用户名: 密码: 验证码:
珠江口及近海沉积物中重金属元素的分布、赋存形态及其潜在生态风险评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分析测定了珠江口及近海典型环境下沉积柱中Cr、Co、Ni、Cd、Cu、Pb、Zn、Mn和Fe的总量,对其进行了逐级提取,并分析了不同季节沉积柱中的酸挥发性硫化物(AVS)和同步提取重金属(SEM)的含量。在此基础上,对珠江口及近海沉积物中重金属的时空分布、赋存形态、来源、迁移及其累积规律进行了研究,并采用基于重金属总量、重金属逐级提取和AVS/SEM三个体系的不同方法对研究区的重金属污染水平及潜在生态风险进行了评价,探讨了不同评价体系之间的相互联系和对应关系。
     采用珠江口外近海两个受人类活动影响较弱站位的沉积柱样品,对珠江口及近海沉积物背景值进行了研究。各元素的背景值分别为:Fe为20240.4 mg/kg、Mn为306.8 mg/kg、Cr为41 mg/kg、Co为12.3 mg/kg、Ni为23.1 mg/kg、Cu为9.8 mg/kg、Zn为45 mg/kg、Pb为29mg/kg、Cd为0.2mg/kg、P为203mg/kg。
     珠江口内重金属含量高于口外近海,尤其是Cu、Zn和Cd,珠江口内均值比口外近海高约3~5倍。珠江口内沉积柱中Cu含量高于Ni和Co,Zn含量明显高于Cr和Pb,而口外近海Cu含量则低于Ni和Co,且Zn含量与Cr和Pb相近,这反映了珠江口内和口外近海沉积物中重金属来源的差异;珠江口内西滩和中滩站位4(靠近深圳湾)重金属含量较高,而中滩另两个站位重金属含量相对较低,这种差异是陆源输入、水动力条件以及沉积环境作用的综合体现。部分站位沉积柱中重金属含量随深度逐渐降低,可能反映了这些站位接受陆源污染物增加,重金属污染有加重的趋势。
     应用改进的BCR逐级提取方法对珠江口及近海沉积柱样品中重金属(Cr、Co、Ni、Cu、Pb、Zn、Fe、Mn)赋存形态的研究结果表明,锰主要以酸提取态存在(52.57%),铬、镍、铁、钴残渣态所占比重均高于60%;重金属总可提取态(酸提取态、可还原态和可氧化态)所占比例与重金属总量呈正相关性,这表明人为输入的重金属主要以可提取态的形式存在,这可能是重金属总量能在一定程度上反映沉积物重金属潜在生态风险的内在原因。
     AVS和SEM的空间分布和季节性变化的研究结果表明,珠江口沉积物中AVS含量范围为0~27.47μmol·g~(-1),且随深度而增加。总体来看,春季和夏季AVS含量高于冬季,底层沉积物AVS含量高于表层。沉积物中硫酸盐还原菌活性和氧化还原状态是其主要影响因素。SEM含量变化范围为0.82~4.66μmol·g~(-1),随深度加深略有降低。珠江口沉积物中AVS和SEM含量的季节性变化可能导致不同季节重金属的生物有效性的变化。
     采用基于三种不同评价体系的(基于重金属总量、基于重金属形态分析和基于AVS/SEM)生态风险评价方法对珠江口沉积物重金属潜在生态风险进行了评价,分析探讨了不同评价方法的优劣,针对其中一些评价方法的不足提出了改进建议,并根据不同的需要为今后重金属潜在生态风险评价设计了几套综合评价方案。本文采用的具体评价方法分别为:中国海洋沉积物质量标准法、沉积物富集系数法、多元生态危害评价法、地质累积指数法、沉积物质量基准法(TEL/PEL,ERL/ERM)、次生相与原生相比值法、次生相富集系数法以及AVS/SEM法。综合不同评价体系对珠江口沉积物重金属的潜在生态风险评价结果表明:西滩站位6和7、中滩站位4潜在生态风险较高,而西滩站位2、中滩站位1和3相对较低。
     SEM的含量接近于酸可提取态与还原提取态之和,明显低于重金属总量。由于AVS的存在将形成金属硫化物而降低重金属的生物毒性,基于总量和逐级提取的重金属污染评价方法均没有考虑AVS的影响,其结果往往会过高地估计重金属的生态风险,对于还原性强的沉积物尤为如此。
     当SEM-AVS的摩尔差值大于零时,表明有过剩重金属存在,并且有可能产生重金属生物毒性,但目前仍缺少基于过剩重金属的毒性评价标准。以AVS/SEM为基础,结合其它的评价方法,才能较全面地反映沉积物中重金属的潜在生态风险。
The total concentration, speciation of elements (Fe, Mn, Cr, Co, Ni, Cu, Pb, Zn), AVS (acid volatile sulfide) and SEM (simultaneously extracted metals) were determined in sediment cores collected from the Pearl River Estuary (PRE) and adjacent shelf. Based on which, the spatial and temporal distributions, speciation, sources, transport and accumulation were investigated. Several ecological assessment methods, which based on three different assessment systems (total concentration, sequential extraction and AVS/SEM), were applied to assess the heavy metals pollution and potential biotoxicity in sediments from the PRE and adjacent shelf. The interrelationship and correspondence relationship of different evaluation methods were also discussed.
