用户名: 密码: 验证码:
猪链球菌2型在猪脑内及热和氧应激条件下表达上调基因的筛选与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪链球菌2型(Streptococcus suis serotype 2,SS2)是一种重要的人畜共患病原菌,可引起人的中毒性休克综合症和死亡,引起猪的脑膜炎、心内膜炎、败血症、关节炎、浆膜炎和肺炎,是猪的一种重要细菌性传染病,给养猪业造成重大的经济损失。荚膜多糖(CPS)、溶菌酶释放蛋白(MRP)、细胞外蛋白因子(EF)、溶血素和黏附素等是SS2的重要的毒力因子,但这些毒力因子并不能完全解释SS2的致病机理。广义的毒力因子应该包括那些与体内外环境应答有关的所有因子。所谓的环境应答即病原菌在感染过程中受到温度、渗透压、氧、pH及营养物质利用率等条件影响时所产生的变化。这些感染相关因子的鉴定与表达调控的研究,不仅有利于病原菌致病机理的解析,而且对疫苗、药物和诊断技术的设计与研制具有重要的指导意义。本研究运用转录序列选择性捕获(selective capture oftranscribed sequences,SCOTS)技术鉴定出SS2在高温、厌氧和感染猪脑组织中上调表达的基因,并对其中几种SS2细胞壁蛋白的免疫原性进行了研究,现将主要研究结果报告如下:
     1.猪链球菌2型在感染猪脑组织中上调表达基因的鉴定以1.5×10~5 CFUSS2 SC-19株鼻内接种5头健康仔猪,72h后采集感染猪的脑组织,提取总RNA,同时提取体外培养的SS2的总RNA,运用SCOTS技术进行六轮筛选,获得SS2在感染猪脑组织中的上调表达的基因71个。DNA序列分析结果表明,这些包括如下6类:与新陈代谢有关的有30个基因;与细胞壁有关的有12个基因;与复制有关的有9个基因;与蛋白有关的有3个基因;与转录有关的有9个基因;另外有8个功能尚不清楚。
     2.热应激和厌氧对猪链球菌2型的基因表达调控热应激与厌氧是两种很重要的环境信号,对病原菌的基因表达发挥重要的调控作用。本实验中,以常规体外培养条件为对照,用SCOTS技术筛选出SS2在高温条件下上调表达的基因33个、在厌氧条件下上调表达的基因21个,为SS2在应激条件下的基因表达调控的深入研究奠定了基础。
     3.体内诱导的猪链球菌2型胞壁蛋白的免疫原性研究从感染猪脑组织中筛选出的71个上调表达的基因中筛选出4个编码细胞壁相关蛋白的基因,进行了克隆表达和蛋白质纯化。将纯化的重组蛋白与氢氧化铝佐剂混合后免疫小鼠2次后,分别用2×LD_(50)和5×LD_(50)的SS2强毒株攻击。试验结果表明,4种重组蛋白均能诱导小鼠产生高滴度的抗体;在使用2×LD_(50)的攻毒剂量时,4种重组蛋白免疫的小鼠都可以保护,但在使用5×LD_(50)的攻毒剂量时,只有Hp0254和Hp1311N具有较好的保护力,可作为候选疫苗抗原。
Streptococcus suis serotype 2 (SS2) is an important and world-wide pathogen that causes meningitis, endocarditis, septicemia, arthritis, polyserositis and pneumonia in swine. It is also an important zoonotic agent for humans in contact with diseased pigs or their products. S. suis has become a major problem in swine producing countries due to intensive management practices. Although several virulence associated factors, including capsular polysaccharide (CPS), muramidase released protein (MRP), extracellular protein factor (EF), suilysin, and adhesins, have been recognized, the pathogenesis mechanism of SS2 is not fully understood. A more expansive definition of virulence functions includes factors involved in the adaptive response to environmental stresses sinces pathogens are exposed to alterations in temperature, osmolarity, oxygen tension, pH and nutrient availability during infection. Extensive identification of these infection associated factors and their regulation will not only help us to understand the pathogenesis, but also contribute to design and develop novel vaccines, drugs and diagnostic techniques. In this study, selective capture of transcribed sequences (SCOTS) approach was used to identify the up-regulated genes of SS2 in response to heat stress, oxygen restriction and infection in porcine brain, respectively. The immunogenecity of several cell wall-associated proteins, encoded by the in vovo-induced genes, were evaluated as well. The principal results were described as the following:
     Identification of genes preferentially expressed by SS2 in porcine brain. Five 35-day-old healthy piglets were infected with 1.5×10~5 CFU of S. suis strain SC-19 intranasally. At the 72 hours, the affected piglets were sacrificed. The infected brain tissues, as well as in vitro cultured SC-19, were subjected for RNA extraction. 71 genes of SS2 were identified to be upregulated during infection in the brain. They were classified into six groups according to DNA sequenceing and bioinformatic analysis: 30 metabolism-related genes, 12 cell wall-related genes, 9 reproduction-related genes, 3 protein-related genes, 9 transcription-related genes, and 8 functionally unknow genes.
