用户名: 密码: 验证码:
重金属复合污染农田土壤植物修复的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属污染是当前全球性的环境问题之一,植物修复技术以其成本低廉、环境友好等特点成为治理土壤污染的一种重要方式和途径,而如何提高植物的修复效率则是植物修复技术的关键问题。
     本论文依托国家环境保护科技项目及云南省环境保护专项项目《重金属复合污染农田生态修复的关键技术研究》(项目编号:E-2007-06和2007[262]),通过田间试验研究了重金属超富集植物短萼灰叶(Tephrosia candida)、龙葵(Solanum nigrum)和大叶井口边草(Pteris nervosa)3种植物在重金属复合污染农田土壤上对重金属的富集特征,以及对重金属复合污染农田的修复潜力;研究了7个超富集植物物种配置对重金属复合污染农田土壤的修复效果,并筛选出最佳的物种配置;研究了不同水平过磷酸钙对土壤重金属生物活性及7个超富集植物物种配置修复效果的影响。主要研究结果如下:
     (1)对Pb超富集植物短萼灰叶、Cd超富集植物龙葵和As超富集植物大叶井口边草进行重金属富集特征及重金属复合污染土壤修复潜力的研究。结果表明,短萼灰叶地上部Pb、龙葵地上部Cd和大叶井口边草地上部As的含量分别达到了365.071mg·kg-1、22.109 mg·kg-1和282.698mg·kg-1,转运系数分别为2.569、1.692和1.611;短萼灰叶对Pb的提取率、龙葵对Cd的提取率及大叶井口边草对As的提取率分别为1.257%、2.550%和0.224%;在假设短萼灰叶、龙葵和大叶井口边草每年收割次数分别为2次、3次和3次的前提下,全面实现重金属复合污染农田土壤的治理污染和修复目的,需利用短萼灰叶对Pb修复2.847a、龙葵对Cd修复9.953a及大叶井口边草对As修复101.023a。3种供试植物在重金属复合污染农田土壤植物修复技术中具有潜在的利用价值。
     (2)通过效果试验小区,对7个超富集植物物种配置进行修复重金属复合污染农田土壤效果的研究。结果表明,种植短萼灰叶小区土壤中Pb的下降值、种植龙葵小区土壤中Cd的下降值及种植大叶井口边草小区土壤中As的下降值分别达11.492mg·kg-1、0.177 mg·kg-1和3.376mg·kg-1,为无种植植物小区的1915.3倍、88.5倍和1688.0倍,显示出3种超富集植物对对应重金属污染土壤的巨大修复能力和潜在应用前景;采用层次分析法的改进模型进行综合评估结果表明,修复该重金属复合污染农田土壤的最佳物种配置为单种Cd超富集植物龙葵,其次为龙葵和大叶井口边草混种。
     (3)研究了不同水平过磷酸钙对土壤重金属生物活性的影响。结果表明,重金属Pb、Cd和As均以残渣态为主要存在形态,且以Cd的生物活性为最强;随着过磷酸钙施加量的增加,Pb的生物活性呈下降趋势、Cd的生物活性显无规律的细微变化,而As的生物活性显先上升后下降的明显规律,这说明不同水平过磷酸钙对重金属生物活性的影响各不相同。
     (4)通过不同水平过磷酸钙处理进行7个超富集植物物种配置修复效率影响的研究。结果表明,在施加量0-600kg·ha-1的范围内,随着施加量的增加,短萼灰叶对Pb修复率的提高幅度显下降趋势、龙葵对Cd修复率的提高值显上升趋势,而大叶井口边草对As修复率的提升幅度则显现出先上升后下降的明显趋势;采用层次分析法的改进模型进行综合评估结果表明,在过磷酸钙施加量600kg·ha-1的前提下,单种Cd超富集植物龙葵为修复该重金属复合污染农田土壤的最佳物种配置。
Heavy metals contamination is one of the global environmental concern, currently, for its low-cost, environmentally-friendly and other characteristics, the technology of phytoremediation is becoming a significant method to remove the contaminat of the agricultural soil.