     The background values of elements in sediment of the PRE and adjacent shelf were determined with the samples collected from sites E4 and C5, where were slightly influenced by human activities. The result showed that the background values were: Fe 20240.4 mg/kg, Mn 306.8 mg/kg, Cr 41 mg/kg, Co 12.3 mg/kg, Ni 23.1 mg/kg, Cu 9.8 mg/kg, Zn 45 mg/kg, Pb29mg/kg, Cd 0.2mg/kg, P 203 mg/kg.
     The total heavy metal concentrations indicated that there was an obvious difference between the heavy metal contents in the PRE and in the adjacent shelf, especially for Cu, Zn, Cd, with the average contents of heavy metals in the PRE being trinary to quintuple of those in the adjacent shelf. Further, differences in the distribution pattern of heavy metals between the PRE and the adjacent shelf were also found: (1) The Cu content is higher than that of Ni and Co in sediment cores from the PRE, but is lower in the adjacent shelf; (2) the content of Zn is significantly higher than that of Cr and Pb in the PRE, but is slightly higher in the adjacent shelf. These observations may reflect the difference in the sources of heavy metals between the PRE and the adjacent shelf, and reflect the characteristics of the sources. The concentrations of heavy metals in the west shoal and at site 4 were higher than the site 1 and 3. This difference was an integrated manifestation of terrestrial inputs, hydrodynamic conditions and sedimentary environment. According to the vertical distribution, the heavy metal contents decrease with the depth in sediment cores at sites 2, 4 and 7, which reflect that these sites received more land source pollutants and the heavy metal pollution became more and more serious in the past years. Obvious vertical variation trend of heavy metal contents was not observed at other sites in the PRE.
     The modified BCR-sequential extraction technique was used to determine the speciation (acid-soluble, reducible, oxidisable and residual) of metals (Cr, Co, Ni, Cu, Pb, Zn, Fe, Mn) in sediment samples from the PRE and the adjacent shelf. The results showed that most Cr, Ni, Fe and Co in the residual fraction were more than 60% of their respective content. There was a positive correlation between the recoverable (acid-soluble+reducible+oxidisable) fractions and the total content of heavy metals. This may reflect that heavy metals, which came from human activities, were mainly in the recoverable fractions, not in the residual fraction.