     Identification of genes preferentially expressed under heat stress and anaerobic condition by SS2. Heat stress and oxygen restriction are important environmental signals to regulate gene expression of pathogenic bacteria. In this study, 33 and 21 genes of SS2 were identified to be preferentially expressed under high-temperature (42 C) and anaerobic conditions respectively. .The process that might be essential for the pathogenesis of the meningitis caused by this pathogen.
     Immunogenecity of cell wall-held proteins of SS2. Four genes encoding cell wall-associated proteins were chosen from the 71 in vivo-induced genes. Recombinant proteins were prepared and purified. Their immunogencity was evaluated using a mouse infection model. After twice vaccination using each of the recombinant proteins mixed with Al(0H)3 adjuvant. The results showed that all four recombinant proteins could induce high levels of antibodies, which could protect mice from challenge with a dose of 2×LD_(50) high virulent SS2 strain. The mice vaccinated with recombinant Hp0254 and Hp1311N were even protected from challenge with a dose of 5×LD_(50) SS2. These indicated that Hp2054 and Hp1311N could sever as potential vaccine candidates against SS2.
引文
1.白雪梅,张亚兰,孙娜,周永运,叶长芸,郑瀚,杜茂华,徐建国.100株猪链球菌的生化检测及药物敏感性分析.中国人人畜共患病学报,2006,22:396-398
    2.陈师勇,莫照兰,张振冬.细菌毒力基因体内表达检测技术研究进展.遗传,2005.27:505-511
    3.孙理云,范红结,陆承平,猪链球菌2型FBPS的纤维蛋白结合位点的初步确定.微生物学报,2005,45:753-756
    4.曾巧英,陆承平.猪链球菌2型溶菌酶释放蛋白的黏附作用.南京农业大学学报,2002,25:67-71
    5.周志刚.猪链球菌病帕谚断与防治.湖南畜牧兽医,2006,5:13-15
    6.Abhyankar S,Sandham HJ,Chan KH.Serotype Streptococcus mutans mutatable to lactate dehydrogenase deficiency.J Dent Res.1985,64(11):1267-1271.
    7.Al-Numani D,Segura M,Dote M,et al.Up-regulation of ICAM 1,CD11a/CD18and CD11c/CD18 on human THP-1 monocytes stimulated by streptococcus suis serotype 2.Clin Exp Immunol.2003,133(1):67-77
    8.Allen AG,Lindsay H,Seilly D,et al.Identification and characterisation of hyaluronate lyase from streptococcus suis.Microb Pathogenesis.2004,36:327-335
    9.Andrews SC,Shipley D,Keen JN,et al.The haemoglobin-like protein(HMP)of Escherichia coli has ferrisiderophore reductase activity and its C-terminal domain shares homology with ferredoxin NADP reductases.FEBS Lett.1992,302:247-252
    10.Andrew J,Russell LC,.Whirr SR.Overlapping Sites of Tetratrieopeptide Repeat Protein Binding and Chaperone Activity in Heat Shock Protein 90.J Biol Chem.2000,275:23
    11.Asea A,Kraeft SK,Kurt-Jones EA,et al.HSP70 stimulates cytokine production through a CD14-dependent pathway,demonstrating its dual role as a chaperone and cytokine.Nat Med.2006,435-442.
    12.Baruah A,Lindsey B,Nakano MM.Mutational analysis of the signal-sensing domain of ResE histidine kinase from Bacillus subtilis.J Bacteriol.2004,186:1694-1704
    13. Benga L, Goethe R, Rohde M , et al. Non encapsulated strains reveal novel insights in invasion and survival of Streptococcus suis in epithelial cells. Cell Microbiol. 2004, 867
    
