用户名: 密码: 验证码:
中药雷公藤内酯醇、尿多酸肽对地塞米松耐药及敏感的多发性骨髓瘤细胞株的作用及机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分雷公藤内酯醇通过影响细胞生存信号通路及激素受体表达诱导对地塞米松耐药及敏感的多发性骨髓瘤细胞凋亡
     目的:
     探讨雷公藤内酯醇对地塞米松耐药及敏感的多发性骨髓瘤细胞株MM.1R、MM.1S细胞的作用机制并探讨其作用机制。
     方法:
     采用MTT比色法研究雷公藤内酯醇(TPL)对MM.1R、MM.1S细胞株以及对常规化疗方案VAD方案治疗无效的MM患者的骨髓单个核细胞的体外生长抑制作用;采用Wright-Giemsa染色、DNA凝胶电泳检测DNA Ladder的条带、流式细胞仪PI染色检测亚G1峰和Annexin V/PI双染色等方法检测细胞凋亡;采用流式细胞仪JC-1染色检测细胞线粒体膜电位的改变;Western-blot检测TPL作用后MM.1R、MM.1S细胞Caspase家族蛋白,凋亡相关蛋白Bcl-2家族,凋亡抑制蛋白IAPs家族蛋白的表达,并进一步加用Caspase-3抑制剂Z-DEVD-FMK来观察实验结果;提取核浆蛋白以观察TPL作用对NF-κB信号通路的影响,并应用免疫荧光方法来检测TPL对NF-κB核转位过程的影响;Western-blot检测TPL对MM.1R、MM.1S细胞PI3K/Akt和NF-κB信号通路相关生存蛋白的影响,并进一步加用PI3K抑制剂LY294002和NF-κB抑制剂PDTC来明确两条信号通路的相关性及机制;用RT-PCR方法检测TPL对编码PI3Kp110α、胰岛素样生长因子-1受体(Insulin-like growth factor-1 receptor,IGF-1R)蛋白的PIK3CA、IGF1R基因的影响,以明确TPL治疗的上游靶点。加用白介素-6(Interleukin-6,IL-6)来明确TPL抑制MM.1细胞生长的效应是否能被减弱,并探讨TPL增加MM.1R、MM.1S细胞株对Dex的敏感性与激素受体(Glucocorticoid Receptor,GR)之间的关系。从microRNA水平、mRNA、蛋白水平检测MM.1R、MM.1S细胞株的GR在TPL作用前后的改变。
     结果:
     ①TPL可以抑制人MM细胞株MM.1S和对Dex耐药的MM.1R细胞株的生长;TPL还可抑制难治的MM患者原代细胞的生长,均呈浓度和时间依赖性。②TPL可以诱导MM.1R、MM.1S细胞凋亡,并呈浓度依赖性;TPL作用后可产生典型的DNALadder条带。③不同浓度TPL作用可以激活Caspase-9,-3,呈浓度依赖性,并伴有明显的线粒体膜电位下降;当TPL浓度为10ng/mL时激活Caspase-8,亦呈浓度依赖性;Caspase-3抑制剂可以抑制TPL诱导的MM.1R、MM.1S细胞凋亡。④不同浓度TPL作用可以下调Bcl-2家族抗凋亡蛋白Bcl-x1、Mcl-1、p-Bad和上调促凋亡蛋白Bax的表达,呈浓度依赖性;还可上调Smac的表达,呈浓度依赖性。⑤TPL可以抑制MM.1R、MM.1S细胞株IAPs家族中的cIAP1,xIAP和Survivin的表达,呈浓度依赖性。⑥TPL抑制MM.1R、MM.1S细胞株的IκBα磷酸化和NF-κB核转位过程。⑦TPL可降低IGF-1R基因及蛋白水平的表达,下调PIK3CA mRNA表达,抑制PI3K/Akt信号途径;PI3K抑制剂LY294002与TPL联用可以明显抑制p-Akt表达,并进一步影响其下游的信号途径,包括NF-κB信号通路的蛋白而诱导MM.1R、MM.1S细胞凋亡。⑧TPL抑制MM.1R、MM.1S细胞生长的效应不受IL-6的影响,还可以增加MM.1R、MM.1S细胞对地塞米松及蛋白酶体抑制剂PS341的敏感性。⑨不同浓度TPL处理后可降低GR相关的microRNA的表达,增加MM.1R、MM.1S细胞株的GR基因、p-GR(磷酸化GR)蛋白及GR直接靶基因:激素诱导锌指蛋白(glucocorticoidinducedleucine zipper——GILZ)的表达。
     小结:
     ①TPL可以抑制MM.1S和对Dex耐药的MM.1R细胞株及MM原代细胞生长,呈时间和剂量依赖性,并且该抑制作用不能被IL-6减弱。②TPL通过启动内源性和外源性细胞凋亡途径诱导Caspase-3依赖型细胞凋亡,并以内源性(线粒体)途径为主,伴有明显的线粒体膜电位下降。③TPL通过下调Bcl-2家族蛋白Bcl-x1、Mcl-1、p-Bad,上调Bax蛋白的表达以及抑制IAPs家族中cIAP1、xIAP和Survivin的表达导致线粒体损伤和Caspase-9,-3激活,诱导细胞凋亡。④TPL通过抑制IκBα磷酸化,从而抑制NF-κB核转位;TPL对MM.1R、MM.1S细胞株NF-κB信号通路的影响主要通过对PI3K/Akt信号通路的调控来实现。⑤TPL降低IGF-1R基因及蛋白水平的表达;减少PIK3CA基因的表达而抑制PI3K/Akt信号通路,并进一步通过影响其下游的信号途径,如NF-κB信号通路等而诱导MM.1R、MM.1S细胞凋亡。⑥TPL下调MM.1R、MM.1S细胞内GR相关的成熟体microRNA(miR-181a、miR-142-5p)的表达,增加p-GR及GILZ的表达,并且该效应不能被IL-6拮抗,从而增加MM.1R、MM.1S细胞对Dex的敏感性。TPL还可增加MM.1R、MM.1S细胞对蛋白酶体抑制剂PS341的敏感性。
     第二部分尿多酸肽(CDAⅡ)抗多发性骨髓瘤作用初步机制研究
     目的:
     探讨CDA-Ⅱ对多发性骨髓瘤的作用及机理,为CDA-Ⅱ应用于MM治疗提供理论依据。
     方法:
     采用MTT比色法研究CDA-Ⅱ对RPMI8226、U266、MM.1R、MM.1S细胞株以及对MM患者的骨髓单个核细胞的体外生长抑制作用;采用Wright-Giemsa染色、DNA凝胶电泳检测DNA Ladder条带、流式细胞仪Annexin V/PI双染色检测细胞凋亡;JC-1染色检测细胞线粒体膜电位的改变;用Western-blot方法检测CDA-Ⅱ作用后RPMI8226、U266、MM.1R、MM.1S细胞Caspase家族蛋白,凋亡相关蛋白Bcl-2家族,凋亡抑制蛋白IAPs家族蛋白的表达,并进一步加用Caspase-3抑制剂Z-DEVD-FMK来观察实验结果;应用免疫荧光方法来检测CDA-Ⅱ对NF-κB核转位过程的影响。
     结果:
     ①CDA-Ⅱ可以明显抑制RPMI8226、U266、MM.1R、MM.1S细胞株生长,呈时间和剂量依赖性,而且对于患者原代细胞也具有抑制生长的作用,并呈时间和剂量依赖性,但不影响正常人骨髓单个核细胞的生长,对正常骨髓几乎无抑制作用。②CDA-Ⅱ可以诱导MM细胞株RPMI8226细胞凋亡,可产生典型的DNALadder条带。③CDA-Ⅱ通过启动内源性细胞凋亡途径诱导Caspase-3依赖型细胞凋亡,并伴有明显的线粒体膜电位下降。④CDA-Ⅱ通过下调Bcl-2家族蛋白Bcl-2,Mcl-1表达,上调Bax蛋白的表达以及抑制IAPs家族中xIAP和Survivin的表达导致线粒体损伤和Caspase-9,-3激活诱导细胞凋亡。⑤CDA-Ⅱ可以抑制NF-κB的核转位过程,从而使得MM细胞产生凋亡。
     小结:
     ①CDA-Ⅱ可以明显抑制MM细胞株及患者原代细胞生长,呈时间和剂量依赖性。②CDA-Ⅱ可以诱导MM细胞凋亡。③CDA-Ⅱ引起明显的线粒体膜电位下降,启动内源性细胞凋亡途径诱导Caspase-3依赖型细胞凋亡。④CDA-Ⅱ可下调Bcl-2家族蛋白Bcl-2,Mcl-1表达,上调Bax蛋白的表达以及抑制IAPs家族中xIAP和Survivin的表达诱导细胞凋亡。⑤CDA-Ⅱ可以抑制NF-κB的核转位而抑制MM细胞生长。
     结论:
     TPL能抑制对Dex耐药及敏感的MM细胞生长,并且该抑制生长的作用不能被IL-6拮抗。其机理主要为抑制PI3K/Akt/NF-κB生存信号通路,诱导细胞凋亡;下调GR相关microRNA表达水平,增加GR基因及其p-GR蛋白表达,增加GILZ的表达,从而增加MM.1R、MM.1S细胞对Dex的敏感性。
     CDA-Ⅱ可以通过抑制NF-κB的核转位过程,诱导Caspase-3依赖型细胞凋亡,为CDA-Ⅱ用于临床治疗MM提供实验和理论依据。
     本研究显示雷公藤内醇酯、CDA-Ⅱ在体外均能抑制MM尤其是耐药MM的生长,提示该两种药物具有用于治疗MM及耐药MM的潜力。
Section 1 Triptolide(TPL) induces MM.1R and MM.1S cells into apoptosis via cell survival and glucocorticoid receptor signaling pathway
     Objective:
     The aim of this section was to investigate the antitumor activity of TPL against MM.1R and MM.1S cells and to determine if TPL-induced apoptosis of drug-resistant MM cells was associated with the PI3K/Akt and NF-κB survival signaling pathways, and if the activity of TPL-increasing the sensitivity of dexamethasone in MM.1R and MM.1S cells was associated with the glucocortioid receptor.