     Relied on the project called "Core-Technology Research of Ecological Remediation in Contaminated Farmland with Heavy Metals" (Item Number: E-2007-06 and 2007). By the field experiments, this thesis studied on the remediation potential and bioconcentration characteristics of three hyperaccumulators grown in the contaminated agricultural soil with heavy metals, and the remediation effects of seven configuration of hyperaccumulators, then the best configuration also has been screened out; the effect of Superphosphate in different levels on biological activity, as well as on the remediation effects for seven configuration of hyperaccumulators was evaluated. The results indicated as follows:
     (Ⅰ) A field experiment was carried out to evaluate the phyremediation abilities of three hyperaccumulators, including Tephrosia candida, Solanum nigrum and Pteris nervosa. These experimental fields were contaminated with Pb, Cd and As. The results indicated that Tephrosia candida accumulated 365.071 mg·kg-1Pb, Solanum nigrum accumulated 22.109 mg·kg-1Cd, and Pteris nervosa accumulated 282.698 mg·kg-1As (dry weight) in shoots, with transfer factors (TF) up to 2.569,1.692 and 1.611, respectively. The phytoextraction rates (PER) of Tephrosia candida, Solanum nigrum and Pteris nervosa for Pb, Cd and As were at 1.257%,2.550% and 0.224%, respectively. To control the polluting situation and remediate the contaminated agricultural soil, the remediation years of Tephrosia candida to removal Pb is 2.847 a, Solanum nigrum to removal Cd is 9.953 a, and Pteris nervosa to removal As is 101.023 a, with the assumption that the harvested times each year was two times, three times and three times, respectively. The three tested plants were proved to have the potential value in use of remediation the contaminated field soil.
     (Ⅱ) The experimental plots were carried out to research the remediation effects of seven configuration of hyperaccumulators. The results indicated that the plots decline in the value of Pb, Cd and As up to 11.492 mg·kg-1,0.177 mg·kg-1 and 3.376 mg·kg-1, with individual planting of Tephrosia candida, Solanum nigrum and Pteris nervosa, respectively, which indicate that the hyperaccumulators have the huge remediation capacity and potential application prospects in contaminated soil. The comprehensive assessment by improved model of AHP results indicated that the best configuration to remediate this contaminated soil, was individual planting of Cd hyperaccumulator Solanum nigrum, and followed by mixed planting of Solanum nigrum and Pteris nervosa.
     (Ⅲ) The effect of Superphosphate in different levels on biological activity was evaluated. It is indicated that the residual fraction was the main existing fractions of Pb, Cd and As, and the strongest biological activity of three heavy metals was Cd. With increasing in the amount of Superphosphate, the biological activity of Pb, Cd and As, had a significant trend of downward, erratic subtle change and first increase then decrease, respectively, which indicated that the vary effects of Superphosphate on biological activity of heavy metals in different levels do exist.
     (IV) The effect of Superphosphate in different levels on the remediation effects for seven configuration of hyperaccumulators was studied. The results indicated that the increased rates curve of removal of Pb, Cd and As were showing a significant trend of decline, upward, and decline after first increase, respectively, within 0-600 kg·ha-1 by increasing the amount of Superphosphate. The comprehensive assessment by improved model of AHP results indicated that the best configuration to remediate this contaminated soil, was the amount of 600 kg·ha-1 Superphosphate and individual planting of Cd hyperaccumulator Solanum nigrum.
