用户名: 密码: 验证码:
AMPA受体运输在杏仁外侧核NMDA受体依赖性的突触可塑性调节中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
学习与记忆是动物和人赖以生存不可缺少的重要脑功能。学习是指获得外界信息的过程,记忆是将获得的信息储存和读出的神经过程。众多研究显示,中枢神经系统内的突触可塑性与学习记忆密切相关,是学习记忆的神经基础之一。中枢神经系统的突触可塑性调节主要有两种模式:长时程增强(long termpotentiation;LTP)和长时程减弱(long term depression;LTD)。一般认为,在研究较为彻底的海马CA1部位,NMDA受体激活后导致的突触后AMPA受体的运输(分泌与内吞)是LTP和LTD诱导表达的主要机制。
     近期研究发现LTP和LTD现象也存在于丘脑-杏仁外侧核通路,被认为对和恐惧情绪反应有关的学习与记忆的突触可塑性调节过程有重要作用。但其具体的内在机制目前尚不清楚。因此本课题在杏仁核部位对作为脑内突触可塑性模式的LTP和LTD的神经和细胞分子机制及其与学习记忆的相关性进行了深入系统的研究。第一部分研究了不同模式电刺激丘脑-杏仁外侧核传入纤维通路所诱导的长时程增强(LTP)和长时程减弱(LTD)现象,并观察了不同NMDA受体亚基在诱导中的作用;第二部分研究了突触后AMPA受体的运输是否参与杏仁外侧核部位LTP和LTD的诱导表达。
     一、NMDA受体在杏仁外侧核突触可塑性调节中的作用
     本部分研究中,用经典的电刺激方法在大鼠脑薄片的丘脑-杏仁外侧核传入通路诱导LTP和LTD,在杏仁外侧核区记录兴奋性突触后电流EPSC。为了进一步确定大鼠杏仁外侧核区LTP/LTD与NMDA受体之间的关系,在电刺激诱导LTP/LTD前,用脑薄片灌流液内给药的方法进行不同的竞争性NMDA受体拮抗剂的预处理,并观察此种拮抗剂是否影响了LTP/LTD的诱导,以确定LTP/LTD诱导发生的受体依赖性过程。
     杏仁外侧核(LA)直接接受来自丘脑和皮层的输入,而杏仁核中的神经可塑性调节主要发生在丘脑-LA通路,因此大量关于恐惧记忆形成的细胞和分子机制的研究都集中在这一环路上。在本实验中,高频电刺激(HFS:串长:100;频率:100 Hz;连续刺激3次,串间隔20s)和配对高频电刺激(pairing:串长:200;频率:2Hz;突触后膜电压钳制在-5 mv)丘脑-杏仁外侧核传入纤维通路,均能在杏仁外侧核锥体神经元诱导出稳定的LTP,主要表现为兴奋性突触后电流(EPSC)幅度的增加,并可稳定的维持40-60分钟以上。而低频电刺激(LFS:串长:900;频率:1 Hz)和配对低频电刺激(pairing:串长:480;频率:1 Hz;突触后膜电压钳制在-50 mv)丘脑-杏仁外侧核传入纤维通路,则均能在杏仁外侧核部位诱导出稳定的LTD,主要表现为兴奋性突触后电流(EPSC)幅度的减小,并可稳定的维持40-60分钟以上。
     谷氨酸受体(glutamate receptor,GluR)是中枢神经系统内主要的兴奋性神经递质受体。其中,NMDA受体在突触可塑性调节中发挥的重要作用近年愈来愈被重视。本实验将NMDA受体抑制剂D-APV(50uM)加入杏仁核脑薄片的灌流液,预处理20-30分钟后以与对照组相同参数的电刺激分别诱导LTP和LTD,则LTP和LTD现象均不能被诱导发生;用NR2A亚基抑制剂NVP-AAM077(0.4uM)预处理脑薄片,则LTP的诱导被阻断,LTD可正常发生;而用NR2B亚基抑制剂Ro25-6981(3uM)和Ifenprodil(10uM)预处理脑薄片,则LTP可被正常诱导,但LTD的诱导被阻断。以上结果提示杏仁外侧核部位的突触可塑性调节主要为NMDA受体依赖性的突触过程,不同亚基组成的NMDA受体在决定大鼠杏仁核部位突触可塑性的极性方面具有重要作用。
     二、AMPA受体的运输参与杏仁外侧核的突触可塑性调节过程
     本部分实验采用脑片电生理方法观察丘脑-杏仁外侧核传入通路上LTP诱导表达过程中与膜融合有关的囊泡内受体分泌过程,以及AMPA受体的调节性内吞过程与LTD之间的特异性联系。并使用表面蛋白生物素分析方法(SurfaceBiotinylation Assay)在杏仁外侧核脑薄片上测定AMPA受体的细胞表面表达量,以观察AMPA受体的运输是否参与杏仁外侧核部位LTP和LTD的诱导表达。
     中枢神经系统的兴奋性突触传递主要由谷氨酸受体:AMPA受体和NMDA受体介导。而突触传递效率的改变主要取决于突触前膜的神经递质释放量和聚集在突触后膜的相应受体数目。目前认为对突触后膜上的AMPA受体数目进行调控是导致突触可塑性发生的有效途径。在突触后部位利用神经毒素TeTx(含200nM TeTx的细胞内液充灌记录微电极)阻断VAMP蛋白介导的囊泡受体的分泌过程,则LTP的表达被抑制;同样,在突触后部位利用干扰肽GluR2_(3Y)(含100μg/mlGluR2_(3Y)的细胞内液充灌记录微电极)特异性阻断AMPA受体的内吞过程,则LTD的表达被阻断。利用表面蛋白生物素分析、免疫沉淀和免疫印迹等方法测定在杏仁外侧核部位有效诱导LTP或LTD前后,神经元细胞表面上AMPA受体的表达。发现在高频电刺激诱导LTP后,细胞膜表面的AMPA受体表达增加,主要表现为GluR1亚单位表达明显增多;低频电刺激诱导LTD后,细胞膜表面的AMPA受体表达减少,主要表现为细胞膜表面GluR2亚单位的表达显著减少。细胞膜上AMPA受体的数量在诱导LTP/LTD后短时间内发生了显著性变化。提示诱导LTP后可以促进AMPA受体由胞内迁移至细胞膜表面(插膜),而诱导LTD后则可以促进AMPA受体从细胞膜表面移入到胞内(内化)。
     本研究证实长时程增强(LTP)和长时程减弱(LTD)现象存在于丘脑-杏仁外侧核通路,它们的诱导发生均需要NMDA受体的参与。含有NR2A亚基的NMDA受体的激活导致LTP的形成,含有NR2B亚基的NMDA受体的激活导致LTD的形成,说明不同亚基组成的NMDA受体在决定大鼠杏仁核部位突触可塑性的极性方面具有重要作用。而杏仁外侧核部位这种NMDA受体依赖性的突触可塑性调节过程需要AMPA受体运输的参与。膜融合依赖性的AMPA受体分泌过程参与LTP的诱导表达,有效诱导LTP后伴随神经元细胞表面AMPA受体的表达增加;而AMPA受体调节性内吞过程参与LTD的诱导表达,有效诱导LTD后伴随神经元表面AMPA受体表达的减少。以上结果表明由NMDA受体介导的AMPA受体的插膜和内吞过程分别是杏仁体外侧核LTP、LTD发生的机制之一,对突触后膜上的AMPA受体数目进行调控是进行突触可塑性改变的有效途径,本研究为阐明杏仁外侧核部位突触可塑性的变化过程提供了可能的分子机制。
Learning and memory are important computational strategies of the brain. They are generally believed to result from changes in synaptic efficacy induced by afferent activity. Long-term potentiation (LTP) and long-term depression (LTD), the two most well characterized forms of synaptic plasticity, are thought to be important for learning and memory in behaving animals. Stimulated exocytosis and endocytosis of postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype of glutamate receptors (AMPARs) have been proposed as primary mechanisms for the expression of hippocampal CA1 long-term potentiation (LTP) and long-term depression (LTD), respectively.
     In recent years, LTP and LTD are considered as two forms of synaptic plasticity that underlie the memory storage at sensory input synapses to the lateral amygdala (LA) during fear conditioning. However, the detailed underlying mechanisms especially the role of AMPAR trafficking in the expression of either LTP or LTD in this structure is still unknown. In the present study, we first observe the expression of LTP and LTD at thalamic input synapses induced by two different protocols in vitro and the effect of N-methy-D-aspartate receptors (NMDARs) blocked during LTP and LTD, to study the candidate mechanism for learning and memory during fear conditioning. Then we observe weather the induction protocols of LTP and LTD could increased or decreased the surface expression of AMPARs, thus NMDAR mediated AMPAR traffickings are responsible for the expression of LTP and LTD in the LA.