     Methods:
     We used MTT assay to investigate the effects of TPL on the MM.1R and MM.1S cells.We examine the effects of TPL on the MM.1R and MM.1S cells of induction of growth arrest and apoptosis.Apoptosis was measured by DNA Ladder and flow cytometry using the Annexin V-FITC apoptosis detection kit,according to the manufacturer's instructions.Alterations in the mitochondrial membrane potential were analyzed by flow cytometry using the specific dye JC-1.The cell-cycle analysis was done according to the PI staining by flow cytometry.Apoptotic proteins including Caspase-9,-8,-3,members of Bcl-2 family and IAPs family were studied by western-blot.Phosphoinositide 3-kinase(PI3K)/Akt and NF-κB survival signaling pathways were also examined using western-blot analysis.The caspase-3 inhibitor Z-DEVD-FMK was used to determine the involvement of caspase-3 and PARP.PI3K inhibitor LY294002 and NF-κB inhibitor PDTC were used to examine the involvement of PI3K/Akt and NF-κB signaling pathways.Immunofluorescent staining was used for observing the distribution of NF-κB in cells.The IGF-1R and PIK3CA genes,which expressed the IGF-1R and PI3Kp110αprotein,were examined by using RT-PCR to identify the target of TPL-induced apoptosis.We evaluate whether TPL-inhibited cell growth can be prevented by exogenous IL-6.We also evaluate the expression of miR181a,miR142-5p and the regulation of glucocorticoid receptor induced by TPL on MM.1R and MM.1S cells.
     Results:
     ①TPL could inhibit the growth of MM.1R and MM.1S cell lines and the tumor cells isolated from three relapsed multiple myeloma patients.The cell growth was inhibited in a time- and dose-dependent manner,corresponding to the reduced cell viability.②TPL induced apoptosis of MM.1R and MM.1S cell lines in a dose-dependent manner.It showed that MM.1R and MM.1S cells after treated with 5ng/ml,10ng/ml TPL for 24h,a typical DNA Ladder was observed.③Treatment with TPL induced marked activation of caspase-9,-3 in a dose-dependent manner,however, caspase-8 was activated only at TPL concentrations greater than 10ng/mL.Pretreatment with Z-DEVD-FMK significantly decreased the apoptotic cells following TPL treatment. TPL also induced a loss in mitochondria transmembrane potential as evidence of mitochondria-mediated apoptosis.④Bcl-x1,Mcl-1 and p-Bad proteins were decreased, however,Bax and Smac proteins were increased in a dose-dependent manner after different concentrations of TPL treatment for 24h.⑤The xIAP,cIAP1 and Survivin proteins were down- regulated in a dose-dependent manner after TPL treatment.⑥TPL inhibited IκBαphosphorylation and prevented NF-κB(p65) nuclear translocation.⑦TPL significantly reduced expression of PI3K/Akt signaling pathway in a dose-dependent manner;the results were further confirmed by PIK3CA gene at mRNA level in a time- and dose-dependent manner,and TPL combined with LY294002 significantly inhibited the expression of p-IκBα;TPL reduced the expression of IGF-1R expression in a time-dependent and dose-dependent manner.⑧The effect of TPL-inhibited cell growth could not be affected by exogenous IL-6,and TPL could enhance the growth inhibitory effect of Dex and PS-341.⑨TPL reduced the expression of miR-181a,miR142-5p.And low expression of miR-181a and miR-142-5p resulted in an increased GR protein expression.TPL also enhanced the expression of glucocorticoid-induced leucine zipper(GILZ),a key component of GC-signaling.
     Section 2:The mechanisms and the effects of Uroacitides(CDA-Ⅱ) on the multiple myeloma
     Objective:
     The aim of this section was to investigate the antitumor activity of CDA-Ⅱagainst MM cells and to determine if CDA-Ⅱ-induced apoptosis of MM cells was associated with NF-κB nuclear translocation.
     Methods:
     We used MTT assay to investigate the effects of CDA-Ⅱon the MM cells.We examine the effects of CDA-Ⅱon the MM cells of induction of apoptosis.Apoptosis was measured by DNA Ladder and flow cytometry using the Annexin V-FITC apoptosis detection kit,according to the manufacturer's instructions.Alterations in the mitochondrial membrane potential were analyzed by flow cytometry using the specific dye JC-1.Apoptotic proteins including Caspase-9,-3,Bcl-2 family members and IAPs family members were studied by western-blot.The caspase-3 inhibitor Z-DEVD-FMK was used to determine the involvement of caspase-3 and PARP.We exanmine the inhibition effect of CDA-Ⅱon the translocation of NF-κB using immunofluorescence analysis.
     Results:
     ①CDA-Ⅱcould inhibit the growth of MM cells in a time- and dose-dependent manner,corresponding to the reduced cell viability.In contrasts,CDA-Ⅱdid not induce cytotoxicity in BMMCs from normal volunteers.②CDA-Ⅱinduced apoptosis of MM cells in a dose-dependent manner.It showed that RPMI8226 cells after treated with CDA-Ⅱfor 24h,a typical DNA Ladder was observed.③Treatment with CDA-Ⅱinduced marked activation of caspase-9,-3 in a dose-dependent manner. Pretreatment with Z-DEVD-FMK significantly decreased the apoptotic cells following CDA-Ⅱtreatment.CDA-Ⅱalso induced a loss in mitochondria transmembrane potentia as evidence of mitochondria-mediated apoptosis.④Bcl-2,Mcl-1 proteins were decreased,however,Bax protein was increased in a dose-dependent manner after CDA-Ⅱtreatment for 24h.The xIAP and Survivin proteins were down-regulated in a dose-dependent manner after CDA-Ⅱtreatment.⑤CDA-Ⅱprevented NF-κB nuclear translocation.