引文
[1]鲍桐,廉梅花,孙丽娜,等.重金属污染土壤植物修复研究进展[J].生态环境,2008,17(2):858-865
    [2]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996
    [3]庄萍.广东乐昌重金属污染农田土壤植物修复研究[博士学位论文].广东:中山大学,2007
    [4]孙铁珩,周启星.污染生态学的研究前沿与展望[J].农村生态环境,2000,16(3):42-50
    [5]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2004
    [6]祖艳群,李元,陈海燕,等.昆明市蔬菜及其土壤中铅、镉、铜和锌含量水平及污染评价[J].云南环境科学,2006,22(B03):55-57
    [7]祝鹏飞,宁平,曾向东,等.矿区土壤Pb的分布特征及植物修复应用性研究[J].工业安全与环保,2006,32(5):4-6
    [8]刘小梅,吴启堂,李秉滔.超富集植物治理重金属污染土壤研究进展[J].农业环境科学学报,2003,22(5):636-640
    [9]聂发辉.关于超富集植物的新理解[J].生态环境,2005,14(1):136-138
    [10]薛生国,陈英旭,林琦,等.中国首次发现的锰超积累植物——商陆[J].生态学报,2003,23(5):935-937
    [11]苏德纯,黄焕忠.油菜作为超累积植物修复镉污染土壤的潜力[J].中国环境科学,2002,22(1):48-51
    [12]刘威,束文圣,蓝崇钰.宝山堇菜(Viola bapshanensis)——一种新的镉超富集植物[J].科学通报,2003,48(19):2046-2049
    [13]Wei S H, Zhou Q X, Wang X. A newly-discovered Cd-hyperaccumulatior Solanum nigrum L.[J]. Chinese Science Bulletin,2004,49:2568-2573
    [14]曹德菊,周世杯,项剑.苎麻对土壤中镉的耐受和积累效应研究[J].中国麻业,2004,26(6):272-274
    [15]陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3):207-210
    [16]韦朝阳,陈同斌,黄泽春,等.大叶井口边草——一种新发现的富集砷的植物[J].生态学报,2005,22(5):777-778
    [17]H B Wang, Z H Ye, W S Shu, et al. Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of southern China:Field surveys[J]. International Journal of Phytoremediation,2006,8(1):1-11
    [18]H B Wang, M H Wong, C Y Lan, et al. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China[J]. Environmental Pollution,2007,145: 225-233
    [19]聂俊华,刘秀梅,王庆仁.营养元素N、P、K对Pb超富集植物吸收能力的影响[J].农业工程学报,2004,20(5):262-265
    [20]吴双桃,吴晓芙,胡臼利,等.铅锌冶炼厂土壤污染及重金属富集植物的研究[J].生态环境,2004,13(2):156-157
    [21]祖艳群,李元,陈海燕,等.蔬菜中铅镉铜锌含量的影响因素研究[J].农业环境科学学报,2003,22(3):289-292
    [22]杨肖娥,龙新宪,倪吾钟,等.东南景天(Sedum alfredi H.):一种新的锌超积累植物[J].科学通报,2002,47(13):1003-1006
    [23]熊愈辉,杨肖娥,叶正钱,等.东南景天对镉、铅的生长反应与积累特征比较[J].西北农林科技大学学报:自然科学版,2004,32(6):101-106
    [24]汤叶涛,仇荣亮,曾晓雯,等.一种新的多金属超富集植物——圆锥南芥(Arabis paniculata L.) [J].中山大学学报:自然科学版,2005,44(4):135-136
    [25]Baker A J M, McGrath S P, Sidoli C D M, et al. The possibility of in situ heavy metal decontamination of polluted soil using crops of metal-accumulating plants[J]. Resources, Conservation and Recycling,1994,11:41-49
    [26]Steven N W. Rhizosphere bacteria mobilizae Zn for hyperaccumulation by Thlaspi carulescens[J]. Environmental Science and Technology,2001,35: 2144-2150
    [27]孟庆强.利用超富集植物处理重金属污染土壤和污泥[硕士学位论文].广东:华南农业大学,2002
    [28]王凯荣,陈朝明,龚惠群,等.镉污染农田农业生态整治与安全高效利用模 式[J].中国环境科学,1998,18(2):97-101
    [29]龙育堂,刘世凡,熊建平,等.苎麻对稻田土壤汞净化效果研究[J].农业环境保护,1994,13(1):30-33
    [30]蒋先军,骆永明,赵其国,等.重金属污染土壤的植物修复研究Ⅰ.金属富集植物Brassica juncea对铜、锌、镉、铅污染的响应[J].土壤,2000,32(2):62-66
    [31]郑喜坤,鲁安怀,高翔.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84
    [32]陈同斌.重金属对土壤的污染[J].金属世界,1999,3:10-11
    [33]陈怀满,郑春荣.中国土壤重金属污染现状与防治对策[J]. AMBIO-人类环境杂志,1999,28(2):130-134
    [34]万云兵,仇荣亮,陈志良,等.重金属污染土壤中提高植物提取修复功效的探讨[J].环境污染治理技术与设备,2002,3(4):56-59
    [35]陈志良,仇荣亮.重金属污染土壤的修复技术[J].环境保护,2002,29(6):21-23
    [36]王文兴,童莉,海热提.土壤污染物来源及前沿问题[J].生态环境,2005,14(1):1-5
    [37]俄胜哲,杨思存,崔云玲,等.我国土壤重金属污染现状及生物修复技术研究进展[J].安徽农业科学,2009,37(19):9104-9106
    [38]李一锟.土壤-蔬菜系统重金属富集规律研究[J].沿海企业与科技,2007,81(2):43-45
    [39]杨苏才,南忠仁,曾静静.土壤重金属污染现状与治理途径研究进展[J].安徽农业科学,2006,34(3):549-552
    [40]戴军,刘腾辉.广州菜地生态环境的污染特征[J].土壤通报,1995,26(3):102-104
    [41]王凯荣.我国农业重金属污染现状及其治理利用对策[J].农业环境保护,1997,16(6):174-178
    [42]梁家妮,马友华,周静.土壤重金属污染现状与修复技术研究[J].农业环境与发展,2009,26(4):45-49
    [43]Rafael C, David J W, Bernal M P. Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcollar(Spain):The effect of soil amendments[J]. Environmental Pollution,2005,138(1):46-58