     1. NMDA receptors contribute to Long-term potentiation and long-term depression in the lateral amygdala
     Both LTP and LTD can also be induced in the lateral amygdala (LA), a critical structure involved in fear conditioning. Here we show that, using standard LTP or LTD stimulation protocols, N-methy-D-aspartate receptor (NMDAR)-dependent LTP and LTD can be reliably induced at the synapses of the auditory thalamic inputs to the LA in brain slices. High frequency stimulation (HFS: 3 episodes of 100 pulses at 100 Hz) could induce stable LTP, which could last for 40-60 min after the induction in fresh brain slices. While pairing protocol (200 pulses at 2Hz while depolarizing the cell to -5mv ) can induced more robust LTP in the LA. Stable and persistent LTD can be induced by low frequency stimulation (LFS: 900 pulses at 1 Hz) and paired protocol (delivering 480 pulses at 1Hz while holding potential was at -50 mv). Activation of NMDA receptors (NMDARs) is required for LTP and LTD of excitatory synaptic transmission at lateral amygdala synapses. Bath application of D-APV (50μM) during the recording can blocked the induction of LTP and LTD. Selectively blocking NMDARs that contain the NR2B subunit by the NR2B subunit-selective antagonist ifenprodil (3μM) or Ro25-6981 (0.5μM) can abolish the induction of LTD but not LTP. In contrast, preferential inhibition of NR2A-containing NMDARs by NVP-AAM077 (0.4μM) prevents the induction of LTP without affecting the induction of LTD.
     2. AMPA receptor trafficking is required for NMDA-dependent synaptic plasticity in the lateral amygdala
     It is generally agreed that postsynaptic changes in the number of surface AMPA receptors play an important role in synaptic plasticity. NMDAR mediated AMPAR trafficking is at least one of the mechanisms for the expression of LTP and LTD. Here we show that the expression of the bidirectional synaptic plasticity in the LA was also mediated by the trafficking of postsynaptic AMPARs. Postsynaptic application of a light chain of Clostridium tetanus neurotoxin (TeTx) which selectively cleaves vesicle-associated membrane proteins (VAMP) eliminated the expression of LTP, while postsynaptic application of a GluR2-derived interfering peptide which selectively blocks the stimulated clathrin-dependent regulated AMPAR endocytosis prevented the induction of LTD. The level of AMPAR subunits in the LA was examined following HFS or LFS stimulation by surface biotinylation assay, a quantification of the average density of individual band obtained by western blots. Biotinylation data also showed that the induction protocols of LTP or LTD respectively increased or decreased the surface expression of AMPARs.
     Results of the present study showed the induction of LTP and LTD at the synapses of the auditory thalamic inputs to the LA in brain slices were dependent upon NMDARs. Distinct NMDARs of different subunit composition have critical roles in determining the polarity of synaptic plasticity in lateral amygdala synapses of adult rats. The activation of NR2A-containing NMDARs leads to LTP formation, while the activation of NR2B-containing NMDARs produces LTD. The membrane fusion-dependent exocytosis plays an important role in the LTP expression and regulated AMPAR endocytosis is required for the NMDAR-dependent LTD. A rapid increase of AMPAR surface expression is responsible for the rise of transmission efficacy during LTP, while a rapid endocytotic-dependent decrease in the number of surface AMPARs accounts for LTD expression. This regulated change in the trafficking of postsynaptic AMPA receptors may serve as a common mechanism for synaptic strength alteration during synaptic plasticity in the central nerve system. The results of present study strongly suggest that NMDAR mediated AMPAR trafficking is at least one of the mechanisms for the expression of LTP and LTD in the LA.
引文
1. Dityatev, A.E., Bolshakov, V.Y. Amygdala, long-term potentiation, and fear conditioning [J]. Neuroscientist, 2005; 11(1): 75 - 88.
    