     Conclusions:
     CDA-Ⅱcould induce growth arrest and apoptosis of MM cells.The mechanism was related to the prevention NF-κB nuclear translocation,downregulation of IAPs family protein as well as involvement of Bcl-2 family members and triggered the mitochondrial pathway mediated caspase-3-dependent apoptosis. Summary:
     TPL can induce growth arrest and apoptosis in MM.1R and MM.1S cell lines.TPL is an effective chinese medical herb with multiple targets,including involvement of PI3K/Akt/NF-κB survival signaling pathway directly,downregulation of the miRNA181a and miRNA142-5p,upregulation of the phosphorylated glucocorticoid receptor protein.TPL can enhance the expression of glucocorticoid-induced leucine zipper(GILZ),a key component of GC-signaling.These probably are the mechanisms of dexamethasone-induced apoptosis in dexamethasone-resistant multiple myeloma.
     CDA-Ⅱcan induce growth arrest and apoptosis in MM cells,but not in normal BMMCs.CDA-Ⅱcan prevent NF-κB nuclear translocation and downregulate the expression of Bcl-2,Mcl-1 and IAPs family proteins,upregulation the expression of Bax. Different mechanisms of action acted concurrently to contribute to the TPL and CDA-Ⅱ-induced MM cells,especially Dex-resistant MM cells apoptosis.This research work may provide new insights for the treatment of drug-resistant MM.
引文
[1]Kyle RA,Rajkumar SV.Criteria for diagnosis,staging,risk stratification and response assessment of multiple myeloma.Leukemia.2009 Jan,23(1):3-9.
    [2]Landowski,T.H.,Olashaw,N.E.,Agrawal,D.&Dalton,W.S.Cell adhesionmediated drug resistance (CAMDR)is associated with activation of NFκB (RelB/p50)in myeloma cells.Oncogene 2003,22,2417-2421.
    [3]Meng H,Yang C,Ni W,Ding W,Yang X,Qian W.Antitumor Activity of Fludarabine against Human Multiple Myeloma in vitro and in vivo.Eur J Haematol.2007 Dec,79(6):486-93.
    [4]Tu Y,Gardner A,Lichtenstein A.The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells:roles in cytokine-dependent survival and proliferative responses.Cancer Res 2000,60:6763-70.
    [5]Hideshima T,Nakamura N,Chauhan D,Anderson KC.Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma.Oncogene.2001,20:5991-6000.
    [6]Mitsiades CS,Mitsiades N,Poulaki V,et al.Activation of NF-kB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signalingin human multiple myeloma cells:therapeutic implications.Oncogene.2002,21:5673-5683.
    [7]Hsu J,Shi Y,Krajewski S,et al.The AKT kinase is activated in multiple myeloma tumor cells.Blood.2001,98:2853-2855.
    [8]Hsu JH,Shi Y,Hu L,Fisher M,Franke TF,Lichtenstein A.Role of the AKT kinase in expansion of multiple myeloma clones:effects on cytokinedependent proliferative and survival responses.Oncogene.2002,21:1391-1400.
    [9]Teru Hideshima,Laurence Catley,Hiroshi Yasui,Kenji Ishitsuka,Noopur Raje,Constantine Mitsiades,Klaus Podar,Nikhil C.Munshi,Dharminder Chauhan, Paul G.Richardson,and Kenneth C.Anderson.Perifosine,an oral bioactive novel alkylphospholipid,inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells.Blood.2006 107:4053-4062
    [10]Brunet A,Datta SR,Greenberg ME.Transcription-dependent and-independent control of neuronal survival by the PI3K-Akt signaling pathway.Curr Opin Neurobiol 2001,11:297-305.
    [11]Ogawa,M.,Nishiura,T.,Oritani,K.,Yoshida,H.,Yoshimura,M.,Okajima,Y.,Ishikawa,J.,Hashimoto,K.,Matsumura,L,Tomiyama,Y.,and Matsuzawa,Y.Cytokines prevent dexamethasone-induced apoptosis via the activation of mitogenactivated protein kinase and phosphatidylinositol 3-kinase pathways in a new multiple myeloma cell line.Cancer Res,2000.60:4262-4269.
    [12]Pene,F.,Claessens,Y.E.,Muller,O.,Viguie,F.,Mayeux,P.,Dreyfus,F.,Lacombe,C,and Bouscary,D.Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma.Oncogene,21:6587-6597,2002.
    [13]Osman Nidai Ozes,Lindsey D.Mayo,Jason A.Gustin,Susan R.Pfeffer,Lawrence M.Pfeffer,David B.Dormer.NF-kB activation by tumour necrosis factor requires the Akt serine±threonine kinase.Nature,1999,(40)82-85.
    [14]Hallek M,Bergsagel PL,Anderson KC.Multiple myeloma:increasing evidence for a multistep transformation process.Blood.1998 Jan 1,91(1):3-21.
    [15]Kawano M,Hirano T,Matsuda T,Taga T,Horii Y,Iwato K,Asaoku H,Tang B,Tanabe O,Tanaka H,et al.Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas.Nature.1988,332(6159):83-5.
    [16]Klein B,Zhang XG,Jourdan M,Content J,Houssiau F,Aarden L,Piechaczyk M,Bataille R.Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6.Blood.1989,73(2):517-26.
    [17]Klein B,Zhang XG,Lu ZY,Bataille R.Interleukin-6 in human multiple myeloma.Blood.1995 15,85(4):863-72.
    [18]Chauhan D,Pandey P,Ogata A,Teoh G,Krett N,Halgren R,Rosen S,Kufe D,Kharbanda S,Anderson K.Cytochrome c-dependent and-independent induction of apoptosis in multiple myeloma cells.J Biol Chem.1997 28,272(48):29995-7.
    [19]Hardin J,MacLeod S,Grigorieva I,Chang R,Barlogie B,Xiao H,Epstein J.Interleukin-6 prevents dexamethasone-induced myeloma cell death.Blood.1994,84(9):3063-70.
    [20]Lichtenstein A,Tu Y,Fady C,Vescio R,Berenson J.Interleukin-6 inhibits apoptosis of malignant plasma cells.Cell Immunol.1995,162(2):248-55.
    [21]Stephanie Greenstein,Nancy L.Krett,Yoshihiro Kurosawa,Chunguang Ma,Dharminder Chauhan,Teru Hideshima,Kenneth C.Anderson,and Steven T.Rosen.Characterization of the MM.1 human multiple myeloma (MM)cell lines:A model system to elucidate the characteristics,behavior,and signaling of steroid-sensitive and-resistant MM cells.Experimental Hematology.2003,31,271-282.
    [22]Grugan KD,Ma C,Singhal S,Krett NL,Rosen ST.Dual regulation of glucocorticoid-induced leucine zipper (GILZ)by the glucocorticoid receptor and the PI3-kinase/AKT pathways in multiple myeloma.J Steroid Biochem Mol Biol.2008,110(3-5):244-54.
    [23]W.Shi,W.Shi,Q.Li,B.Song,M.Wan,S.Bai,X.Cao,A glucocorticoid-induced leucine-zipper protein,GILZ,inhibits adipogenesis of mesenchymal cells,EMBO Rep.2003,4(4):374-380..
    [24]J.Eddleston,J.Herschbach,A.L.Wagelie-Steffen,S.C.Christiansen,B.L.Zuraw,The anti-inflammatory effect of glucocorticoids is mediated by glucocorticoidinduced leucine zipper in epithelial cells,J.Allergy Clin.Immunol.2007,119(1):115-122.
    [25]Lines Qaiser Bashir,Lynne Bemis,William Robinson,Bolin Liu,Shuiliang Wang,Carol Amato,Elizabeth Riley,and Choon Kee Lee.Role of MicroRNAs in Resistance to Dexamethasone in Multiple Myeloma Cell.Blood.(ASH Annual Meeting Abstracts),Nov 2008,112:3680.
    [26]Kyle RA,Rajkumar SV.Multiple myeloma.N Engl J Med.2004 28,351 (18):1860-73.
    [27]Anderson KC.Multiple myeloma:how far have we come? Mayo Clin Proc.2003,78(1):15-7.
    [28]Kyle RA,Gertz MA,W itzig TE,et al.Review of 1027 patients with newly diagnosed multiple m yeloma.M ayo Clin Proc,2003,78:21-33.
    [29]Lee KY,Park JS,Jee YK,et al.TPL sensitizes lung cancer cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by inhibition of NF-kappakB activation.Exp Mol Med 2002,34:462-468.