    14. Berry AM, Paton JC. Additive attenuation of virulence of streptococcus pneumoniae by mutation of genes encoding pneumlysin and other putative pneumococcal virulence proteins. Infect Immun. 2000, 68: 133-140
    
    15. Bochkareva ES, Lissin NM, Girshovich AS. Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein. Nature. 1988 , 336-254
    
    16. Bochkareva E, Seluanov A, Bibi E, et a. Chaperonin promoted post translational membrane insertion of a multispanning membrane protein lactose permease. J Biol Chem. 1996,271:22-56
    
    17. Bochkareva ES, Solovieva ME, Girshovich AS. Targeting of GroEL to SecA on the cytoplasmic membrane of Escherichia coli. Proc Natl Acad Sci USA. 1998, 95: 478
    
    18. Brassed J, Gottschalk M, Quessys. Cloning and purification of the streptococcus suis serotype 2 glyccraldehyde-3-phosphate dehydrogenase and its involvement as an adhesin. Vet Microbiol. 2004,102: 87-94
    
    19. Brazeau C, Gottschalk M, Vincelette S, et al. In vitro phagocytos is and survival of Streptococcus suis cap sular type 2 inside murine mac2 rophages. Microbiology. 1996,142: 1231-1237
    
    20. Brown ED, Vivas EI, Walsh CT. MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. J. Bacteriol. 1995,177: 4194-4197
    
    21. Bunai K, Yamada K, Hayashi K. Enhancing effect of Bacillus subtilis Ffh, a homologue of the SRP54 subunit of the mammalian signal recognition particle,on the binding of SecA to precursors of secretory proteins in vitro. J Biochem. 1999, 125:151-159
    
    22. Castellino F, Boucher PE, Eichelberg K, et al. Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J Exp Med . 2000,191:1957-1964
    
    23. Chabot-Roya G,Willsonb P,Seguraa M, et al. Phagocytosis and killing of streptococcus suis by poreine neutrophils. Microb Pathogenesis. 2006, 41: 21-32
    24. Charland N, Nizet V, Rubens CE, et al. Streptococcus suis serotype 2 interactions with hum an brain microvascular endothelial cells. Infect Immun. 2000, 68: 63
    
    25. Chippaux M, Giudici D, Aboujaoude A, et al. A mutation leading to the total lack of nitrite reductase activity in Escherichia coli K-12. Mol. Gen. Genet. 1978, 182: 477-479
    
    26. Cui Y, Jean F, Thomas G. BMP-4 is proteolytically activated by furin and/or PC6 during vertebrate embryonic development. EMBO J. 1998,16: 4735-4743.
    
    27. Darmon E, Noone D, Masson A, et al. A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J Bacteriol. 2002, 184: 5661-5671.
    
    28. Serruto D, Rappuoli R. Post-genomic vaccine development. FEBS Letters. 2006, 580: 2985-2992.
    
    29. De Greeff A,Buys H,Verhaar R, et al. Contribution of Fibronectin-Binding protein to pathogenesis of streptococcus suis serotype. Infect Immun. 2002, 70: 1319-1325
    
    30. Duncan MJ, Hillman JD. DNA sequence and in vitro mutagenesis of the gene encoding the fructose-1,6-diphosphate- dependent L-(+)-Iactate dehydrogenase of Streptococcus mutans. Infect. Immun. 1991, 59: 3930-3934.
    