    2. Blair, H.T., Schafe, G.E., Bauer, E.P., Rodrigues, S.M., LeDoux, J.E. Synapitic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning [J]. Learning & memory, 2001, 8(5):229-242.
    
    3. Doron, N.N., LeDuox, J.E. Organization of projections to the lateral amygdale from auditory and visual areas of the thalamus in the rat [J]. J. Comp. Neurol., 1999,412(3):383-409.
    
    4. Mcdonald, A.J. Cortical pathways to the mammalian amygdala [J]. Prog, neurobiol, 1998, 55(3):257-332.
    
    5. Malenka, R.C., Bear, M.F. LTP and LTD: an embarrassment of riches [J]. Neuron, 2004,44(1):5-21.
    
    6. Malenka, R.C., Nicoll, R.A. Long term potentiation-a decade of progress [J]? Science, 1999, 285(5435): 1870-1874.
    
    7. Chapman, P.F., Chattarji, S. Synaptic plasticity in the amygdala. In: Aggleton JP editor. The amygdala: A functional analysis [M]. University Press, 2000, 117-153.
    
    8. Kelso, S.R., Brown, T.H. Differential conditioning of associative synaptic enhancement in hippocampal brain slices [J]. Science, 1986, 232(4746): 85-87.
    
    9. Stanton, P.K. LTD, LTP, and the sliding threshold for long-term synaptic plasticity [J]. Hippocampus, 1996, 6(1): 35-42.
    
    10. Barria, A. and Malinow, R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII [J]. Neuron, 2005, 48(2): 289-301.
    
    11. Rogan, M.T., Staubli, U.V., LeDuox, J.E. Fear conditioning induces associate long-term potentiation in the amygdala [J]. Nature, 1997, 390(6660):704-607.
    
    12. Lee, H., Kim, J.J. Amygdala NMDA receptors are critical for new fear learning in previously fear-conditioned rats [J]. J Neurosci, 1998, 18(20): 8444-8454.
    13. Maren, S., Aharonov, G., Stote, D.L., Fanselow, M.S. N-methyl-D-aspartate receptors in the basolateral amygdale are required for both acquisition and expression of conditional fear in rats [J]. Behav Neurosci, 1996, 110(6): 1365-1374.
    
    14. Rothman, J.E. Mechanisms of intracellular protein transport [J]. Nature, 1994, 372(6501): 55-63.
    
    15. Bauer, E.P., Schafe, G.E., LeDoux, J.E. NMDA receptors and L-type voltage-gated calcium channels contributes to long-term potentiation and different components of fear memory formation in the lateral amygdale [J]. J Neurosci, 2002,22(12): 5239-5249.
    
    16. Pitkanen, A., Savander, V., LeDuox, J.E. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdale [J]. Trends Neuronsci, 1997, 20(11):517-523.
    
    17. Rainnie, D.G., Holmes, K.H., Shinnick-Gallagher, P. Excitatory tansmission in the basolateral amygdala [J]. J Neurophysiol, 1991, 66(3):986-998.
    
    18. Parkinson, J.A., Crofts, H.S., McGuigan, M., Tomic, D.L., Everitt, B.L., Roberts, A.C. The Role of the Primate Amygdala in Conditioned Reinforcement [J]. J. Neurosci., 2001,21(19): 7770-7780.
    
    19. Mckernan, M.G., Shinnick-Gallagher, P. Fear conditioning induces a lasting potentiation of synaptic currents in vitro [J]. Nature, 1997, 390(6660): 607-611.
    
    20. Mahanty, N.K., Sah, P. Excitatory synaptic inputs to pyramidal neurons of the lateral amygdala [J]. Eur J Neurosci., 1999, 11(4): 1217-1222.
    
    21. Rogan, M.T., LeDuox, J.E. LTP is accompanied by commensurate enhancement of auditory-evoked responses in a fear conditioning circuit [J]. Neuron, 1995, 15(1):127-136.
    
    22. Weisskopf, M.G., Bauer, E.P., LeDoux, J.E. L-type voltage-gated calcium channels mediate NMDA-independent associate long-term potentiation at thalamic input synapses to the amygdala [J]. J Neurosci, 1999, 19(23): 10512-10519.
    
    23. Kelso, S.R., Ganong, A.H., Brown, T.H. Hebbian synapses in hippocampus [J]. Proc. Natl. Scad. Sci., 1986, 83(14): 5326-5330.
    
    24. Zhang, Z., Gong, N., Wang, W., Xu, L., and Xu, T.L. Bell-Shaped D-Serine Actions on Hippocampal Long-Term Depression and Spatial Memory Retrieval [J]. Cereb Cortex, 2008, Feb 14.
    
    25. Zhao, M., Choi, Y.S., Obrietan, K., and Dudek, S. M. Synaptic Plasticity (and the Lack Thereof) in Hippocampal CA2 Neurons [J]. J. Neurosci., 2007, 27(44): 12025-12032.
    
    26. Wong, T. P., Howland, J. G., Robillard, J. M., Ge, Y., Yu, W., Titterness, A. K., Brebner, K., Liu, L., Weinberg, J., Christie, B. R. Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment [J]. P.N.A.S., 2007, 104(27): 11471-11476.
    
    27. Mutoh, H., Yuan, Q., and Knopfel, T. Long-Term Depression at Olfactory Nerve Synapses [J]. J. Neurosci., 2005, 25(17): 4252-4259.
    
    28. Kemp, N., McQueen, J., Faulkes, S., Bashir, Z. I. Different forms of LTD in the CA1 region of the hippocampus: role of age and stimulus protocol [J]. Eur. J. Neurosci., 2000, 12(1): 360-69.
    
    29. Bliss, T.V., Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus [J]. Nature, 1993, 361(6407): 31-40.
    
    30. Bear, M. F., Malenka, R. C. Synaptic plasticity: LTP and LTD [J]. Curr. Opin. Neurobiol, 1994,4(3): 389-99.
    
    31. Nagy, V., Bozdagi, O., Matynia, A., Balcerzyk, M., Okulski, P., Dzwonek, J., Costa, R. M., Silva, A. J., Kaczmarek, L., and Huntley, G. W. Matrix Metalloproteinase-9 Is Required for Hippocampal Late-Phase Long-Term Potentiation and Memory [J]. J. Neurosci., 2006, 26(7): 1923-1934.
    
    32. Tang, Y. P. Genetic enhancement of learning and memory in mice [J]. Nature, 1999, 401(6748): 63-69.
    
    33. Armentia, M.L. and Sah, P. Bidirectional synaptic plasticity at nociceptive afferents in the rat central amygdala [J]. J. Physiol., 2007(pt3), 581: 961-970.
    
    34. Kaschel, T., Schubert, M., Albrecht, D. Long-term depression in horizontal slices of the rat lateral amygdala [J]. Synapse, 2004, 53(3): 141-150.
    35. Walker, D. L., and Davis, M. Amygdala infusions of an NR2B-selective or an NR2A-preferring NMDA receptor antagonist differentially influence fear conditioning and expression in the fear-potentiated startle test [J]. Learn. Mem., 2008,15(2): 67-74.
    
    36. Bauer, E.P., Schafe, G.E., LeDoux, J.E. Different induction protocols recruit NMDA and L-type calcium channel-dependent LTP in the lateral amygdale: correlation with fear memory [J]. Soc. Neurosci. Abs., 2000,26(1): 1253-67.
    
    37. Seeburg, P. H. The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels [J]. Trends Neurosci, 1993, 16(9): 359-65.
    
    38. Ritter, L. M., Vazquez, D. M., Meador-Woodruff, J. H. Ontogeny of ionotropic glutamate receptor subunit expression in the rat hippocampus [J]. Brain Res. Dev. Brain Res., 2002, 139(2): 227-236.
    