    [30]Chan EW,Cheng SC,Sin FW,et al.TPL induced cytotoxic effects on human promyelocytic leukaemia,T cell lymphoma and human hepatocellular carcinoma cell lines.Toxicol Lett 2001,122:81-87.
    [31]Fidler JM,Li K,Chung C,et al.PG490-88,a derivative o f TPL,causes tumor regression and sensitizes tumors to chemotherapy.Mol Cancer Ther 2003,2:855-862.
    [32]Choi YJ,Kim TG,Kim YH,et al.Kwon TK immunosuppressant PG490 (TPL)induces apoptosis through the activation of caspase 3 and down-regulation of XIAP in U937 cells.Biochem Pharmacol 2003,66:273-280.
    [33]Frese S,Pirnia F,Miescher D,et al.PG490-mediated sensitization of lung cancer cells to Apo2L/TRAIL-induced apoptosis requires activation of ERK2.Oncogene 2003,22:5427-5435.
    [34]Lou YJ,Jin J.TPL down-regulates bcr-abl expression and induces apoptosis in chronic myelogenous leukemia cells.Leuk Lymphoma.2004,45:373-376.
    [35]Yinjun L,Jie J and Yungui W:Triptolide inhibits transcription factor NF-kappaB and induces apoptosis of multiple myeloma cells.Leuk Res.2005,29:99-105.
    [36]Fadok VA,Voelker DR,Campbell PA,et al.Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophage.J Immunol 1992,148:2207-2216.
    [37]Vermes I,Haanen C,Steffens-Nakken H,et al.A novel assay for apoptosis.Flow cytometric detection of phosphatidylserine expression on early apoptosis cells using fluorescein labeled Annexin V.J Immunol Meth 1995,184:39-51.
    [38]Kroemer G,Petit PX,Zamzami N,et al.The biochemistry of apoptosis.FASEB J 1995,9:1277-1287.
    [39]Nicoletti I,et al.A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry.J Immunol Methods 1991,139:271-279.
    [40]Philipp V,Carsten B,Bernd N,et al.Assigning functional domains within the plOl regulatory subunit of phosphoinositide 3-kinase.J Biol Chem,2005,280:5121-5127.
    [41]Shi X,Jin Y,Cheng C,Zhang H,Zou W,Zheng Q,Lu Z,Chen Q,Lai Y,Pan J.Triptolide inhibits Bcr-Abl transcription and induces apoptosis in STI571-resistant chronic myelogenous leukemia cells harboring T315I mutation.Clin Cancer Res.2009 Mar 1,15(5):1686-97.
    [42]Hideshima T,Chauhan D,Richardson P,Mitsiades C,Mitsiades N,Hayashi T,Munshi N,Dang L,Castro A,Palombella V,Adams J,Anderson KC.NFkB as a therapeutic target in multiple myeloma.J Biol Chem.2002,277(19):16639-47.
    [43]Bharti A.C,Donato N.,Singh S.Aggarwal B.B.Curcumin (diferuloylmethane)downregulates the constitutive activation of nuclear factoncB and IicBakinase in human multiple myeloma cells,leading to suppression of proliferation and induction of apoptosis.Blood,2003,101,1053-1062.
    [44]Ozes ON,Mayo LD,Gustin JA,et al.NF-kappa B activation by tumor necrosis factor Requires the Akt serine-theronine kinase.Nature,1999,401(6748):82-85.
    [45]Kucharczak J,Simmons MJ,Fan Y,et al.To be,or not to be:NF-kappaB is the answer-role of Rel / NF-kappaB in the regulation of apoptosis.Oncogene 2003,22:8961-8982.
    [46]Mattson MP,Meffert MK.Roles for NF-kappaB in nerve cell survival,plasticity,and disease.Cell Death Differ 2006,13:852-860.
    [47]Varfolomeev E,Wayson SM,Dixit VM,et al.The inhibitor of apoptosis protein fusion C-IAP2.MALT1 stimulates NF-kappaB activation independently of TRAF1 AND TRAF2.J Biol Chem 2006,281:29022-29029.
    [48]Takada Y,Kobayashi Y,Aggarwal BB.Evodiamine abolishes constitutive and inducible NF—kappa B activation by inhibiting I kappa B alpha kinase activation,thereby suppressing NF-kappa B—regulated antiapoptotic and metastatic gene expression,upregulating apoptosis,and inhibiting invasion.J Biol Chem 2005,280:17203-17212.
    [49]Carter BZ,Mak DH,Schober WD,et al.Triptolide induces caspasedependent cell death mediated via the mitochondrial pathway in leukemic cells.Blood.2006,108:630-637.
    [50]Chang F,Lee JT,Navolanie PM,et al.Involvement of P13-K/Akt pathway in cell cycle progression,apoptosis,and neoplastic transformation:a target for cancer chemotherapy.Leukemia 2003,17:590-603.
    [51]Derouet M,Thomas L,Cross A,et al.Granulocyte Macrophage Colony-stimulating factor signaling and proteasome inhibition delay neutrophil apoptosis by increasing the stability of Mcl-1.J Biol Chem,2004,279:26915-26921.
    [52]Derenne et al.,2002,Derenne S,Monia B,Dean NM,Taylor JK,Rapp MJ,Harousseau JL et al.Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L)is an essential survivalprotein of human myeloma cells.Blood 2002,100:194-199.
    [53]Le Gouill S,Podar K,Harousseau JL,Anderson KC.Mcl-l regulation and its role in multiple myeloma.Cell Cycle 2004,3:1259-1262.
    [54]Puthier D,Bataille R,Amiot M.IL-6 up-regulates Mcl-l in human myeloma cells through JAK/STAT rather than ras/MAP kinase pathway.Eur J Immunol 1999,29:3945-3950.,
    [55]Le Gouill S,Podar K,Amiot M,Hideshima T,Chauhan D,Ishitsuka K et al.VEGF induces Mcl-l up-regulation and protects multiple myeloma cells against apoptosis.Blood 2004,104:2886-2892.
    [56]K Podar,SL Gouill,J Zhang,JT Opferman,E Zorn,Y-T Tai,T Hideshima,M Amiot,D Chauhan,J-L Harousseau and KC Anderson.A pivotal role for Mcl-l in Bortezomib-induced apoptosis.Oncogene.2008,27(6):721-31.
    [57]Cowburn AS,Cadwallader KA,Reed BJ,et al.Role of PI3-kinase-dependent Bad phosphorylation and altered transcription in cytokine-mediated neutrophil survival.Blood 2002,100:2607-2616.
    [58]Zhou HL,Li XM,Meinkoth J,et al.Akt Regulates cell Survival and Apoptosis at a Postmitochondrial Level.J Cell Biol 2000,151:483-494.
    [59]Chauhan D,Pandey P,Ogata A,Teoh G,Treon S,Urashima M,Kharbanda S,Anderson KC.Dexamethasone induces apoptosis of multiple myeloma cells in a JNK/SAP kinase independent mechanism.Oncogene.1997,15(7):837-43.
    [60]Chauhan D,Pandey P,Hideshima T,Treon S,Raje N,Davies FE,Shima Y,Tai YT,Rosen S,Avraham S,Kharbanda S,Anderson KC.SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells.J Biol Chem.2000,275(36):27845-50.
    [61]Anderson KC.Targeted therapy for multiple myeloma.Semin Hematol.2001,38(3):286-94.
    [62]Klein B.,Zhang X.G.,Jourdan M.,Content J.,Houssiau F.Aarden L,Piechaczyk M,and Bataille R.Paracrine rather than autocrine regulation of myeloma cell growth and differentiation by IL-6.Blood,1989,73:517-525.
    [63]Ogata A,Chauhan D,Teoh G,Treon S.P,Urashima M,Schlossman R.L,and Anderson K.C.IL-6 triggers cell growth via the ras-dependent mitogen-activated protein kinase cascade.J.Immunol.1997,159:2212-2221.
    [64]Chauhan D,Hideshima T,Pandey P,Treon S,Teoh G,Raje N,Rosen S,Krett N,Husson H,Avraham S,Kharbanda S,and Anderson K.C.RAFTK/PYK2-dependent and independent apoptosis in multiple myeloma cells.Oncogene,1999,18:6733-40.