     The spatial and seasonal distribution of AVS and SEM in sediment cores from the PRE, showed that the AVS content varies in a large range (0~27.47μmol·g~(-1)) and usually increases with depth. On the whole, the AVS content was higher in spring and summer than in winter, and was higher in bottom sediments than in surface sediments. The activity of sulfate-reducing bacteria and content of dissolved oxygen in sediments were the main influencing factor. The SEM concentration ranges from 0.82 to 4.66μmol·g~(-1) and displays a slightly decreasing trend with depth. The seasonal variations of AVS and SEM may lead to variations in metal bioavailability during the year.
     Several methods, which based on total concentration, sequential extraction and AVS/SEM, were applied to assess the pollution level and potential ecological toxicity of heavy metals in sediments from the PRE and adjacent shelf. A comprehensive assessment of the PRE indicated that the potential ecological risk of heavy metal was higher at sites 4, 6 and 7 than at sites 1,2 and 3.
     Generally, the SEM is close to the sum of acid soluble and reducible fractions, and is obviously lower than the total contents of heavy metals. Because the risk assessing methods that are based on total metal content and sequential extractions ignore the immobilization of heavy metals by sulfides, these methods would most probably over-estimate the ecological risk of heavy metals, especially in reducing environments. AVS/SEM analysis is proposed to combine with other methods to better assess the ecological risk of heavy metals in sediments.
引文
1.常学秀,文传浩,王焕校.2000.重金属污染与人体健康[J].云南环境科学,19(1):59-61.
    2.陈吉余,陈沈良.2002.河口海岸环境变异和资源可持续利用[J].海洋地质与第四纪地质,22(2):1-7.
    3.陈静生,周家义.1992.中国水环境重金属研究[M].北京:中国环境科学出版社,171-188.
    4.陈立奇,王志红,杨绪林等.1999.台湾海峡西部海域大气中金属的特征Ⅱ.大气颗粒金属的来源和入海通量[J].海洋学报,21(1):23-30.
    5.陈耀泰.1992.珠江口现代沉积速率与沉积环境[J].中山大学学报(自然科学版),31(2):100-107.
    6.陈宗团,徐立,洪华生.1997.河口沉积物-水界面重金属生物地球化学研究进展[J].地球科学进展,12(5):434-439.
    7.范文宏,张博,陈静生等.2006.锦州湾沉积物中重金属污染的潜在生物毒性风险评价[J].环境科学学报,26(6):1000-1005.
    8.符建荣.1993.土壤中铅的积累及污染的农业防治[J].农业环境保护,12(5):223-232.
    9.国家海洋局.2006.2005年中国海洋环境质量公报[R].2.全海域环境质量状况.
    10.何孟常,王子健,汤鸿霄.1999.乐安江河流沉积物重金属生物有效性评价[J].环境科学,20(1):7-10.
    11.霍文毅,黄风茹,陈静生,等.1997.河流颗粒物重金属污染评价方法比较研究[J].地理科学,17(1);81-86.
    12.李宇庆,陈玲,仇雁翎,等.2004.上海化学工业区土壤重金属元素形态分析[J].生态环境,13(2):154-155.
    13.李玉,俞志明,宋秀贤.2006.运用主成分分析(PCA)评价海洋沉积物中重金属污染来源[J].环境科学,27(1):137-141.
    14.李玉,愈志明,曹西华等.2005.重金属在胶州湾表层沉积物中的分布与富集[J].海洋与湖沼,36(6):580-589.
    15.廉雪琼.2002.广西近岸海域沉积物中重金属污染评价[J].海洋环境科学,21(3):39-42.
    16.廖自基.1989.环境中微量重金属元素的污染危害与迁移转化[M].北京:科学出版社,251-304.
    17.林瑞芬,闵育顺,卫克勤.1998.珠江口沉积柱样210Pb法年龄测定结果及其环境地球化学意义[J].地球化学,27:401-441.
    18.林卫强,李适宇.2003.珠江口水域化学耗氧量、溶解氧、无机磷与有机磷的三维水质数学模拟[J].海洋学报,25(3):129-137.
    19.林祖亨,梁舜华.1995.珠江河口的现代沉积环境与底质重金属的含量分布[J].海洋通报,14(4):43-49.