    [44]Lee P K, Touray J C, Baillif P, et al. Heavy, metal contamination of settling particles in a retention pond along the A-71 motorway in Sologne, France[J]. Science of the Total Environment,1997,201(1):35-41
    [45]Mark F, Davey L J. Use of composts in the remediation of heavy metal contaminated soil[J]. Journal of Hazardous Materials,2010,173(1-3):575-582
    [46]Lidia G L C, Slivia R M, Liliana M. Heavy metals input with phosphate fertilizers used in Argentina[J]. Science of the Total Environment,1997,204(3): 245-250
    [47]Berward N. Heavy-metal contaminated soils associated with drained fenland in Lancashire, England, UK, revealed by BGS Soil Geochemical Survey[J].Applied Geochemistry,2003,18(11):1663-1670
    [48]Meers E, Slycken S V, Adriaensen K, et al. The use of bio-energy crops(Zea mays) for 'phytoattenuation' of heavy metals on moderately contaminated soils: A field experiment[J]. Chemosphere,2010,78(1):35-41
    [49]Chaney R L. Plant uptake of inorganic waste constituents. In:Land Treatment of Hazardous Wastes. Noyes Data Corporation, Park Ridge, New Jersey, USA, Parr J F, Marsh P D, Kla J M(Ed.),1983:50-76
    [50]Kumar N P B A, Dushenkov V, Motto H, et al. Phytoextraction:the use of plants to remove heavy metals from soils[J]. Environmental Science and Technology, 1995,29:1232-1238
    [51]孙海燕.土壤重金属污染的植物修复技术研究[J].内蒙古农业科技,2009,3:43-44
    [52]Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferous rocks by alysus of herbarium species of indicator plants[J]. Journal of Geochemical Exploration, 1977,7:49-57
    [53]Salt D E, Blaylock M J, Kumar P B A N, et al. Phytoremediation:a novel strategy for the novel of toxic metals from the environment using plants[J]. Biotechnology,1995,13:468-474
    [54]McGrath S P, Zhao F J. Phytoextraction of metals and metalloids from contaminated soils[J]. Current Opinion in Biotechnology,2003,14(3):277-282
    [55]Moyukh G, Singh S P. A comparative study of cadmium phytoextraction by accumulator and weed species[J]. Environmental Pollution,2005,133(2): 365-371
    [56]Monni S, Salemaa M, White C, et al. Copper resistance of Calluna vulgaris originating from the pollution gradient of a Cu-Ni smelter, in south-west Finland[J]. Environmental Pollution,2000,109:211-219
    [57]Reeves R D, Baker A J M, Brooks R R. Abnormal accumulation of trace metals by plants[J]. Mining Environmental Management,1995,9:4-8
    [58]Kersten M, Moor H C, Johnson C A. Speciation of trace metals in leachate from MSWI bottom ash landfill[J]. Applied Geochemistry,1997,12(5):675-683
    [59]Cunningham S D, Berti W R, Huang J W. Phytoremediation of contaminated soils[J]]. Trends in Biotechnology,1995,13(9):393-397
    [60]Reeves R D, Baker A J M. Studies on metal uptake by plants from serpentine and non-serpentine populations of Thlaspi goesingense Halacsy(Cruciferae)[J]. New Phytologist,1984,98:191-204
    [61]柯文山,陈建军,黄邦全,等.十字花科芸薹属5种植物对Pb的吸收和富集[J].湖北大学学报(自然科学版),2004,26(3):236-239
    [62]Liu X H, Gao Y T, Khan S, et al. Accumulation of Pb, Cu, and Zn in native plants growing on contaminated sites and their potential accumulation capacity in Heqing, Yunnan[J]. Journal of Environmental Sciences,2008,20:1469-1474
    [63]Brooks R R, Wither E D, Westra L Y T. Biogeochemical copper anomalies on Salajar Island Indonesia[J]. Journal of Geochemical Exploration,1978,10(2): 181-188