    [65]Chauhan D,Hideshima T,Rosen S,Reed J.C,Kharbanda S,and Anderson K.C.Apaf-1/cytochrome c independent and Smac dependent induction of apoptosis in multiple myeloma cells.J.Biol.Chem.2001,276:24453-6.
    [66]Ferlin M,Noraz N,Hertogh C,Brochier J,Taylor N,and Klein B.Insulin-like growth factor induces the survival and proliferation of myeloma cells through an interleukin-6-independent transduction pathway.Br.J.Haematol.2000,111:626-634.
    [67]Landreth K.S,Narayanan R,and Dorshkind K.Insulin-like growth factor I regulates pro-B cell differentiation.Blood,1992,80:1207-12.
    [68]Georgii-Hemming P,Wiklund H.J,Ljunggren O,and Nilsson K.Insulin-like growth factor I is a growth and survival factor in multiple myeloma cell lines.Blood,1996,88:2250-8.
    [69]Ge N.L,and Rudikoff S.Insulin-like growth factor I is a dual effector of multiple myeloma cell growth.Blood,2000,96:2856-61.
    [70]Maiso P,Ocio EM,Garayoa M,Montero JC,Hofmann F,Garcfa-Echeverria C,Zimmermann J,Pandiella A,San Miguel JF.The insulin-like growth factor-Ⅰ receptor inhibitor NVP-AEW541 provokes cell cycle arrest and apoptosis in multiple myeloma cells.Br J Haematol.2008 May,141(4):470-82.
    [71]Gronborg M,Wulff B.S,Rasmussen J.S,Kjeldsen T,Gammeltoft S. Structure-function relationship of the insulin-like growth factor-I receptor tyrosine kinase.Journal of Biological Chemistry,1993,268,23435-40.
    [72]Pawson T.Protein modules and signalling networks.Nature,1995,373,573-80
    [73]Brodt P,Samani A,Navab R.Inhibition of the type I insulin-like growth factor receptor expression and signaling:novel strategies for antimetastatic therapy.Biochemical Pharmacology,2000,60:1101-7.
    [74]Qiang Y.W,Kopantzev E,Rudikoff S.Insulinlike growth factor-I signaling in multiple myeloma:downstream elements,functional correlates,and pathway cross-talk.Blood,2002,99:4138-46.
    [75]Laviola L,Natalicchio A,Giorgino F.The IGF-I signaling pathway.Current Pharmaceutical Design,2007,13:663-9.
    [76]Nancy L,Shafali Pillay,Pamela A,Moalli.Philip R.Greipp,and Steven T.Rosen.A Variant Glucocorticoid Receptor Messenger RNA Is Expressed in Multiple Myeloma Patients.Cancer Research.1995,55:2727-9.
    [77]Sanjai Sharma,Alan Lichtenstein.Dexamethasone-induced apoptotic mechanisms in myeloma cells investigated by analysis of mutant glucocorticoid receptors.Blood.2008 112:1338-45.
    [78]Barrel DP.MiRNA:genomics,biogenesis,mechanism and function.Cell,2004,116:281-97.
    [79]Ambros V,Barrel B,Barrel DP,et al.A uniforn system for microRNA annotation.RNA.2003,9:277-9.
    [80]Valencia—San chez MA,Liu J,Harmon GJ,et al.Control of teanslation and mRNA degradation by miRNA and siRNAs.Genes Dev,2o06,20:515-24.
    [81]Ying SY,Lin SL.Current perspectives in intronic microRNAs (miRNA).J Biomed Sci,2006,13:5-15.
    [82]Lin H,Gregory JH.MiRNA:Small RNAs with a big role in gene regulation.Nature,2006,5:522-31.
    [83]Aurora EK.Frank js.Oncomis—miRNA with a role in cancer.Nature,2006,6:259-69.
    [84]Jian HUANG,Min YANG,Hui LIU,Jie JIN.Human urine extract CDA-2induces apoptosis of myelodysplastic syndrome-derived MUTZ-1 cells through the PI3K/Akt signaling pathway in a caspase-3-dependent manner.Acta Pharmacol Sin 2008,29(8):951-64.
    [85]Jian Huang,Min Yang,Hui Liu,Jie Jin.CDA-Ⅱ,a urinary preparation,induces growth arrest and apoptosis of human leukemia cells through inactivation of nuclear factor-kappaB in a caspase-dependent manner.Food and Chemical Toxicology.2009,47,40-9.
    [86]Hengartner MO.The biochemistry of apoptosis.Nature 2000,407:770-6.
    [87]Green D,Reed JC.Mitochondria and apoptosis.Science 1998,281:1309-12.
    [88]Krammer PH.CD95's deadly mission in the immune system.Nature 2000,407:789-95.
    [89]Woo M,Hakem R,Soengas MS,et al.Essential contribution of caspase 3/CPP32to apoptosis and its associated nuclear changes.Genes Dev 1998,12:806-19.
    [90]Burkle A.Physiology and pathophysiology of poly(ADP-ribosyl)ation.Bioessays 2001,23:795-806.
    [91]Tong WM.,Cortes U,Wang ZQ.Poly(ADP-ribose) polymerase:a guardian angel protecting the genome and suppressing tumorigenesis.Biochim Biophys Acta 2001,1552:27-37.
    [92]Bharti AC,Takada Y,Aggarwal BB.PARP cleavage and caspase activity to assess chemosensitivity.Methods Mol Med 2005,11:69-78.
    [93]Miguel-Garcia A,Orero T,Matutes E,Carbonell F,Miguel-Sosa A,Linares M,Tarin F,Herrera M,Garcia-Talavera J,Carbonell-Ramon F:bcl-2 expression in plasma cells from neoplastic gammopathies and reactive plasmacytosis:A comparative study.Hematologica 1998,84:298.
    [94]Pettersson M,Jernberg-Wiklund H,Larssin L-G,Sundstrom C,Givol I,Tsujimoto Y,Nilsson K:Expression of bcl-2 gene in human multiple myeloma cell lines and normal plasma cells.Blood 1992,79:495.
    [95]Feinman R,Koury J,Thames M,Barlogie B,Epstein J,Siegel DS.Role of NF-kappaB in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bcl-2.Blood.1999,93(9):3044-52.
    [96]Hockenbery D,Nunez G,Milliman C,et al.Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death.Nature 1990,348:334-6.
    [97]Krajewski S,Tanaka S,Takayama S,et al.Investigation of the subcellular distribution of bcl-2 oncoprotein:Residence in the nuclear envelope,endoplasmic reticulum,and outer mitochondrial membranes.Cancer Res 1993,53:4701-14.
    [98]de Jong D,Prins FA,Mason DY,et al.Subcellular localization of the bcl-2 protein in malignant and normal lymphoid cells.Cancer Res.1994,54:256-60.
    [99]Hsu YT,Wolter KG,Youle RJ.Cytosol-to-membrane redistribution of Bax and Bcl-X(L)during apoptosis.Proc Natl Acad Sci U S A.1997,94:3668-72.
    [100]Gross A,Jockel J,Wei MC,et al.Enforced dimerization of BAX results in its translocation,mitochondrial dysfunction and apoptosis.EMBO J 1998,17:3878-85.
    [101]Oltvai ZN,Milliman CL,Korsmeyer SJ.Bcl-2 heterodimerizes in vivo with a conserved homolog,Bax,that accelerates programmed cell death.Cell 1993,74:609-19.
    [102]Del Poeta G,Venditti A,Del Principe MI,et al.Amount of spontaneous apoptosis detected by Bax/Bcl-2 ratio predicts outcome in acute myeloid leukemia (AML).Blood 2003,101:2125-31.
    [103]Dlugosz PJ,Billen LP,Annis MG,et al.Bcl-2 changes conformation to inhibit Bax oligomerization.EMBO J 2006,25:2287-96.
    [104]Sedletska Y,Giraud-Panis MJ,Malinge JM.Cisplatin is a DNA-damaging antitumour compound triggering multifactorial biochemical responses in cancer cells:importance of apoptotic pathways.Curr Med Chem Anticancer Agents 2005,5:251-65.