    20.刘恩峰,沈吉,朱育新等.2004.太湖表层沉积物重金属元素的来源分析[J].湖泊科学,16(2):113-119.
    21.刘芳文,颜文,黄小平,等.2003.珠江口沉积物中重金属及其相态分布特征[J].热带海洋学报,22(5):16-24.
    22.刘景春,严重玲,胡俊.2004.水体沉积物中酸可挥发性硫化物(AVS)研究进展[J].生态学报,24:812-818.
    23.刘文新,李向东.2003.珠江口沉积物中痕量金属富集研究[J].环境科学学报,23(3):338-344.
    24.刘文新,栾兆坤,汤鸿霄.1999.乐安江沉积物中重金属污染的潜在生态风险评价[J].19(2):206-211.
    25.刘霞,刘树庆,王胜爱,等.2003.河北主要土壤中Cd和Pb的形态分布及其影响因素[J].土壤学报,40(3):393-401.
    26.刘英俊,曹励明,李兆麟等.1984.元素地球化学[M].北京:科学出版社,pp16-19和pp 62-64.
    27.马德毅,王菊英.2003.中国主要河口沉积物污染及潜在生态风险评价[J].中国环境科学,23(5):521-525.
    28.马德毅.1993.海洋沉积物的污染指示作用和监测方法[J].海洋通报,12(5):89-97.
    29.彭晓彤,周怀阳,翁焕新,等.2003.珠江口沉积物主元素的组成分布特征及 其地化意义[J].浙江大学学报(理学版),30(6):697-702.
    30.彭晓彤,周怀阳,翁焕新等.2003.珠江口沉积柱中重余属V,Ni和Co的分布特征、迁移机制和污染评价[J].浙江大学学报(理学版),30(1):103-108.
    31.杨晓兰.1999.长江口悬浮颗粒物的表面特性与重金属的沉降[J]。环境污染与防治,21(3):36-38.
    32.应秩甫.1994.珠江伶仃洋河口湾锋的类型及其对沉积的影响[J].热带海洋,13(2):25-31.
    33.郑建禄.1985.珠江及其河口沉积物中重金属的化学形态研究[J].热带海洋,4(1):62-69.
    34.郑丽波,叶瑛,周怀阳等.2003.东海特定海区表层沉积物中磷的形态、分布及其环境意义[J].34(3):274-282.
    35.中国海湾志编纂委员会.1998.中国海湾志(第14分册:重要河口)[M].北京:海洋出版社,312-316.
    36.中国环境监测总站.1990.中国土壤背景值[M].北京,中国环境科学出版社.
    37. Al-Ghadban, A.N., El-Sammak. 2005. A., Sources, distribution and composition of the suspended sediments, Kuwait Bay, Northern Arabian Gulf[J]. Journal of Arid Environments, 60:647-661.
    38. Allen, H.E., Fu, G., Deng, B. 1993, Analysis of acid-volatile sulfide(AVS) and simultaneously extracted metals(SEM) fro estimation of potential toxicity in aquatic sediment[J]. Environ. Toxicol. Chem., 12:1441-1453.
    39. Anderson, S.L., Jelinski, J., 1995. The utility of pore-water toxicity testing for development of site-specific marine sediment quality objectives for metals[R]. Lawrence Berkeley National Laboratory, Division of Energy and Environment DE-AC03-76SP00098, Berkeley.
    40. Anderson, S.L., Knezovich., J.P., Jelinski., J., et al. 1995. The utility of pore-water toxicity testing for development of site-specific marine sediment quality objectives for metals. Report No. 37615, Lawrence Berkley National Laboratory, Berkeley, CA.
    41. Balzer, W., 1989. Chemische reaktionen und transportptozesse in oberflahennahen sedimenten borealer und polarer Meeresgebiete. Habilitationsschrift Universitat Kiel 312S.