    39. Zhu, J., Qin, Y., Zhao, M., Van Aelst, L., Malinow, R. Ras and Rap control AMPA receptor trafficking during synaptic plasticity [J]. Cell, 2002,110(4): 443-455.
    
    40. Kirson, E. D., Yaari, Y. Synaptic NMDA receptors in developing mouse hippocampal neurones: functional properties and sensitivity to ifenprodil [J]. J. Physiol., 1996,497(pt2): 437-455.
    
    41. Tovar, K. R., Westbrook, G. L. The Incorporation of NMDA Receptors with a Distinct Subunit Composition at Nascent Hippocampal Synapses in Vitro [J]. J. Neurosci., 1999, 19(10): 4180-88.
    
    42. Kohr, G.Intracellular Domains of NMDA Receptor Subtypes Are Determinants for Long-Term Potentiation Induction [J]. J. Neurosci., 2003,23(34): 10791-99.
    
    43. Miserendino, M.J., Sananes, C.B., Melia, K.R., Davis, M. Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonist in the amygdala [J]. Nature, 1990, 345(6277):716-718.
    
    44. Rodrigues, S.M., Schafe, G.E., LeDoux, J.E. Intra-amygdala blocked of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning [J]. J Neurosci, 2001, 21(17): 6889-6896.
    
    45. Weisskopf, M.G., LeDoux, J.E. Distinct populations of NMDA receptors at subcortical and cortical inputs to principal cells of the lateral amygdala [J]. J Neurophysiol, 1999, 81(2): 930-934.
    
    46. Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B., Seeburg, P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors [J]. Neuron, 1994, 12(3): 529-540.
    
    47. Laurie, D. J., Bartke, I., Schoepfer, R., Naujoks, K., Seeburg, P. H. Regional, developmental and interspecies expression of the four NMDAR2 subunits, examined using monoclonal antibodies [J]. Brain Res. Mol. Brain Res., 1997, 51(1-2): 23-32.
    
    48. Wenzel, A., Fritschy, J. M., Mohler, H., Benke, D. NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins [J]. J. Neurochem., 1997, 68(2): 469-478.
    
    49. Sheng, M., Cummings, J., Roldan, L. A., Jan, Y. N., Jan, L. Y. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex [J]. Nature, 1994, 368(6467): 144-147.
    
    50. Buller, A. L. The molecular basis of NMDA receptor subtypes: native receptor diversity is predicted by subunit composition [J]. J. Neurosci., 1994, 14(9): 5471-84.
    
    51. Sakimura, K. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit [J]. Nature, 1995,373(6510): 151-155.
    
    52. Ewald, R. C., Van Keuren-Jensen, K. R., Aizenman, C. D., and Cline, H. T. Roles of NR2A and NR2B in the Development of Dendritic Arbor Morphology In Vivo [J]. J. Neurosci, 2008, 28(4): 850-861.
    
    53. Harris, A. Z., Pettit, D. L. Recruiting Extrasynaptic NMDA Receptors Augments Synaptic Signaling [J]. J Neurophysiol, 2008,99(2): 524-533.
    
    54. Morishita, W., Malenka, R. C. Mechanisms Underlying Dedepression of Synaptic NMDA Receptors in the Hippocampus [J]. J Neurophysiol, 2008, 99(1): 254-263.
    
    55. Zhao, J.P., Constantine-Paton, M. NR2A / Mice Lack Long-Term Potentiation But Retain NMDA Receptor and L-Type Ca2+ Channel-Dependent Long-Term Depression in the Juvenile Superior Colliculus [J]. J. Neurosci, 2007, 27(50): 13649-13654.
    
    56. Fernandes, H. B., Baimbridge, K. G., Church, J., Hayden, M. R., Raymond, L. A. Mitochondrial Sensitivity and Altered Calcium Handling Underlie Enhanced NMDA-Induced Apoptosis in YAC128 Model of Huntington's disease [J]. J. Neurosci., 2007, 27(50): 13614-13623.
    
    57. Mizuno, T., Kanazawa, I., Sakurai, M. Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor [J]. Eur. J. Neurosci., 2001,14(4): 701-708.
    
    58. Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M. M., Kato, K. Calcium stores regulate the polarity and input specificity of synaptic modification [J]. Nature, 2000,408(6812): 584-588.
    
    59. Cummings, J. A., Mulkey, R. M., Nicoll, R. A., Malenka, R. C. Ca2+ signaling requirements for long-term depression in the hippocampus [J]. Neuron, 1996, 16(4): 825-833.
    
    60. Sheng, M., Pak, D. T. Ligand-gated ion channel interactions with cytoskeletal and signaling proteins [J]. Annu. Rev. Physiol., 2000, 62(1): 755-778.
    
    61. Harris, A. Z., Pettit, D. L. Extrasynaptic and synaptic NMDA receptors form stable and uniform pools in rat hippocampal slices [J]. J. Physiol., 2007, 584(pt2): 509-519.
    
    62. Beique, J.-C., Lin, D.T., Kang, M.-G., Aizawa, H., Takamiya, K., Huganir, R. L. Synapse-specific regulation of AMPA receptor function by PSD-95 [J]. PNAS, 2006,103(51): 19535-19540.
    
    63. Hallett, P. J., Spoelgen, R., Hyman, B. T., Standaert, D. G., Dunah, A. W. Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking [J]. J. Neurosci., 2006, 26(17): 4690-4700.
    
    64. Tigaret, C. M., Thalhammer, A., Rast, G. F., Specht, C. G., Auberson, Y. P., Stewart, M. G., Schoepfer, R. Subunit Dependencies of N-Methyl-D-aspartate (NMDA)Receptor-Induced{alpha}-Amino-3-hydroxy-5-methyl-4-isoxazolepropi onic Acid (AMPA) Receptor Internalization [J]. Mol. Pharmacol., 2006, 69(4): 1251-1259.
    
    65. Liu, X.B., Murray, K. D., Jones, E. G. Switching of NMDA Receptor 2A and 2B Subunits at Thalamic and Cortical Synapses during Early Postnatal Development [J]. J. Neurosci, 2004,24(40): 8885-8895.
    
    66. Meur, K. L., Galante, M., Angulo, M. C., Audinat, E. Tonic activation of NMDA receptors by ambient glutamate of non-synaptic origin in the rat hippocampus [J]. J. Physiol., 2007, 580(pt2): 373-383.
    
    67. Neyton, J., Paoletti, P. Relating NMDA Receptor Function to Receptor Subunit Composition: Limitations of the Pharmacological Approach [J]. J. Neurosci., 2006,26(5): 1331-1333.
    
    68. Yoshimura, Y., Ohmura, T., Komatsu, Y. Two Forms of Synaptic Plasticity with Distinct Dependence on Age, Experience, and NMDA Receptor Subtype in Rat Visual Cortex [J]. J. Neurosci., 2003,23(16): 6557-66.
    