    [105]Ryningen A,Ersvaer E,Oyan AM,et al.Stress-induced in vitro apoptosis of native human acute myelogenous leukemia (AML)cells shows a wide variation between patients and is associated with low BCL-2:Bax ratio and low levels of heat shock protein 70 and 90.Leuk Res 2006,30:1531-40.
    [106]Kelekar A,Chang BS,Harlan JE,et al.Bad is a BH3 domain-containing protein that forms an inactivating dimer with Bcl-XL.Mol Cell Biol 1997,17:7040-6.
    [107]Rahmani M,Davis EM,Bauer C,et al.Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation.J Biol Chem 2005,280:35217-27.
    [108]Moulding DA,Giles RV,Spiller DG,et al.Apoptosis is rapidly triggered by antisense depletion of MCL-1 in differentiating U937 cells.Blood 2000,96:1756-63.
    [109]Zhou P,Qian L,Bieszczad CK,et al.Mcl-1 in transgenic mice promotes survival in a spectrum of hematopoietic cell types and immortalization in the myeloid lineage.Blood 1998,92:3226-39.
    [110]Jia L,Patwari Y,Kelsey SM,et al.Role of Smac in human leukaemic cell apoptosis and proliferation.Oncogene 2003,22:1589-99.
    [111]Van Eden ME,Byrd MP,Sherrill KW,et al.Translation of cellular inhibitor of apoptosis protein 1 (c-IAPl)mRNA is IRES mediated and regulated during cell stress.RNA 2004,10:469-81.
    [112]de Graaf AO,de Witte T,Jansen JH.Inhibitor of apoptosis proteins:new therapeutic targets in hematological cancer? Leukemia.2004,18(11):1751-9.
    [113]Carter BZ,Milella M,Tsao T,et al.Regulation and targeting of antiapoptotic XIAP in acute myeloid leukemia.Leukemia 2003,17:2081-2089.
    [114]Ghosh S,May MJ,Kopp EB.NF-kappa B and Rel proteins:evolutionarilv conserved mediators of immune responses.Annu Rev Immunol.1998,16:225-60.
    [115]Huxford T,Malek S,Ghosh G.Structure and mechanism in NF-kappa B/I kappa B signaling.Cold Spring Harb Symp Quant Biol 1999,64:533-40.
    [116]Hatada EN,Nieters A,Wulczyn FG,et al.The ankyrin repeat domains of the NF-kappa B precursor p105 and the protooncogene bcl-3 act as specific inhibitors of NF-kappa B DNA binding.Proc Natl Acad Sci U S A 1992,89:2489-93.
    [117]Malek S,Huang DB,Huxford T,et al.X-ray crystal structure of an IkappaBbe ta x NF-kappaB p65 homodimer complex.J Biol Chem 2003,278:23094-23100.
    [118]Ghosh S,Karin M.Missing pieces in the NF-kappaB puzzle.Cell,2002,109 Suppl:S81-96.
    [119]Rothwarf DM,Karin M.The NF-kappa B activation pathway:a paradigm in information transfer from membran e to nucleus.Sci STKE 1999,1999:RE1.
    [120]May MJ,Marienfeld RB,Ghosh S.Characterization of the Ikappa B-kinase NEM O binding domain.J Biol Chem,2002,277:45992-6000.
    [121]Karin M,Delhase M.The I kappa B kinase(IKK)and NF-kappa B:key elements of proinflammatorv signalling.Semin Immunol,2000,12:85-98.
    [122]Luo JL,Kamata H,Karin M.IKK / NF-kappaB signaling:balancing life and death-a new approach to cancer therapy.J Clin Invest,2005,115:2625-32.
    [123]Li ZW,Chu W,Hu Y,et al.The IKKbeta subunit of IkappaB kinase (IKK)is essential for nuclear factor kappaB activation and prevention of apoptosis.J Exp Med 1999,189:1839-45.
    [1]Dispenzieri A,Rajkumar SV,Gertz MA,et al.Treatment of newly diagnosed multiple myelolma based on Mayo Stratification of Myeloma and Risk-adapted Therapy(mSMART):consensus statement.Mayo.Clin.Proc,2007,82(3):323-341.
    [2]Voigt P,Brock C,Niirnberg B,et al.Assigning functional domains within the p101 regulatory subunit of phosphoinositide 3-kinase[J].J Biol Chem,2005,280(6):5121-5127.
    [3]Panwalkar A,Verstovsek S,Giles FJ.M ammalian target of rapamyein inhibition as therapy for hematologic malignancies.Cancer,2004,100(4):657-666.
    [4]XIN M,DENG X.Nicotine inactivation of the proapoptotic function of Bax through phosphorylation[J].J Biol Chem,2005,280(11):10781-10789.
    [5]Ozes.O N,Mayo.L D,Gustin.J A.et al.NF-kappa B activation by tumour necrosis factor Requires the Akt serine-theronine kinase.Nature 1999,401(6748):82-85.
    [6]BARTLING B.TOSTLEBE H,DARM ER D.et al.Shear stress dependent expression of apoptosis-regulating genes in endothelial cells [J].Biochem Biophys Res Commun,2000,278(3):740-746.
    [7]Athanassiadou P,Athanassiades P,Grapsa D,et al.The prognostic value of PTEN,p53,and beta-catenin in endometrial carcinoma:a prospective immunocytochemical study.Int.J.Gynecol.Cancer,2007,17(3)697-704.
    [8]Blanco-Aparicio C,Renner O,Leal JF,et al.PTEN,,more than the AKT pathway.Carcinogenesis,2007 Jul,28(7):1379-1386.
    [9]Feng Z,Hu W,de Stanchina E,et al.The regulation of AMPK betal,TSC2,and PTEN expression by p53:stress,cell and tissue specificity,and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways.Cancer Res,2007 Apr,67(7):3043-3053.
    [10]Zhang J,Choi Y,Mavromatis B et al.Preferential killing of PTEN-null myelomas by PI3K inhibitors through Akt pathway.Oncogene,2003 Sep,22(40):6289-6295.
    [11]Gupta A,Mckenna W,Weber C,et al.Local recurrence in head and neck cancer relationship to radiation resistance and signal transduction.Clin Cancer Res,2002.8(3):885-892.
    [12]Hsu J,Shi Y Krajewski S,et al.The Akt kinase is activated in multiple myeloma tumor cells.Blood,2001,98(9):2853-2855.
    [13]Min Y H,,Cheong,J.W,Kim J.Y,et al.Cytoplasmic mislocalization of p27Kipl protein is associated with constitutive phosphorylation of Akt or protein kinase B and poor prognosis in acute myelogenous leukemia.Cancer Res,2004 Aug 1,64(15):5225-5231
    [14]Bertram J,Peacock,J.W.Fazli.L,et al.Loss of PTEN is associated with progression to androgen indepndence.Prostate,2006,66(9):895-902.
    [15]Perez-Tenorio.G,Alkhori.H,Oisson.B et al.PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer.Clin Cancer Res,2007 Jun 15,13(12):3577-3584.
    [16]Shayesteh,L.Lu.Y,Kuo.W.L.et al.PIK3CA is implicated as an oncogene in ovarian cancer.Nat Genet,1999 Jan,21(1):99-102.
    [17]Jimenez C,Jones,D.R,Rodriguez-V iciana.P et al.Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase.EMBO J,1998,17:743-753.
    [18]Philp A.J,Campbell.L.G,Leet.C,et al.The phosphatidylinositol 3-kinase p85alpha gene is an oncogene in human ovarian and colon tumors.Cancer Res,2001,61(20):7426-7429.
    [19]Tai TY,Podar K,Mitsiades N et al.CD40 induces human multiple myeloma cell migration via phosphatidylinosito13-kinase/AKT/NF-kappa B signaling.Blood,2003,101(7):2762-2769.
    [20]Descamps G,Pellat-Deceunynck C,Szpak Y,et al.The magnitude of Akt/phosphatidylinositol 3'-kinase proliferating signaling is related to CD45 expression in human myeloma cells.J Immunol,2004 Oct 15,173(8):4953-4959.