    [64]Nishizono H, Suzuki S, Ishii F. Accumulation of heavy metals in the metal tolerant fern Athyrium yokoscense, growing on environments[J]. Plant Soil,1987, 102:65
    [65]廖斌,邓冬梅,杨兵,等.鸭跖草(Commelina conmunis)对铜的耐性和积累研究[J].环境科学学报,2003,23(6):797-801
    [66]Cunningham S D, Ow D W. Promises and prospects of phytoremediation[J]. Plant Physiology,1996,110:715-719
    [67]聂发辉.镉超富集植物商陆及其富集效应[J].生态环境,2006,15(2):303-306
    [68]Visoottiviseth P, Francesconi K, Sridokchan W. The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land[J]. Environmental Pollution,2002,118(3):453-461
    [69]Zhao F J, Dunham S J, McGrath S P. Arsenic hyperaccumulation by different fern species[J]. New Phytologist,2002,156(1):27-31
    [70]Srivastava M, Ma L Q, Santos J A G. Three new arsenic hyperaccumulation ferns[J]. Science of the Total Environment,2006,364(1-3):24-31
    [71]Felix H. Field trials for in situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants[J]. Zeitschrift for Pflanzenernahrung and Bodenkunde,1997,160:525-529
    [72]Robinson R H, Leblanc M, Petit D, et al. The potential of Thlaspi caerulescens for phytoremediation of contaminated soils[J]. Plant and Soil,1998,203:47-56
    [73]廖晓勇,陈同斌,谢华,等.磷肥对砷污染土壤的植物修复效率的影响:田间实例研究[J].环境科学学报,2004,24(3):455-462
    [74]Zhuang P, Yang Q W, Wang H B, et al. Phytoextraction of heavy metals with eight plant species in the field[J]. Water, Air and Soil Pollution,2007,184:1-4
    [75]王激清,茹淑华,苏德纯.用于修复土壤超积累镉的油菜品种筛选[J].中国农业大学学报,2003,8(1):67-70
    [76]钱海燕,王兴祥,蒋佩兰,等.黑麦草连茬对铜、锌污染土壤的耐性及其修复作用[J].江西农业大学学报,2004,26(5):801-804
    [77]王校常,施卫明,曹志洪.重金属的植物修复-绿色清洁的污染治理技术[J].核农学报,2000,14(5):315-320
    [78]Glass D J. Economic potential of phytoremediation. In:Phytoremediation of Toxic Metals Using Plants to Clean Up the Environment. John Wiley, Sons. Inc., New York, Raskin I, Ensley B D(Ed.),2000,15-31
    [79]Sas-Nowosielska A, Kucharski R, Malkowski E. Phytoextraction crop disposal-an unsolved problem[J]. Environmental Pollution,2004,128(3): 373-379
    [80]李宁,吴龙华,孙小峰,等.修复植物产后处置技术现状与展望[J].土壤,2005,37(6):587-592
    [81]Blaylock M J, Salt D E, Dushenkov S, et al. Enhanced accumulation of Pb in Indian mustard by soil-applied chelation agents[J]. Environmental Science and Technology,1997,31:860-865
    [82]Lasat M M. Phytoetraction of metals from contaminated soil:A review of plant/ soil/ metal interaction and assessment of pertinent agronomic issues[J]. Journal of Hazardous Substance Research,2000,2:1-15
    [83]Solhi M, Shareatmadari H, Hajabbasi M A. Lead and zinc extraction potential of two common crop plants, Helianthus annuus and Brassica napus[J]. Water, Air and Soil Pollution,2005,167:59-71
    [84]Ghosh M, Singh S P. A comparative study of cadmium phytoextraction by accumulator and weed species[J]. Environmental Pollution,2005,133:365-371
    [85]Baker A J M, McGrath S P, Reeves R D, et al. Metal hyperaccumulator plants:a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In:Phytoremediation of Contaminated Soil and Water. Lewis Publishers, Boca Raton, Florida, Terry N, Banuelos Q(Ed.),2000,85-108
    [86]Brown S L, Chaney R L, Angle J S, et al. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution[J]. Soil Science Society America Journal,1995,59:125-133
    [87]Zhuang P, Ye Z H, Lan C Y, et al. Chemically assisted phytoextraction of heavy metals contaminated soils using three plant species[J]. Plant and Soil,2005,276: 153-162