    69. Tatsukawa, T., Chimura, T., Miyakawa, H., Yamaguchi, K. Involvement of basal protein kinase C and extracellular signal-regulated kinase 1/2 activities in constitutive internalization of AMPA receptors in cerebellar Purkinje cells [J]. J. Neurosci, 2006, 26(18): 4820-4825.
    
    70. Li, S., Tian, X., Hartley, D. M., Feig, L. A. Distinct Roles for Ras-Guanine Nucleotide-Releasing Factor 1 (Ras-GRF1) and Ras-GRF2 in the Induction of Long-Term Potentiation and Long-Term Depression [J]. J. Neurosci, 2006, 26(6): 1721-1729.
    
    71. Massey, P. V., Johnson, B. E., Moult, P. R., Auberson, Y. P., Brown, M. W., Molnar, E., Collingridge, G. L., Bashir, Z. I. Differential Roles of NR2A and NR2B-Containing NMDA Receptors in Cortical Long-Term Potentiation and Long-Term Depression [J]. J. Neurosci, 2004, 24(36): 7821-7828.
    
    72. He, H.Y., Hodos, W., Quinlan, E. M. Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex [J]. J. Neurosci, 2006, 26(11): 2951-2955.
    73. Majewska, A. K., Newton, J. R., Sur, M. Remodeling of synaptic structure in sensory cortical areas in vivo [J]. J. Neurosci., 2006, 26(11): 3021-3029.
    
    74. Thomas, C. G., Miller, A. J., Westbrook, G. L. Synaptic and Extrasynaptic NMDA Receptor NR2 Subunits in Cultured Hippocampal Neurons [J]. J Neurophysiol, 2006, 95(3): 1727-1734.
    
    75. Clarke R. J., Johnson, J. W. NMDA Receptor NR2 Subunit Dependence of the Slow Component of Magnesium Unblock [J]. J. Neurosci., 2006, 26(21): 5825-5834.
    
    76. Sprengel, R. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo [J]. Cell, 1998, 92(2): 279-189.
    
    77. Fontan-Lozano, A., Saez-Cassanelli, J. L., Inda, M. C., de los Santos-Arteaga, M., Sierra-Dominguez, S. A., Lopez-Lluch, G., Delgado-Garcia, J. M., Carrion, A. M. Caloric Restriction Increases Learning Consolidation and Facilitates Synaptic Plasticity through Mechanisms Dependent on NR2B Subunits of the NMDA Receptor [J]. J. Neurosci., 2007,27(38): 10185-10195.
    
    78. Liu, L., Wong, T.P., Pozza, M.F., Lingenhoehl, K., Wang, Y., Sheng, M., Auberson, Y.P., Wang, Y.T. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity [J]. Science, 2004, 304(5673): 1021-1024.
    
    79. Cull-Candy, S. G., Leszkiewicz, D. N. Role of Distinct NMDA Receptor Subtypes at Central Synapses. Sci. STKE., 2004,2004(255): 16-16.
    
    80. Erreger, K., M Dravid, S., Banke, T. G., Wyllie, D. J. A., Traynelis, S. F. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles [J]. J. Physiol., 2005, 563(pt2): 345-358.
    
    81. Chung, H. J., Huang, Y. H., Lau, L.-F., Huganir, R. L. Regulation of the NMDA Receptor Complex and Trafficking by Activity-Dependent Phosphorylation of the NR2B Subunit PDZ Ligand [J]. J. Neurosci., 2004, 24(45): 10248-10259.
    
    82. Heinbockel, T., Pape, H.C. Input specific long-term depression in the lateral amygdala evoked by theta frequency stimulation [J]. J Neurosci, 2000, 20(7):RC68, 1-5.
    83. Mcdonald, A.J. Cell types and intrinsic connections of the amygdala. In Aggleton JP, editor. The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction [J]. New York: Wiley. P., 1992, l(1):67-96.
    
    84. Pare, D., Pape, H.C., Dong, J.M. Bursting and oscillating neurons of the cat basolateral amygdaloid complex in-vivo electrophysiological properties and morphological features [J]. J Neurophysiol, 1995, 74(3): 1179-1191.
    
    85. Repa, J.C., Muller, J., Apergis, J., Desrochers, T.M., Zhou, Y., LeDuox, J.E. Two different lateral amygdala cell populations contribute to the initiation and storage of memory [J]. Nat Neurosci., 2001, 4(7): 724-731.
    
    86. Williams, K. Ifenprodil, a novel NMDA receptor antagonist: site and mechanism of action [J]. Curr. Drug Targets, 2001,2(3): 285-298.
    
    87. Hendricson, A. W., Miao, C. L., Lippmann, M. J., Morrisett, R. A. Ifenprodil and Ethanol Enhance NMDA Receptor-Dependent Long-Term Depression [J]. J. Pharmacol. Exp. Ther., 2002, 301(3): 938-944.
    
    88. Mutel, V. In vitro binding properties in rat brain of [3H] Ro 25-6981, a potent and selective antagonist of NMDA receptors containing NR2B subunits [J]. J. Neurochem., 1998, 70(5): 2147-2155.
    
    89. Frizelle, P. A., Chen, P. E., Wyllie, D. J. A. Equilibrium Constants for (R)-[(S)-1 -(4-Bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxali n-5-yl)-methyl]-phosphonic Acid (NVP-AAM077) Acting at Recombinant NR1/NR2A and NR1/NR2B N-Methyl-D-aspartate Receptors: Implications for Studies of Synaptic Transmission [J]. Mol. Pharmacol., 2006, 70(3): 1022-1032.
    
    90. Sobczyk, A., Scheuss, V., Svoboda, K. NMDA Receptor Subunit -Dependent [Ca2+] Signaling in Individual Hippocampal Dendritic Spines [J]. J. Neurosci., 2005, 25(26): 6037-6046.
    
    91. Bayer, K. U., LeBel, E., McDonald, G. L., O'Leary, H., Schulman, H., De Koninck, P. Transition from Reversible to Persistent Binding of CaMKII to Postsynaptic Sites and NR2B [J]. J. Neurosci., 2006,26(4): 1164-1174.
    
    92. Zhou, Y.D., Acker, C. D., Netoff, T. I., Sen, K., White, J. A. Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression [J]. PNAS, 2005, 102(52): 19121-19125.
    
    93. Chen, Q., He, S., Hu, X.L., Yu, J., Zhou, Y., Zheng, J., Zhang, S., Zhang, C., Duan, W.-H., Xiong, Z.-Q. Differential Roles of NR2A- and NR2B-Containing NMDA Receptors in Activity-Dependent Brain-Derived Neurotrophic Factor Gene Regulation and Limbic Epileptogenesis [J]. J. Neurosci., 2007, 27(3): 542-552.
    