    [21]Hsu JH,Shi Y,Frost P,et al.Interleukin-6 activates phosphoinositol-3' kinase in multiple myeloma tumor cells by signaling through RAS-dependent and,separately,through p85-dependent pathways.Oncogene,2004 Apr 22,23(19):3368-3375.
    [22]Pene F,Claessens YE,Muller Q et al.Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma.Oncogene,2002 Sep 26,21(43):6587-6597.
    [23]Yan H,Frost P,Shi Y et al.Mechanism by which mammalian target of rapamycin inhibitors sensitize multiple myeloma cells to dexamethasone-induced apoptosis.Cancer Res,2006 Feb 15,66(4):2305-2313.
    [24]Frost P,Shi Y,Hoang B,et al.AKT activity regulates the ability of mTOR inhibitors to prevent angiogenesis and VEGF expression in multiple myeloma cells.Oncogene,2007 Apr 5,26(16):2255-2262.Epub 2006 Oct 2
    [25]Gomez-Manzano C,Fueyo J,Jiang H et al.Mechanisms underlying PTEN regulation of vascular endothelial growth factor and angiogenesis.Ann Neurol,2003 Jan,53(1):109-117.
    [26]Yi HK,Kim SY,Hwang PH et al.Impact of PTEN on the expression of insulin-like growth factors (IGFs)and IGF-binding proteins in human gastric adenocarcinoma cells.Biochem Biophys Res Commun,2005 May 13,330(3):760-767.
    [27]Hyun T,Yam A,Pece S et al.Loss of PTEN expression leading to high Akt activation in human multiple myelomas.Blood,2000 Nov 15,96(10):3560-3568.
    [28]Ihle NT,Williams R,Chow S et al.Molecular pharmacology and antitumor activity of PX-866,a novel inhibitor of phosphoinositide-3-kinase signaling.Mol Cancer Ther,2004 Jul,3(7):763-772.
    [29]Catley L,Hideshima T,Chauhan D et al.Alkyl phospholipid perifosine induces myeloid hyperplasia in a murine myeloma model.Exp Hematol,2007 Jul,35(7):103 8-1046.
    [30]Gajate C,Mollinedo F.Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts.Blood,2007 Jan 15,109(2):711-719.
    [1]Hideshima T,Mitsiades C,Tonon G,Richardson PG,Anderson KC.Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets.Nat Rev Cancer,2007,7:585-98.
    [2]San Miguel JF,Gutierrez N,Garcia-Sanz R,Pandiella A.Thalidomide and new drugs for the treatment of multiple myeloma.Hematol J,2003,4 (suppl 3):201-07.
    [3]Plowright EE,Li Z,Bergsagel PL,et al.Ectopic expression of fi broblast growth factor receptor 3 promotes myeloma cell proliferation and prevents apoptosis.Blood,2000,95:992-98.
    [4]Bergsagel PL,Kuehl WM,Zhan F,Sawyer J,Barlogie B,Shaughnessy J Jr.Cyclin D dysregulation:an early and unifying pathogenic event in multiple myeloma.Blood,2005,106:296-303.
    [5]Damiano JS,Cress AE,Hazlehurst LA,Shtil AA,Dalton WS.Cell adhesion mediated drug resistance (CAM-DR):role of integrins and resistance to apoptosis in human myeloma cell lines.Blood,1999,93:1658-67.
    [6]Locklin RM,Croucher PI,Russell RG,Edwards CM.Agonists of TRAIL death receptors induce myeloma cell apoptosis that is not prevented by cells of the bone marrow microenvironment.Leukemia,2007,21:805-12.
    [7]Mitsiades CS,Treon SP,Mitsiades N,et al.TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma:therapeutic applications.Blood,2001,98:795-804.
    [8]Menoret E,Gomez-Bougie P,Geff roy-Luseau A,et al.Mcl-IL cleavage is involved in TRAIL-R1-and TRAIL-R2-mediated apoptosis induced by HGS-ETR1 and HGS-ETR2 human mAbs in myeloma cells.Blood,2006,108: 1346-52.
    [9]Mateo G,Montalban MA,Vidriales MB,et al.Prognostic value of immunophenotyping in multiple myeloma:a study by the PETHEMA/GEM cooperative study groups on patients uniformly treated with high-dose therapy.J Clin Oncol,2008,26:2737-44.
    [10]Coluccia AM,Cirulli T,Neri P,et al.Validation of PDGFRbeta and c-Src tyrosine kinases as tumor/vessel targets in patients with multiple myeloma:preclinical effi cacy of the novel,orally available inhibitor dasatinib.Blood,2008,112:1346-56.
    [11]Dispenzieri A,Gertz MA,Lacy MQ,et al.A phase Ⅱ trial of imatinib in patients with refractory/relapsed myeloma.Leuk Lymphoma,2006,47:39-42.
    [12]Arnulf B,Ghez D,Leblond V,et al.FGFR3 tyrosine kinase inhibitor AB1010 as treatment of t(4,14)multiple myeloma.Blood,2007,110:abstr 413.
    [13]Podar K,Anderson KC.The pathophysiologic role of VEGF in hematologic malignancies:therapeutic implications.Blood,2005,105:1383-95.
    [14]Podar K,Catley LP,Tai YT,et al.GW654652,the pan-inhibitor of VEGF receptors,blocks the growth and migration of multiple myeloma cells in the bone marrow microenvironment.Blood,2004,103:3474-79.
    [15]Podar K,Tonoh G,Sattler M,et al.The small-molecule VEGF receptor inhibitor pazopanib (GW786034B)targets both tumor and endothelial cells in multiple myeloma.Proc Natl Acad Sci U S A,2006,103:19478-83.
    [16]Prince HM,Honemann D,Spencer A,et al.VEGF-R inhibition with pazopanib (GW786034)is ineff ective in pretreated myeloma.Haematologica,2007,92 (suppl 2):abstr 602.
    [17]Raschko M,Markovina S,Miyamoto S,et al.Phase Ⅱ trial of bevacizumab combined with low dose dexamethasone and lenalidomide (BEV/REV/DEX)for relapsed or refractory myeloma (MM).Blood,2007,110:abstr 1173.
    [18]Mitsiades CS,Mitsiades NS,McMullan CJ,et al.Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma,other hematologic malignancies,and solid tumors.Cancer Cell,2004,5:221-30.
    [19]Moreau P,Hulin C,Facon T,et al.Phase I study of AVE1642 antiIGF-1R monoclonal antibody in patients with advanced multiple myeloma.Blood,2007,110:abstr 1166.
    [20]Lacy MQ,Alsina M,Roberts L,et al.Phase 1 dose escalation study of the monoclonal antibody against the insulin like growth factor I receptor CP-751,871 in patients with multiple myeloma.Blood,2007,110:abstr 1171.
    [21]van Zaanen HC,Lokhorst HM,Aarden LA,et al.Chimaeric antiinterleukin 6 monoclonal antibodies in the treatment of advanced multiple myeloma:a phase I dose-escalating study.Br J Haematol,1998,102:783-90.
    [22]Manges RF,Sutherland HJ,Jagannath S,et al.Preliminary results of CNTO 328,an anti-interleukin (IL)-6 monoclonal antibody (mAb),in combination with bortezomib in the treatment of relapsed or refractory multiple myeloma.Blood,2007,110:abstr 1183.
    [23]Chanan-Khan AA,Jagannath S,Munshi NC,et al.Phase I study of huN901-DM1 (BB-10901)in patients with relapsed and relapsed/refractory CD56-positive multiple myeloma.Blood,2007,110:abstr 1174.
    [24]Tai YT,Dillon M,Song W,et al.Anti-CSl humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu.Blood,2008,112:1329-37.
    [25]Bensinger W,Zonder J,Singhal S,et al.Phase I trial of HuLuc63 in multiple myeloma.Blood,2007,110:abstr 1180.
    [26]Tai YT,Li X,Tong X,et al.Human anti-CD40 antagonist antibody triggers signifi cant antitumor activity against human multiple myeloma.Cancer Res,2005,65:5898-906.
    [27]Keats JJ,Fonseca R,Chesi M,et al.Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma.Cancer Cell,2007,12:131-44.