    31. Eleftheria V, Anastassios E. Structure and function of SecA, the preprotein translocase nanomotor. Biophysica Acta. 2004, 1694 67- 80
    
    32. Fekkes P, Driessen JM. The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J. 1997,16:6105-6113.
    
    33. Fuller TE, Shea RJ, Thacker BJ. Identification of in vivo induced genes in Actinobacillus pleuropneumoniae. Microb Pathogenesis. 1999, 27: 311-327
    
    34. Gahan CG, Hill C. The use of listeriolysin to identify in vivo induced genes in the gram-positive intracellular pathogen Listeria monocytogenes. Mol Microbiol. 2000, 36: 498-507
    
    35. Graham JE, Clark-Curtiss JE. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci U S A. 1999,96:11554-11559
    36. Green J, Sharrocks AD, Green B, et al. Properties of FNR proteins substituted at each of the five cysteine residues. Mol. Microbiol. 1993, 8: 61-68
    
    37. Grieshaber MK, Hardewig I, Kreutzer U, et al . Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions. J. Bacteriol. 1984,159: 206-213
    
    38. Gray CT, Wimpenny JW, Mossman MR. Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli. Biochim. Biophys Acta . 1966, 117: 33-41.
    
    39. Gunsalus RP, Park SJ. Aerobic-anaerobic gene regulation in Escherichia coli control by the ArcAB and Fnr regulons. Res. Microbiol. 1994,145:437—450.
    
    40. Handfield M, Brady LJ. Progulske-Fox A. IVIAT: a novel method to identify microbial genes expressed specifically during human infections. Trends Microbiol. 2000, 8: 336-339
    
    41. Haldenwang WG, Losick R. A modified RNA polymerase transcribes a cloned gene under sporulation control in Bacillus subtilis. Nature. 1979, 282: 256-260.
    
    42. Haiti FU. Molecular chaperones in cellular protein folding. Nature. 1996, 381: 571-579.
    
    43. Hill CE, Metcalf DS, Maclnnes JI. A search for virulence genes of Haemophilus parasuis using differential display RT-PCR. Vet Microbiol. 2003, 96: 189-202
    
    44. Hillman JD, Chen A, Duncan M. . Evidence that L-(+)-lactate dehydrogenase deficiency is lethal in Streptococcus mutans. Infect. Immun. 1994, 62: 60-64.
    
    45. Hoffmann TN, Frankenberg MM. Ammonification in Bacillus subtilis utilizing dissimilatory nitrite reductase is dependent on resDE. J. Bacteriol. 1998, 180: 186-189
    
    46. Homuth G, Masuda S, Mogk A, et al. The dnaK operon of Bacillus subtilis is heptacistronic. J Bacteriol. 1997, 179: 1153-1164.
    
    47. Harel J, Martinez G, Nassar A, et al. Identification of Inducible bacteriophage in a Virulent strain of streptococcus suis serotype 2 .Infect Immu. 2003, 71: 6104-6108
    
    48. Hyyrylainen HL, Bolhuis A, Darmon E. et al. A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol Microbiol. 2001,41: 1159-1172.
    49. Marquardt JL, Brown ED, Walsh CT, Anderson KS. Isolation and structural elucidation of a tetrahedral intermediate in the UDP-N-acetylglucosamine enolpyruvoyl transferase enzymatic pathway. J. Am. 1995, 57: 10398-10399.
    
    50. Jobin M C, Gottschalk M, Grenier D. Upregulation of prosta glandin E2 and matrix m eta OprOteinase 9 production by human macrophage-like cells: synergistic effect of capsular material and cell wall from Streptococcus suis. Microb Pathog. 2006, 29: 65-69
    
    51. Kang Y, Weber KD, Qiu Y, et al. Blattner. Genome-wide expression analysisindicates that FNR of Escherichia coli 4288K-12 regulates a large number of genes of unknown function. J. Bacteriol. 2005, 187: 1135-1160.
    
    52. Karel HM. The carboxyl terminus of the Bacillus subtilis SecA is dispensable for protein secretion and Viability. Microbiology . 2000, 146: 2573-2581
    
    53. Kim E, Sheng M. PDZ domain proteins of synapses. Nat Rev Neurosci. 2004, 5: 771-81.
    
    54. Koharyova M, Kolarova M. Oxidative stress and thioredoxin system. Gen Physiol Biophys. 2008, 27: 357-361
    
    55. Lai YC, Peng HL, Chang HY. Identification of genes induced in vivo during Klebsiella pneumoniae CG43 infection. Infect Immun. 2001, 69: 7140-7145
    