    42. Basu, A., Molinaroli, E. 1994. Toxic metal in Venice lagoon sediments: model, observation, and possible removal[J]. Environmental Geology, 24(3): 203-216.
    43. Berner, R. A., 1979. Authigenic iron sulfides as paleosalinity indicators[J]. Journal of Sedimentary Research, 49:1345-1350.
    44. Birch, G.F., Taylor, S.E., Matthai, C. 2001. Small-scale spatial and temporal variance in the concentration of heavy metals in aquatic sediments: a review and some new concepts[J]. Environmental Pollution, (113):357-372.
    45. Broecher, W.S., Peng, T.H. 1982. Tracers in the Sea[M]. Lamont-Doherty Geological Observatory Press, Palisades. NY, 690.
    46. Buat-Menard, P., Chesselet, R. 1979. Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter[J]. Earth Planet SciLett, 42:398-411.
    47. Burdige, D.J. 1993. The biogeochemistry of manganese and iron reduction in marine sediments[J]. Earth Science Reviews, 35:249-284.
    48. C.C.M. Ip, Li, X.D., Zhang, G., et al. 2004. Over one hundred years of trace metal fluxes in the sediments of the Pearl River Estuary, South China[J]. Environmental Pollution, 132:157-172.
    49. C.C.M.Ip, Li, X.D., Zhang, G., et al. 2004. Heavy metal and Pb isotopic compositions of aquatic organisms in the Pearl River Estuary, South China[J]. Environmental Pollution, 138:494-504.
    50. C.C.M.Ip, Li, X.D., Zhang, G, et al. 2007. Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environmental Pollution, 147, 311-323.
    51. CCME(Canadian Council of Ministers of the Environment). 1995. Protocol for the derivation of Canadian sediment quality guidelines for the protection of aquatic life[R]. Ottawa: CCME, EPC-98E, 17-24.
    52. Chapman, P.M., Allard, P.J., Vigers, GA. 1999. Development of sediment quality values for Hong Kong Special Administrative Region: a possible model for other jurisdictions[J]. Marine Pollution Bulletin, 38(3): 161-169.
    53. Cooper, D.C., Morse, J.W. 1998. Extract ability of metal sulfide minerals in acidic solutions: application to environmental studies of trace metal contamination with in anoxic sediments [J]. Environmental Science and Technology, 32:1076-1078.
    54. Daskalakis, K.D., O'Connor, T.P. 1995. Normalization and elemental sediment contamination in the coastal United States[J]. Environ. Sci. Technol., 29:470-477.
    55. DelValls, T.A., Forja, J.M., Gonza, E.M.E., et al. 1998. Determining contamination sources in marine sediments using multivariate analysis[J]. Trends in analytical chemistry, 17:181-192.
    56. Di Toro, D.M., Mahony, J.D., Hansen, D.J. et al. 1990. Toxicity of cadmium in sediments: The role of acid volatile sulfide[J]. Environ.Sci.Technol. 9:1487-1502.
    57. Di Toro D.M., C. Zarba, D.J. Hansen, R.C. Swartz, C.E. Cowan, H.E. Allen, N.A. Thomas, P.R. Paquin, W.J. Berry. 1991. Technical basis for establishing sediment quality criteria for non-ionic organic chemicals using equilibrium partitioning[J]. Environ. Toxicol. Chem. 10:1541-1583.
    58. Di Toro, D.M., Mahony, J.D., Hansen, D.J., et al. 1992. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments [J]. Environmental Science Technology, 26:96-101.
    59. Dyrssen, D. 1986. Stagnant sulfidic basin waters[J]. Sci. Total Environ., 58:167-173.
    60. Carral, E., Villares, R., Puente, X., et al. 1995. Influence of watershed lithology on heavy metal levels in estuarine sediments and organism in Galicia(north-west Spain)[J]. Marine Pollution Bulltin, 30:604-608.
    61. Fang, T., Li, X.D., Zhang, G. 2005. Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China[J]. Ecotoxicology and Environmental Safety, 61:420-431.