    [28]Annunziata CM,Davis RE,Demchenko Y,et al.Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma.Cancer Cell,2007,12:115-30.
    [29]Hideshima T,Neri P,Tassone P,et al.MLN120B,a novel IkappaB kinase beta inhibitor,blocks multiple myeloma cell growth in vitro and in vivo.Clin Cancer Res,2006,12:5887-94.
    [30]Jourdan M,Moreaux J,Vos JD,et al.Targeting NF-kappaB pathway with an IKK2 inhibitor induces inhibition of multiple myeloma cell growth.Br J Haematol,2007,138:160-68.
    [31]Fonseca R,Barlogie B,Bataille R,et al.Genetics and cytogenetics of multiple myeloma:a workshop report.Cancer Res,2004,64:1546-58.
    [32]Alsina M,Fonseca R,Wilson EF,et al.Farnesyltransferase inhibitor tipifarnib is well tolerated,induces stabilization of disease,and inhibits farnesylation and oncogenic/tumor survival pathways in patients with advanced multiple myeloma.Blood,2004,103:3271-77.
    [33]Hideshima T,Podar K,Chauhan D,et al.p38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells.Oncogene,2004,23:8766-76.
    [34]Siegel DS,Krishnan A,Lonial S,et al.Phase Ⅱ trial of SCIO-469 asmonotherapy (M)or in combination with bortezomib (MB)in relapsed refractory multiple myeloma (MM).Blood,2006,108:abstr 3580.
    [35]Tai YT,Fulciniti M,Hideshima T,et al.Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis.Blood,2007,110:1656-63.
    [36]Frost P,Moatamed F,Hoang B,et al.In vivo antitumor eff ects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model.Blood,2004,104:4181-87.
    [37]Raje N,Kumar S,Hideshima T,et al.Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma.Blood,2004,104:4188-93.
    [38]Hideshima T,Catley L,Yasui H,et al.Perifosine,an oral bioactive novel alkylphospholipid,inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells.Blood,2006,107:4053-62.
    [39]Richardson P,Lonial S,Jakubowiak A,et al.Multi-center phase Ⅱ study of perifosine (KRX-0401)alone and in combination with dexamethasone (dex)for patients with relapsed or relapsed/refractory multiple myeloma (MM):promising activity as combination therapy with manageable toxicity.Blood,2007,110:abstr 1164.
    [40]Baughn LB,Di LM,Wu K,et al.A novel orally active small molecule potently induces Gl arrest in primary myeloma cells and prevents tumor growth by specifi c inhibition of cyclin-dependent kinase 4/6.Cancer Res,2006,66:7661-67.
    [41]Berenson JR,Boccia R,Siegel D,et al.Effi cacy and safety of melphalan,arsenic trioxide and ascorbic acid combination therapy in patients with relapsed or refractory multiple myeloma:a prospective,multicentre,phase Ⅱ,single-arm study.Br J Haematol 2006; 135:174-83.
    [42]Berenson JR,Matous J,Swift RA,Mapes R,Morrison B,Yeh HS.A phase Ⅰ/Ⅱ study of arsenic trioxide/bortezomib/ascorbic acid combination therapy for the treatment of relapsed or refractory multiple myeloma.Clin Cancer Res 2007; 13:1762-68.
    [43]Davenport EL,Moore HE,Dunlop AS,et al.Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells.Blood,2007,110:2641-49.
    [44]Mitsiades N,Mitsiades CS,Poulaki V,et al.Molecular sequelae of proteasome inhibition in human multiple myeloma cells.Proc Natl Acad Sci U S A,2002,99:14374-79.
    [45]Richardson PG,Chanan-Khan AA,Alsina M,et al.Safety and activity of KOS-953 in patients with relapsed refractory multiple myeloma (MM):interim results of a phase 1 trial.Blood,2005,106:abstr 361.
    [46]Chanan-Khan AA,Richardson PG,Alsina M,et al.Phase 1 clinical trial of KOS-953 + bortezomib (BZ)in relapsed refractory multiple myeloma (MM).Blood,2005,106:abstr 362.
    [47]Richardson PG,Chanan-khan AA,Lonial S,et al.Tanespimycin (T)+ bortezomib (BZ)in multiple myeloma (MM):confi rmation of the recommended dose using a novel formulation.Blood,2007,110:abstr 1165.
    [48]Demo SD,Kirk CJ,Aujay MA,et al.Antitumor activity of PR-171,a novel irreversible inhibitor of the proteasome.Cancer Res,2007,67:6383-91.
    [49]Orlowski RZ,Stewart K,Vallone M,et al.Safety and antitumor effi cacy of the proteasome inhibitor carfi lzomib (PR-171)dosed for five consecutive days in hematologic malignancies:phase 1 results.Blood,2007,110:abstr 409.
    [50]Alsina M,Trudel S,Vallone M,Molineaux C,Kunkel L,Goy A.Phase 1 single agent antitumor activity of twice weekly consecutive day dosing of the proteasome inhibitor carfi lzomib (PR-171)in hematologic malignancies.Blood,2007,110:abstr 411.
    [51]Dorsey BD,Iqbal M,Chatterjee S,et al.Discovery of a potent,selective,and orally active proteasome inhibitor for the treatment of cancer.J Med Chem,2008,51:1068-72.
    [52]Hideshima T,Bradner JE,Wong J,et al.Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma.Proc Natl Acad Sci U S A,2005,102:8567-72.
    [53]Catley L,Weisberg E,Kiziltepe T,et al.Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC)inhibitor LBH589 are synergistic in myeloma cells.Blood,2006,108:3441-49.
    [54]Maiso P,Carvajal-Vergara X,Ocio EM,et al.The histone deacetylase inhibitor LBH589 is a potent antimyeloma agent that overcomes drug resistance.Cancer,Res 2006,66:5781-89.
    [55]Richardson PG,Mitsiades CS,Colson K,et al.Final results of a phase I trial of oral vorinostat (suberoylanilide hydroxamic acid,SAHA)in patients with advanced multiple myeloma.Blood,2007,110:abstr 1179
    [56]Galli M,Salmoiraghi S,Golay J,et al.A phase Ⅱ multiple dose clinical trial of histone deacetylase inhibitor ITF2357 in patients with relapsed or progressive multiple myeloma:preliminary results.Blood,2007,110:abstr 1175.
    [57]Badros A,Philip S,Niesvizky R,et al.Phase I trial of suberoylanilide hydroxamic acid (SAHA)+ bortezomib (bort)in relapsed multiple myeloma (MM)patients (pts).Blood,2007,110:abstr 1168.
    [58]Weber DM,Jagannath S,Mazumder A,et al.Phase I trial of oral vorinostat (suberoylanilide hydroxamic acid,SAHA)in combination with bortezomib in patients with advanced multiple myeloma.Blood,2007,110:abstr 1172.
    [59]Prince M,Quach H,Neeson P,et al.Safety and effi cacy of the combination of bortezomib with the deacetylase inhibitor romidepsin in patients with relapsed or refractory multiple myeloma:preliminary results of a phase I trial.Blood,2007,110:abstr 1167.
    [60]Mitsiades CS,Ocio EM,Pandiella A,et al.Aplidin,a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo.Cancer Res,2008,68:5216-25
    [61]Ocio EM,Mitsiades C,Mateos MV,et al.Antimyeloma effi cacy of plitidepsin (aplidin(R)):from bench to the bedside.Blood,2007,110:abstr 1178.
    [62]Bahlis NJ,Caff erty-Grad J,Jordan-McMurry I,et al.Feasibility and correlates of arsenic trioxide combined with ascorbic acid-mediated depletion of intracellular glutathione for the treatment of relapsed/refractory multiple myeloma.Clin Cancer Res,2002,8:3658-68.
    [63]Raje N,Kumar S,Hideshima T,et al.Seliciclib (CYC202 or Rroscovitine),a small-molecule cyclin-dependent kinase inhibitor,mediates activity via down-regulation of Mcl-1 in multiple myeloma.Blood,2005,106:1042-47.
    [64]Shi Y,Reiman T,Li W,et al.Targeting aurora kinases as therapy in multiple myeloma.Blood,2007,109:3915-21..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700