    94. Berberich, S., Punnakkal, P., Jensen, V., Pawlak, V., Seeburg, P. H., Hvalby, O., Kohr, G. Lack of NMDA Receptor Subtype Selectivity for Hippocampal Long-Term Potentiation [J]. J. Neurosci., 2005, 25(29): 6907-6910.
    
    95. Gordon, U., Polsky, A., Schiller, J. Plasticity Compartments in Basal Dendrites of Neocortical Pyramidal Neurons [J]. J. Neurosci., 2006, 26(49): 12717-12726.
    
    96. Mockett, B., Coussens, C., Abraham, W. C. NMDA receptor-mediated metaplasticity during the induction of long-term depression by low-frequency stimulation [J]. Eur. J. Neurosci., 2002, 15(11): 1819-1826.
    
    97. Bi, G.Q., Poo, M. M. Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type [J]. J. Neurosci., 1998, 18(24): 10464-10472.
    
    98. Markram, H., Lubke, J., Frotscher, M., Sakmann, B. Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs [J]. Science, 1997, 275(5297): 213-215.
    
    99. Barth, A. L., Malenka, R. C. NMDAR EPSC kinetics do not regulate the critical period for LTP at thalamocortical synapses [J]. Nature Neurosci, 2001, 4(3): 235-236.
    
    100.Emptage, N. J., Reid, C. A., Fine, A., Bliss, T. V. Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses [J]. Neuron, 2003, 38(5): 797-804.
    101.Philpot, B. D., Sekhar, A. K., Shouval, H. Z., Bear, M. F. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex [J]. Neuron, 2001, 29(1): 157-169.
    102.Erisir, A. J., Harris, L. Decline of the Critical Period of Visual Plasticity Is Concurrent with the Reduction of NR2B Subunit of the Synaptic NMDA Receptor in Layer 4 [J]. J. Neurosci., 2003,23(12): 5208-5218.
    103.Panatier, A., Gentles, S.J., Bourque, C.W. and Oliet, S.H.R. Activity-dependent synaptic plasticity in the supraoptic nucleus of the rat hypothalamus [J]. J. Physiol., 2006, 573(pt3): 711-721.
    104.Chen, N., Luo, T., Raymond, L.A. Subtype-Dependence of NMDA Receptor Channel Open Probability [J]. J. Neurosci, 1999, 19(16): 6844-6854.
    105.Qin, Y., Zhu, J.P., Baumgart, R.L., Stornetta, K., Seidenman, V., Mack, L., van Aelst, and Zhu, J.J. State-dependent Ras signaling and AMPA receptor trafficking [J]. Genes & Dev., 2005, 19(17): 2000-2015.
    
    106.Bouzioukh, G.A., Wilkinson, G., Adelmann, M. Frotscher, V. Stein, and R. Klein. Tyrosine Phosphorylation Sites in ephrinB2 are Required for Hippocampal Long-Term Potentiation But Not Long-Term Depression [J]. J. Neurosci., 2007, 27(42): 11279-11288.
    1. Malinow, R., Malenka, R.C. AMPA receptor trafficking and synaptic plasticity [J]. Annu. Rev. Neurosci., 2002,25(4):103-126.
    2. LUscher, C., Xia, H., Beattie, E.C., Carroll, R.C., von, Zastrow, M., Malenka, R.C., Nicoll, R.A. Role of AMPA receptor cycling in synaptic transmission and plasticity [J]. Neuron, 1999,24(3): 649-658.
    3. Bredt, D.S., Nicoll, R.A. AMPA receptor trafficking at excitatory synapses [J]. Neuron, 2003,40(2): 361-379.
    4. Collingridge, G.L., Isaac, J.T.R., Wang, Y.T. Receptor trafficking and synaptic plasticity [J]. Nature, 2004, 5(12): 952-962.
    5. Stanton, P.K. LTD, LTP, and the sliding threshold for long-term synaptic plasticity [J]. Hippocampus, 1996,6(1): 35-42.
    6. Shi, S., Hayashi, Y., Esteban, J.A., Malinow, R. Subunit specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons [J]. Cell, 2001,105(3): 331-343.
    7. Man, H.Y., Ju, W., Ahmadian, G., Wang, Y.T. Intracellular trafficking of AMPA receptors in synaptic plasticity [J]. Cell Mol Life Sci., 2000, 57(11): 1526-34.
    8. Shi, S.H., Hayashi, Y., Petralia, R.S., Zaman, S.H., Wenthold, R.G., Svoboda, K., Malinow, R. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation [J]. Science, 1999,284(5421): 1811-1816.
    9. Lu, W.Y., Man, H.Y., Ju, W., Trimble, W.S., Macdonald, J.F., Wang, Y.T. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons [J]. Neuron, 2001, 29(1): 243-254.
    10. Rothman, J.E. Mechanisms of intracellular protein transport [J]. Nature, 1994, 372(6501): 55-63.
    11. Liu, S.Q., Cull-Candy, S.G.Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype [J]. Nature, 2000, 405(6785): 454-458.
    12. Esteban, J.A., Shi, S.H., Wilson, C., Nuriya, M., Huganir, R.L., Malinow, R. PKA phosphorylation of AMPA receptors subunits controls synaptic trafficking underlying plasticity [J]. Nature Neurosci, 2003, 6(2): 136-143.
    
    13. Hayashi, Y., Shi, S.H., Esteban, J.A., Piccini, A., Poncer, J.C., Malinow, R. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction [J]. Science, 2000, 287(5461): 2262-2267.
    
    14. Lee, S.H., Liu, L., Wang, Y.T., Sheng, M. Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD [J]. Neuron, 2002, 36(4): 661-674.
    
    15. Repa, J.C., Muller, J., Apergis, J., Desrochers, T.M., Zhou, Y., LeDuox, J.E. Two different lateral amygdala cell populations contribute to the initiation and storage of memory [J]. Nat Neurosci., 2001,4(7): 724-731.
    
    16. Mcdonald, A.J. Cell types and intrinsic connections of the amygdala. In Aggleton JP, editor. The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction [J]. New York: Wiley. P. 1992, 1(1): 67-96.
    
    17. Pare, D., Pape, H.C., Dong, J.M. Bursting and oscillating neurons of the cat basolateral amygdaloid complex in-vivo electrophysiological properties and morphological features [J]. J Neurophysiol, 1995, 74(3): 1179-1191.
    
    18. Adesnik, H., Nicoll, R.A., England, P.M. Photoinactivation of native AMPA receptors reveals their real-time trafficking [J]. Neuron, 2005,48(6): 977-85.
    
    19. Kelso, S.R., Ganong. A.H., Brown. T.H. Hebbian synapses in hippocampus [J]. Proc. Natl. Scad. Sci, 1986, 83(14): 5326-5330.
    