    62. Feng, H., Cochran, J.K., Hirschberg, D.J. 1999. 234Th and 7Be as tracers for transport and sources of particle-associated contaminants in the Hudson River Estuary[J]. The Science of the Total Environment, 237/238:401-418.
    63. Feng, H., Cochran, J.K., Lwiza, H., et al. 1998. Distribution of heavy metal and PCB contaminants in the sediments of an urban estuary, the Hudson River[J]. Marine Environmental Research, 45(1):69-88.
    64. Feng, H., Cochran, J.K., Lwiza, H., et al. 1998. Distribution of heavy metal and PCB contaminants in the sediments of an urban estuary: The Hudson River Marine Environmental Research [J]. Marine environmental research, 45(1):69-88
    65. Forstner, U. 1993. Metal speciation-general concepts and applications[J]. International Journal of Environmental Analytical Chemistry, 51: 5-23.
    66. Fukue, M., Yanai, M., Sato, Y., et al. 2006. Background values for evaluation of heavy metal contamination in sediments[J]. Journal of Hazardous Materials, 136:111-119.
    67. Gaston, G.R., Rakocinski, C.F., Brown, S.S., et al. 1998. Trophic function in estuaries: response of macrobenthos to natural and contaminant gradients [J]. Marine and Freshwater Research, 49: 833-846.
    68. Grabowski, L.A., Houpis, J.L.J., Woods, W.I., et al. 2001. Seasonal bioavailability of sediment -associated heavy metals along the Mississippi river floodplain[J]. Chemosphere, 45: 643-651.
    69. Hakan, P., Duran, K., Savas, A., et al. 2004. Ecological risk assessment using trace elements from surfaces sediments of Izmit Bay (Northeastern Marmara Sea) Turkey [J]. Marine Pollution Bulletin, 48:946-953.
    70. Heler, K.S., Billings, G.K. 1970. Lithium, In Handbook of Geochemistry[M]. by K.H. Wedepohl, Springer-Verlag, New York, Vol.1:890.
    71.Horstman, E.L. 1957. The distribution of lithium, rubidium, and caesium in igneous and sedimentary rocks[J]. Geochim. Cosmochim. Acta., 12:1-28.
    72. Howard, D.E., Evans, R.D. 1993. Acid-volatile sulfide(AVS)in a seasonally anoxic mesotrophic lake: seasonal and spatial changes in sediment AVS[J]. Environmental Toxicology and Chemistry, 12:1051-1057.
    73. Jacobs, L., Emerson, S., Skei, J. 1985. Partitioning and transport of metals across the O2/H2S interface in a permanently anoxic basin: Framvaren Fjord, Norway[J]. Geochim. Cosmochim. Acta, 49:1433-1444.
    74. Jorgensen, B. B. 1977. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark) [J]. Limnology and Oceanography, 22:814-832.
    75. Krauskopf, K. B. 1956. Factors controlling the concentrations of thirteen rare metals in seawater[J]. Geochim. Cosmochim. Acta, 9:1-32.
    76. Kwon, Y.T., Lee, C.W. 1998. Application of multiple ecological risk indices for the evaluation of heavy metal contamination in a coastal dredging area[J]. Sci. Total Environ., 214(1-3):203-210.
    77. Lasorsa, B., Casas, A. 1996. A comparison of sample handling and analytical methods for determination of determination of acid volatile sulfides in sediment[J]. Marine Chemistry, 52: 211-220.
    78. Lee, J.S., Lee, B.G., Luoma, S.N., et al. 2000. Influence of acid volatile sulfides and metal concentrations on metal partitioning in contaminated sediments [J]. Environmental science and technology, 34:4511-4516.
    79. Lee, J.S., Lee, J.H. 2005. Influence of acid volatile sulfides and simultaneously extracted metals on the bioavailability and toxicity of a mixture of sediment-associated Cd, Ni and Zn to polychaetes Neanthes arenaceodentata(i]. Sci. Total Environ., 338(3):229-241.
