. Genetic diversity of Dianthus accessions as assessed using twomolecular marker systems (SRAP and ISSRS) and morphological traits. Scientia Horticulturae,2008,117(3):263-270.
    [143]刘艳,陈全家,曲延英,等.利用SRAP-BSA法筛选棉花抗病基因的分子标记[J].新疆农业科学,2009,46(6):1158-1163.
    [144]邓思立,潘俊松,何欢乐,等.黄瓜M基因连锁的SRAP分子标记.上海交通大学学报(农业科学版),2006,24(3):240-244.
    [145]范术丽,喻树迅,宋美珍,等.短季棉早熟性的分子标记及QTL定位[J].棉花学报,2006,18(3):135-139.
    [146]Chen W, Zhang Y, Liu X, et al. Detection of QTL for six yield-related traits in oilseed rape(Brassica napus) using DH and immortalized F(2) populations.[J]. Theor Appl Genet,2007,115(6):849-858.
    [147]He D, Lin Z, Zhang X, et al. QTL mapping for economic traits based on a dense genetic map ofcotton with PCR-based markers using the interspecific cross of Gossypium hirsutum×Gossypiumbarbadense [J]. Euphytica,2007,153(1):181-197.
    [148]Dinler G, Budak H. Analysis of Expressed Sequence Tags (ESTs) from agrostis species obtainedusing requence related amplified polymorphism [J]. Biochem Genet,2008,46(9):663-676.
    [149]林显鹏,朱增军,李鹏飞.东海区龙头鱼摄食习性的研究.海洋渔业,2010,32(3):291-296.
    [150]Reed K M, Beanie C W.2001. Isolation of105microsatellite loci from an ovine genomic libraryenriched for microsatellites [J]. Anim Biotech,12:77-86.
    [151]李强,万建民.SSRHunter,一个本地化的SSR位点搜索软件的开发[J].遗传,2005,27(5):808-810.
    [152]Yeh FC, Boyle TJB. Population genetic analysis of co-dominant and dominant markers andquantitative traits [J]. Bel Jour Bot,1997,129-157.
    [153] Botstein D, White RL, Skolnick M, et al. Construction of a genetic map in man using restrictionfragment length polymorphisms[J]. Am J Hum Genetic,1980,32:314-331.
    [154]Jensen PC, Bentzen P. Isolation and inheritance of microsatellite loci in the Dungeness crab(Brachyura: Cancridae: Cancer magister)[J]. Genome,2004,47(2):325-331.
    [155]Colin R, Steven T, Jessica H, et al. Genetic markers in blue crabs (Callinectes sapidus) I: Isolationand characterrization of microsatellite markers[J]. Journal of Experimental Marine Biology andEcology,2005,319(1-2):3-14.
    [156]Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees.Mol Biol Evol.1987,4(4):406-425.
    [157]Brandstr m M and Ellegren H. Genome-wide analysis of microsatellite polymorphism in chickencircumventing the ascertainment bias. Genome Res.2008,18:881-887.
    [158]LU S D. Current Protocols for Molecular Biology[M]. Beijing: Beijing Peking Union MedicalCollege Press,1999.458-463.
    [159]洪明伟,杨荣萍,李文祥.石榴ISSR-PCR反应体系的优化研究[J].云南农业大学学报,2008,23(1):15-18.
    [160]迪芬巴赫C W,德维克斯勒G S.PCR技术实验指南[M].黄培堂,俞炜源,陈添弥,译.北京:科学出版社,2003.
    [161]林萍,张含国,谢运海.正交设计优化落叶松ISSR-PCR反应体系.生物技术,2005,15(5):34-37.
    [162]佟汉文,孙群,吴波,等.乌拉尔甘草ISSR-PCR反应体系优化研究.中国农学通报,2005,21(4):70-74.
    [163]王瑜,袁庆华.紫花苜蓿ISSR-PCR反应体系的建立与优化.草地学报,2007,15(3):212-215.
    [164]李嵘,王喆之.丹参ISSR-PCR反应体系的建立与正交优化.广西植物,28(5):2008,599-603.
    [165]黄宇,陈礼光,夏海涛,等.福建含笑ISSR-PCR反应体系的建立与优化.福建林学院学报.2009.29(2):97-102:
    [166]梁任繁,王益奎,李文嘉,等.茄子ISSR-PCR反应体系优化及验证.中国蔬菜,2010(24):48-52.
    [167]王延华,景强,Dubus P.PCR理论与技术[M].北京:科学出版社,2005.
    [168]Kumar S, Nei M, Dudley J, Tamura K. MEGA: biologist-centric software for evolutionary analysisof DNA and protein sequences. Bri Bio,2008,9:299
    [169]Excoffier L.Analysis of molecular variance (AMOVA) version1.55. Genetics and BiometryLaboratory, University of Geneva, Switzerland.1993.
    [170]李难.进化论教程.北京:高等教育出版社,2004,270273.
    [171]Pampoulie C. Jorundsdottir TD, Steinarsson A, Petursdottir G, Stefansson MO, Danielsdottir AK.Genetic comparison of experimental fanned strains and wild Icelandic populations of Atlantic cod(Gadus morhua L.). Aquaculture,2006,261:556564.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700