    20. Malenka, R.C., Nicoll, R.A. Long term potentiation-a decade of progress [J]? Science, 1999, 285(5435): 1870-1874.
    
    21. Malenka, R.C., Bear, M.F. LTP and LTD: an embarrassment of riches [J]. Neuron, 2004,44(1): 5-21.
    
    22. Seeburg, P. H. The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels [J]. Trends Neurosci. 1993, 16(9): 359-365.
    
    23. Ritter, L. M., Vazquez, D. M., Meador-Woodruff, J. H. Ontogeny of ionotropic glutamate receptor subunit expression in the rat hippocampus [J]. Brain Res. Dev. Brain Res., 2002, 139(2): 227-236.
    
    24. Esteban, J.A., Shi, S.H., Wilson, C., Nuriya, M., Huganir, R.L., Malinow, R. Pka Phosphorylation of Ampa Receptor Subunits Controls synaptic trafficking underlying plasticity [J]. Nat Neurosci, 2003, 6(2): 136-43.
    25. Staubli, U., Rogers, G.., Lynch, G. Facilitation of Glutamate Receptors Enhances Memory [J]. Proc Natl Acad Sci U S A., 1994, 91(2): 777-81
    26. Hemart, N., Daniel, H., Jaillard, D., Crepel, F. Properties of Glutamate Receptors Are Modified During long-term depression in rat cerebellar purkinje cells [J]. Neurosci Res., 1994, 19(2): 213-21
    27. Yamada, K.A. and Tang, C.M. Benzothiadiazides Inhibit Rapid Glutamate Receptor desensitization and enhance glutamatergic synaptic currents [J]. J Neurosci., 1993, 13(9): 3904-15
    28. Lukasiewicz, P.D., Lawrence, J.E., and Valentino. Desensitizing Glutamate Receptors Shape Excitatory synaptic inputs to tiger salamander retinal ganglion cells [J]. J Neurosci., 1995, 15(9): 6189-99
    29. Partin, K.M., Patneau, D.K., Winters, C.A., Mayer. Selective Modulation of Desensitization at Ampa Versus kainite receptors by cyclothiazide and concanavalin A [J]. Neuron., 1993, 11(6): 1069-82
    30. Barria, A., Derkach, V., and Soderling, T. Identification of the Ca2+/Calmodulin-Dependent Protein kinase Ii regulatory phosphorylation site in the Alpha-Amino-3-Hydroxyl-5-Methyl-4- Isoxazole-Propionate-type glutamate receptor [J]. J Biol Chem, 1997, 272(52):32727-30
    31. Lambolez, B., Ropert, N., Perrais, D, Rossier, J. Correlation between Kinetics and Rna Splicing of Alpha-Amino-3-Hydroxyl-5-Methyl-4-Isoxazole -Propionic acid receptors in neocortical neurons [J]. Proc Natl Acad Sci U S A, 1996, 93(5): 1797-802
    32. Arai, Y., Mizuguchi, M, and Takashima, S. Developmental Changes of Glutamate Receptors in the rat cerebral cortex and hippocampus [J]. Anat. Embryol., 1997, 195(1): 65-70
    33. Bliss, T.V., Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus [J]. Nature, 1993, 361(6407):31-39.
    34. Carroll, R.C., Beattie, E.C., von Zastrow, M., Malenka, R.C. Role of AMPA receptor endocytosis in synaptic plasticity [J]. Nature Rev. Neurosci., 2001, 2(5): 315-324.
    35. Lee, S.H., Simonetta, A., and Sheng, M. Subunit Rules Governing the Sorting of Internalized AMPA receptors in hippocampal neurons [J]. Neuron., 2004, 43(2): 221-36
    
    36. Beattie, E.C., Carroll, R.C., Yu, X., Morishita, W., Yasuda, H., von. Zastrow, M., Malenka, R.C. Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD [J]. Nature Neurosci, 2000, 3(12): 1291-1300.
    
    37. Borgdorff, A.J., Choquet, D. Regulation of AMPA receptor lateral movements [J]. Nature., 2002,417(6889): 649-53
    
    38. Barria, A. and Malinow, R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII [J]. Neuron, 2005, 48(2): 289-301.
    
    39. Liu, L., Wong, T.P., Pozza, M.F., Lingenhoehl, K., Wang, Y., Sheng, M., Auberson, Y.P., Wang, Y.T. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity [J]. Science, 2004, 304(5673): 1021-1024.
    
    40. Maren, S., Aharono, G., Stote, D.L., Fanselow, M.S. N-methyl-D-aspartate receptors in the basolateral amygdale are required for both acquisition and expression of conditional fear in rats [J]. Behav Neurosci, 1996, 110(6): 1365-1374.
    
    41. Rodrigues, S.M., Schafe, G.E., LeDoux, J.E. Intra-amygdala blocked of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning [J]. J Neurosci, 2001, 21(17): 6889-6896.
    
    42. Hollmann, M., Heimann, S. Cloned glutamate receptors [J]. Annu Rev. Neurosci., 1994, 17(1): 31-108.
    
    43. Malinow, R. AMPA receptor trafficking and long-term potentiation [J]. Philos Trans R Soc Lond B Biol Sci., 2003,29;358 (1432): 707-14
    
    44. Liithi, A., Chittajallu, R., Duprat, F., Palmer, M., Benke, T., Kidd, F., Henley, J., Isaac, J., Collingridge, G.Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF-GluR2 interaction [J]. Neuron, 1999, 24(2): 389-99.
    