    80. Li, X.D., Shen, Z.G., Wai, O.W.H., et al. 2001. Chemical forms of Pb, Zn and Cu in the sediment profiles of the Pearl River Estuary [J]. Marine Pollution Bulletin, 42(3):215-223.
    81. Li, X.D., Wai, O.W.H., Li, Y.S., et al., 2000. Heavy metal distribution in sediment profiles of the Pearl River Estuary, South China[J]. Applied Geochemistry, 15:567-581.
    82. Lin, S., Morse, J.W. 1991. Sulfate reduction and iron sulfide mineral formation in Gulf of Mexico anoxic sediments [J]. Am. J. Sci. 291:55-89.
    83. Liu, J., Sturgeon, R.E., Boyko, V.J., et al. 1996. Determination of total chromium in marine sediment reference material BCSS-1[J]. Fres. J. Anal. Chem. 356:416-419.
    84. Liu, W.X., Li, X.D., Shen, Z.G., et al. 2003. Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary[J]. Environmental Pollution, 121:377-388.
    85. Long, E.R., Macdonald, D.D., Smith, S.L., et al. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments[J]. Environmental Management, 19:18-97.
    86. Long, E.R., Morgan, L.G. 1990. NOAA technical memorandum NOS OMA 52. The potential for biological effects of sediment-sorbed contaminants tested in the national status and trends program, 8-60.
    87. Long, E.R., Field, L.J., MacDonald, D.D. 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines [J] . Environmental Toxicology and Chemistry, 17(4):714-727.
    88. Lu, C.S.J., Chen, K.Y. 1977. Migration of trace metals in interfaces of seawater and polluted surfacial sediments[J]. Environmental Science Technology, 11:174-182.
    89. Macdonald, D.D., Carr, R.S., Calder, F.D., et al. 1996. Development and evaluation of sediment quality guidelines for Florida coastal waters[J]. Ecotoxicology, 5:253-278.
    90. MacDonald, D.D., Cart, R.S., Calder, F.D., et al. 1996. Development and evaluation of sediment quality guidelines for Florida coastal waters[J]. Ecotoxicology, 5:253-278.
    91. MacDonald, D.D., Charlish, B.I., Uaines, M.L., et al. 1994. Development and evaluation of an approach to the assessment of sediment quality in Florida coastal waters: biological effects database for sediments[R]. Tallahassee: FDEP(Florida Department of Environmental Protection), 1-275.
    92. Machado, M., Carvalho, M.F., Santelli, R.E., et al. 2004 Reactive sulfides relationship with metals in sediments from an eutrophicated estuary in Southeast Brazil [J]. Marine Pollution Bulletin, 49: 89-92.
    93. Manheim, F.T. 1961. A geochemical profile in the Baltic Sea[J]. Geochim. Cosmochim. Acta, 25:52-70.
    94. Martin, J., Attrill, R., Thomes, M. 1995. Heavy metal concentrations in sediment from the Thames estuary, UK[J]. Marine Pollution Bulletin. 30(11):742-744.
    95. Medved, J., Stresko, V., Kubova, J., et al. 1998. Efficiency of decomposition procedures fro the determination of some elements in soils by atomic spectroscopic methods[J]. Fres. J. Anal. Chem., 360:219-224.
    96. Morse, J.W. 1994. Interactions of trace metals with authigenic sulftde minerals: Implications for their bioavailability[J]. Mar. Chem., 46, 1-6.
    97. Mucha, A.P., Vasconcelos, M.T.S.D., Bordalo, A.A. 2005. Spatial and seasonal variations of the macrobenthic community and metal contamination in the Douro estuary (Portugal) [J]. Marine Environmental Research, 60:531-550.
    98. Munksgaard, N.C., Batterham, G.J., Parry, D.L. 1998. Lead isotope ratios determined by ICP-MS: Investigation of anthropogenic lead in seawater and sediment from the Gulf of Carpentaria, Australia[J]. Marine Pollution Bulletin, 36: 527-534.