    56. Lehoux DE, Levesque RC. Detection of genes essential in specific niches by signature-tagged mutagenesis. Curr Opin Biotechnol. 2000, 11: 434-439
    
    57. Li M, Wong SL. Cloning and characterization of the groESL operon from Bacillus subtilis. J Bacteriol. 1992, 174: 3981-3992
    
    58. Lalioui L, Pellegrini E, Dramsi S. The SrtA Sortase of Streptococcus agalactiae Is Required for Cell Wall Anchoring of Proteins Containing the LPXTG Motif, for Adhesion to Epithelial Cells, and for Colonization of the Mouse Intestine. Infect Immun. 2005, 73: 3342-3350
    
    59. Mahan MJ, Tobias JW, Slauch JM. Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc Natl Acad Sci U S A. 1995, 92: 669-673
    
    60. Melnikow E, Dornan S, Sargent C. Microarray analysis of Haemophilus parasuis gene expression under in vivo growth condition mimicking the in vivo environment. Vet Microbiol. 2005, 110: 255-263
    61. Merrell DS, Camilli A. Detection and analysis of gene expression during infection by in vivo expression technology. Philos Trans R Soc Lond B Biol Sci. 2000, 355: 587-599
    
    62. Nakano MM, Dailly YP, Zuber P. Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth. J. Bacteriol. 1997,179: 6749-6755.
    
    63. Nakano MM, Hulett FM. Adaptation of Bacillus subtilis to oxygen limitation. FEMS Microbiol. Lett. 1997,157: 1-7.
    
    64. Nakano MM, Zuber P, Sonenshein AL. Anaerobic regulation of Bacillus subtilis Krebs cycle genes. J. Bacteriol. 1998,180: 3304-331
    
    65. Narberhaus F. Negative regulation of bacterial heat shock genes. Mol Microbiol .1999,31: 1-8.
    
    66. Baltes N, Jacobsen ID, Maas L. Gerlach Deletion of the Anaerobic Regulator HlyX Causes Reduced Colonization and Persistence of Actinobacillus pleuropneumoniae in the Porcine Respiratory Tract. Infect Immun. 2005, 73: 4614-4619
    
    67. Dreesen O, Glaser P, Jahn D. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. J. Bacteriol. 2000, 182: 3072-3080.
    
    68. Park SJ., McCab J., Turna J., Gunsalus RP. Regulation of the citrate synthase (gltA) gene of Escherichia coli in response to anaerobiosis and carbon supply: role of the arcA gene product. J. Bacteriol. 1994, 176:5086-5092.
    
    69. Phillips GJ , Silhavy TJ. Heat-shock proteins DnaKand GroEL facilitate export of lacZ hybrid proteins in E. col. Nature. 1990, 344: 80-82
    
    70. Poyart CE, Pellegrini, Marceau M. Attenuated virulence of Streptococcus agalactiae deficient in D-alanyl-lipoteichoic acid is due to an increased susceptibility todefensins and phagocytic cells. Mol. Microbiol. 2003, 49: 1615-1625.
    
    71. Pragman AA, Yarwood JM, Schlievert PM. Characterization of virulence factor regulation by SrrAB, a two-component system in Staphylococcus aureus. J. Bacteriol. 2004,186: 2430-2438.
    
    72. Rediers H, Rainey PB, Vanderleyden J, De Mot R. Unraveling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression. Microbiol Mol Biol Rev. 2005, 69: 217-261
    
    73. Becker S, Bongaerts J, Schirawski J. Oxygen regulated gene expression in facultatively anaerobic bacteria. Antonie Van Leeuwenhoek. 1994, 66: 13-23
    
    74. Schmidt A, Schiesswohl M, Volker U. Cloning, sequencing, mapping, and transcriptional analysis of the groESL operon from Bacillus subtilis. J Bacteriol. 1992, 174: 3993-3999
    
    75. Schulz A, Schwab S, Versteeg S,. The htpG gene of Bacillus subtilis belongs to class III heat shock genes and is under negative control. J Bacteriol. 1997, 10: 3103-3109.
    
    76. Segura M, Gottschalk M, Olivier. Encap sulated Streptococcus suis inhibits activation of signaling pathways involved in phagocytosis. Infect Immun. 2004, 72: 5322-5330.
    