    [88]Zhao F J, Lombi E, McGrath S P. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens[J]. Plant and Soil,2003,249:37-43
    [89]Robinson B H, Chiarucci A, Broods R R, et al. The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel[J]. Journal of Geochemical Exploration,1997,59:75-86
    [90]Turgut C, Pepe M K, Cutright T J. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus[J]. Environmental Pollution,2004,131:147-154
    [91]Liphadzi M S, Kirkham M B, Mankin K R, et al. EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm[J]. Plant and Soil,2003,257:171-182
    [92]Wenzel W W, Unterbrunner R, Sommer P, et al. Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments[J]. Plant and Soil,2003,249:83-96
    [93]McGrath S P, Lombi E, Gray C W, et al. Field evaluation of Cd and Zn phytoexraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri[J].Environmental Pollution,2006,141:115-125
    [94]国家环境环保局,国家技术监督局.中华人民共和国国家标准《土壤环境质量标准(GB15618-1995)》[M].1995,UDC 631-4:006-83
    [95]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000
    [96]中国环境监测站.中国土壤元素背景值研究[M].北京:中国环境科学出版社,1990
    [97]Mertens J, Luyssaert S, Verheyen K. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction[J]. Environmental Pollution, 2005,138:1-4
    [98]Hammer D, Keller C. Change in the rhizosphere of metal-accumulating plants evidenced by chemical extractants[J]. Journal of Environmental Quality,2002, 31:1561-1569
    [99]McGrath S P, Dunham S J, Correll R L. Potential for phytoextraction of zinc and cadmium from soils using hyperaccumulator plants. In:Phytoremediation of Contaminated Soil and Water. Lewis Publishers, Boca Raton, USA, Terry N, Banuelos G, Vangronsveld J(Ed.),2000,109-128
    [100]孙伟.层次分析法应用研究[J].市场研究,2008,12:35-39
    [101]孙铁珩,李培军,周启星.土壤污染形成机理与修复技术[M].北京:科学出版社,2005
    [102]Chaney R L, Li Y M, Brown S L, et al. Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems:approaches and progress. In:Phytoremediation of Contaminated Soil and Water. Lewis Publisher, Boca Raton, Washington DC, Terry N, Banuelos G, Vangronsveld J(Ed.),2000: 129-158
    重金属复合污染农田土壤植物修复的研究
    [103]Nowack B, Schulin R, Robinson B. Critical Assessment of Chelant-Enhanced Metal phytoextraction[J]. Environmental Science and Technology,2006,40: 5225-5232
    [104]Kos B, Lestan D. Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers [J]. Environmental Science and Technology,2003b,37:624-629
    [105]Lasat M M, Fuhrmann M, Ebbs S D, et al. Phytoremediation of a radiocesium-contaminated soil:evaluation of cesium-137 bioaccumulation in the shoots of three plant species[J]. Journal of Environmental Quality,1998,27:165-169
    [106]李继光.氮肥对东南景天(Sedum alfredii Hance)重金属镉超积累的影响[硕士学位论文].辽宁:沈阳农业大学,2007
    [107]Tessier A, Campbell P G C, Blsson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry,1979,51(7):844-851
    [108]戎秋涛.环境地球化学[M].北京:地质出版社,1999
    [109]高芳蕾,董岩翔,王世纪.矿区土壤重金属元素的形态分布及生物活性[J].安徽农业科学,2009,37(12),5614-5616
    [110]Adriano D C. Trace elements in terrestrial environments:biogeochemistry, bioavailability and risks of metals [M]. New York:2nd Edn. Springer,2001
    [111]Pueyo M, Lopex-sanchez J F, Rauret G. Assessment of CaCl2,NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils[J]. Analytical Chemical Acta,2004,504:217-226
    [112]Hamilton R S, Revitt D M, Warren R S. Levels and physico-chemical associations of Cd, Cu, Pb and Zn in road sediment[J]. Science of the Total Enironment,1984,33,59-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700