    99. NOAA. 1999. Screening quick reference tables. Hazmat Report[R]. 99-1.
    100. Oehm, N.J., LUben, T. J., Ostrofsky, M.L. 1997. Spatial distribution of acid volatile sulfur in the sediments of Canadohta Lake PA[J]. Hydrobiologia, 345:79-85
    101. Rakocinski, C.F., Brown, S. S., Gaston, G.R., et al. 1997. Macrobenthic responses to natural and contaminant-related gradients in northern Gulf of Mexico estuaries [J]. Ecological Applications, 7:1278-1298.
    102. Rees, J.G., Ridgway, J. Knox , R.W.O.B., et al. 1998. Sediment-borne contaminats in rivers discharging into the Humber estuary, UK[J]. Marine Pollution Bulletin, 37 (3- 7):316-329.
    103. Ryss, I.G. 1956. The chemistry of fluorine and its compounds[M]. State Publishing House for Scientific, Technical, and Chemical Literature, Moscow. (English translation Series AEC-tr-3927.)
    104. Song, Y.S., Muller, G. 1999. Sediment-water interactions in anoxic freshwater sediments-mobility of heavy metals and nutrients[M]. Springer, Berlin.
    105. Tanner, P.A., Leong, L.S., Pan, S.M. 2000. Contamination of heavy metals in marine sediment cores from Victoria Harbor, Hong Kong[J]. Marine Pollution Bulletin, 40:769.
    106. Teasdale, P.R., Apte, S.C., Ford, P.W., et al. 2003. Geochemic al cycling and speciation of copper in waters and sediments of Macquarie harbour, Western Tasmania [J]. Estuarine Coastal and Shelf Science, 57:475-487.
    107. Van den Hoop, M.A.G.T., Den Hollander, H. A., Kerdijk, H.N. 1997. Spatial and seasonal variations of acid volatile sulphide(AVS) and simultaneously extracted metals(SEM)in Dutch marine and freshwater sediments[J]. Chemosphere, 35:2307-2316.
    108. Weisberg, S.B., Ranasinghe, J.A., Dauer, D.M., et al. 1997. An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay [J]. Estuaries, 20:146-158.
    109. Williams, T.P., Bubb, J.M., Lester, J.N., 1994. Metal accumulation within salt marsh environments: a review. Marine Pollution Bulletin, 28:277-290.
    110. Wu, S., Zhao, Y, Feng, X., et al. 1996. Application of inductively coupled plasma mass spectrometry for total metal determination in silicon-containing solid samples using the microwave-assissted nitric acid-hydrofluoric acid-hydrogen peroxide-boric acid digestion system[J]. J. Anal. At. Spect. 11:287-296.
    111. Zhang, G, Parker, A., House, A., et al. 1999. Time trend of BHCs and DDTs in a sedimentary core in Macao Estuary, southern China[J]. Mar. Pollut. Bull. 39, 326-330.
    112. Zhang, J., Huang, W.W., Liu, S.M., et al. 1992. Transport of paniculate heavy metal towards the China sea: a preliminary study and comparison[J]. Marine Chemistry, 40:161-178.
    113. Zhou, H.Y., Peng, X.T., Pan, J.M. 2004. Distribution, source and enrichment of some chemical elements in sediments of the Pearl River Estuary, China[J]. Continental Shelf Research, 24:1857-1875.
    114. Zhou, H.Y., Chen, J.F., Pan, J.M., et al. 1999. On the Sedimentation of Phosphorus, BHC and DDT in the Specified area of East China Sea. In: MasatakaWatanabe, Mingyuan Zhu ed. Proceedings of the First Japan—China Joint Workshop on Cooperative Study of Marine Environment—Environmental Loadings through River and Their Effects on Marine Ecosystems in Eaat China Sea, March 18—19. Tokyo, Japan, 59-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700