    77. Segura M, Gottschalk M. Streptococcus suis interactions with the murine macrophage cell line j774:adhesion and cytotoxicity. Infect Immun. 2002, 70: 4312-4322
    
    78. Slauch JM, Mahan MJ, Mekalanos JJ. In vivo expression technology for selection of bacterial genes specifically induced in host tissues. Methods Enzymol. 1994, 235:481-492
    
    79. Slauch JM, Camilli A. IVET and RIVET: use of gene fusions to identify bacterial virulence factors specifically induced in host tissues. Methods Enzymol. 2000, 326: 73-96
    
    80. Smith HE, DammanM, Van DerVelde J, et al. Identification and characterization of the cp s locus of Streptococcus suis serotype 2: the cap sule p rotects against phagocytosis and is an important virulence factor. Infect Immun. 1999, 67: 1750-1756.
    
    81. Smith HE, Rijnsburger M, Stokhfe-zurwieden N, Smits MA. Virulent strains of streptococcus suis serotype 2 and highly virulent strains of streptococcus suis serotype 1 can be recogeized by a unique ribotype profile . J Clin Microbiol. 1997, 35: 1049-1053
    
    82. Spiro S, Guest JR. Adaptive responses to oxygen limitation in Escherichia coli. Trends Biochem. Sci. 1991, 16: 310-314.
    83. Staats JJ, Plattner BL, Nietfeld J, et al. Use of ribotyp ing and haemolysin activity to identify highly virulent Streptococcus suis type 2 isolates [ J ]. ClinMicrobiol. 1998,36:15-19.
    
    84. Steiner DF. The proprotein convertases. Curr. Opin. Chem. Biol. 1998,2: 31-39.
    
    85. Stewart V. Nitrate regulation of anaerobic respiratory gene expression in Escheriehia coli. Molee. Microbiol. 1993, 9: 425-434
    
    86. Stewart GR., Snewin VA, Walzl G, et al. Overexpression of heat-shock proteins reduces survival of Mycobacterium tuberculosis in the chronic phase of infection. NatMed. 2001, 7: 732-737.
    
    87. Tenenbaum T, Adam R, Eggelnpohler I, et al. Strain2dependent disrup tion of blood2cerebrosp inal fluid barrier by Streptoccocus suis in vitro. FEMS. 2005, 44: 25-34
    
    88. Thacker C, Peters K, Stayko M. The bli-4 locus of Caenorhabditis elegans encodes structurally distinct kex2/subtilisin-like endoproteases essential for early development and adult morphology. Genes Dev. 1995, 9: 956-971.
    
    89. Throup JP, Zappacosta F, Lunsford RD, et al. The srhSR gene pair from Staphylococcus aureus: genomic and proteomic approaches to the identification and characterization of gene function. Biochemistry. 2001,40: 10392-10401.
    
    90. Trageser M, Unden G. Role of cysteine residues and metal ions in the regulatory functioning of FNR, the transcriptional regulator of anaerobic respiration in EscheHchia coli. Mol. Microbiol. 1989, 3: 593-599
    
    91. Groll UV, Berger D, Altmann T. The Subtilisin-Like Serine Protease SDD1 Mediates Cell-to-Cell Signaling during Arabidopsis Stomatal Development. Plant Cell. 2002, 14: 1527-1539.
    
    92. Vadeboncoeur N, Segura M. Pro-inflam matory cytokine and chemokine release by human brain microvascular endothelial cells stimulated by Streptococcus suls serotype 2. FEMS Immunol Med Microbiol. 2003,35: 49
    
    93. Vanier G, SeguraM, Friedl P, et al. Invasion of porcine brain microvascular endothelial cells by Streptococcus suis serotype 2. Infect Immun. 2004, 72: 1441-1449.
    
    94. Valdivia RH, Falkow S. Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol. 1996,22: 367-378
    95. Versteeg S, Escher A, Wende A, et al. Regulation of the Bacillus subtilis heat shock gene htpG is under positive control. J Bacteriol. 2003, 185: 466-474.
    
    96. Wilson S, Drevets DA. Listeria monocytogenes infection and activation of hum an brain microvascular endothelial cells. Infect Dis. 1998, 178: 1658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700