    45. Richmond, S. A., Irving, A. J., Molnar, E., McIlhinney, R. A. J., Michelangeli, F., Henley, J. M., Collingridge, G.L. Localization of the glutamate receptor subunit GluR1 on the surface of living and within cultured hippocampal neurons [J]. Neuronscience, 1996, 75(1): 69-82
    46. Iaidin, C., Cognet, L., Bats, C., Lounis, B., Choquet, D. Direct imaging of lateral movements of AMPA receptors inside synapses [J]. EMBO. J., 2003, 22(18): 4656-4665.
    47. Blnpied, T.A., Scott, D.B., Ehlers, M.D. Dynmics nd regulation of clathrin coats at specialized endocytic zones of dendrites and spines [J]. Neuron, 2002, 36(3): 435-449.
    48. Ashby, M.C. Removal of AMPAreceptors (AMPARs) from synaptic is proceded by transient endosytosis to extrasynaptic AMPAs [J]. J. Neurosci., 2004, 24(22): 5172-5176.
    49. Man, H.Y., Wang, Q., Lu, W.Y., Ju, W., Ahmadian, G,. Liu, L., D'Souza, S., Wong, T.P., Taqhibiqlou, C., Lu, J., Becker, L.E., Pei, L., Liu, F., Wvmann, M.P., MacDonald, J.F., Wang, Y.T. Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons [J]. Neuron, 2003, 38(3): 611-624.
    50. Nishimune, A., J. Isaac, E. Molnar, J. Noel, S. Nash, M. Tagaya, G.Collingridge, S. Nakanishi, J. Henley. NSF binding to GluR2 regulates synaptic transmission [J]. Neuron, 1998, 21(1): 87-97
    51. Lin, J.W., Sheng, M. NSF and AMPA receptors get physical [J]. Neuron, 1998, 21(2): 267-270.
    52. Luthi, A., Chittajallu, R., Duprat, F., Palmer, M.J., Benke, T.A., Kidd, F.L., Henley, J.M., Isaac, J.T., Collingridge, G.L. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF-GluR2 interaction [J]. Neuron, 1999, 24(2): 389-399.
    53. Hedo, P.M., Zhang, X., Sudhof, I.C., Malenka, R.C., Nicoll, R.A. Postsynaptic membrane fusion and long-term potentiation [J]. Science, 1998, 279(5349): 399-403.
    54. Noel, J., G.Ralph, L. Pickard, J. Williams, E. Molnar, J. Uney, Collingridge, G., Henley, J. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism [J]. Neuron, 1999, 23(2):365-76.
    55. Kim, C.H., John E. Lisman. A labile component of AMPA receptor-mediated synaptic transmission is dependent on microtubule motors, actin, and N-ethylmaleimide-sensitive factor [J]. J Neurosci, 2001, 21(12): 4188-94.
    56. Zhou, O., Xiao, M., Nicoll, R.A. Contribution of cytoskeleton to the intermalization of AMPA receptors. Proc [J]. Natl. Acad. Sci. USA., 2001, 98(3): 1261-1266.
    57. Shen, L., Liang, F., Loren D. Walensky, Richard L. Huganir. Regulation of AMPA receptor GluRl subunit surface expression by a 4. lN-linked actin cytoskeletal association [J]. J. Neurosci., 2000,20(21): 7932-40.
    58. Man, H.Y., Lin, J.W., Ju, W.H., Ahmadian, G., Liu, L., Becker, L.E., Sheng, M., Wang, Y.T. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization [J]. Neuron, 2000, 25(3): 649-662.
    59. Hua, S.Y., Charlton, M.P. Activity-dependent changes in partial VAMP complex during neurotransmitter release [J]. Nat. Neurosci., 1999, 2(12): 1078-1083.
    60. Shi, S.H., Hayashi, Y., Ronald S. Petralia, Shahid H. Zaman Robert J. Wenthold, Svoboda, K., Malinow R. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation [J]. Science, 1999, 284 (5421): 1811-6.
    61. Durand, G.M., Kovalchuk, Y., and Konnerth, A. Long-Term Potentiation and Functional Synapse Induction in developing hippocampus [J]. Nature, 1996, 381(6577): 6571-5.
    62. Isaac, J.T., Nicoll, R.A., Malenka, R.C. Evidence for Silent Synapses: Implications for the expression of LTP [J]. Neuron, 1995, 15(2): 427-34.
    63. Liao, D., Hessler, N.A., Malinow, R. Activation of Postsynaptically Silent Synapses During pairing-induced LTP in CA1 region of hippocampal slice [J]. Nature, 1995, 375(6530): 400-4
    64. Mainen, Z.F., Jia, Z., Roder, J., Malinow, R. Use-Dependent Ampa Receptor Block in Mice Lacking GluR2 suggests postsynaptic site for LTP expression [J]. Nat Neurosci., 1998, 1(7): 579-86.
    65. Broutman, G., Baudry, M. Involvement of the Secretory Pathway for Ampa Receptors in NMDA-induced potentiation in hippocampus [J]. J Neurosci, 2001, 21(1): 27-34.
    66. Liao, D., Scannevin, R.H., Huganir, R. Activation of Silent Synapses by Rapid Activity-Dependent synaptic recruitment of AMPA receptors [J]. J Neurosci, 2001,21(16): 6008-17.
    67. Pickard, L., Noel, J., Duckworth, J.K., Fitzjohn, S.M., Henlry, J.M., Collingridge, G.L., Molnar, E. Transient Synaptic Activation of Nmda Receptors leads to the insertion of native AMPA receptors at hippocampal neuronal plasma membranes [J]. Neuropharmacology, 2001,41(6): 700-13.
    68. Rumpel, S., Hatt, H., Gottmann, K. Silent Synapses in the Developing Rat Visual Cortex: evidence for postsynaptic expression of synaptic plasticity [J]. J. Neurosci, 1998, 18(21): 8863-74.
    69. Bortolotto, Z.A. Collingridge, G.L. On the Mechanism of Long-Term Potentiation Induced by (1s, 3r) -1-aminocyclopentane-1, 3-dicarboxylic acid (ACPD) in rat hippocampal slices [J]. Neuropharmacology, 1995, 34(8): 1003-14.
    70. Kietzmann, T., Knabe, W., Schmidt-Kastner, R. Hypoxia and Hypoxia-Inducible Factor Modulated Gene expression in brain: involvement in neuroprotection and cell death [J]. Eur Arch Psychiatry Clin Neurosci., 2001, 251(4): 170-8.
    71. Matsuda, S., Launey, T., Mikawa, S., Hirai, H. Disruption of AMPA Receptor Glur2 Clusters Following long-term depression induction in cerebellar purkinje neurons [J]. Embo J., 2000, 19(12): 2765-74.
    72. Wang, Y.T., Linden, D.J. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis [J]. Neuron, 2000, 25(3): 635-647.
    73. Li, Y.C., Song, G.Cao, Y., Wang, H., Wang, G.M., Yu, S.Y., Zhang, H. Modulation of the Hering-Breuer reflex by raphe pallidus in rabbits [J]. Neurosci Lett., 2006,397(3): 259-62.
    74. Mauceri, D., Cattabeni, F. Di Luca, M., Gardoni.F. Calcium/calmodulin-dependent protein kinase II phosphorylation drives synapse-associated protein 97 into spines [J]. J. Biol. Chem., 2004, 279(22): 23813-23821
    75. Stein, V., David R. C. House, Bredt, D.S., Nicoll, R.A. Postsynaptic Density-95 Mimics and Occludes Hippocampal Long-Term Potentiation and Enhances Long-Term Depression [J]. J. Neuroscience, 2003, 23(13): 5503-5506.
    
    76. Wu, H., Nash, J.E., Pedro Zamorano, Garner, C.C. Interaction of SAP97 with Minus-end-directed Actin Motor Myosin VI [J]. J. Biol. Chem., 2003, 277(34): 30928-30934
    
    77. Keifer, J., Zheng, Z.Q., and Zhu, D.T. MAPK Signaling pathways mediate AMPA receptor trafficking in an in vitro model of classical conditioning [J]. J Neurophysiol, 2007, 97(3): 2067 - 2074.
    
    78. Zhu, J.J., Qin, Y., Zhao, M., Van, Aelst, L., Malinow, R. Ras and Rap control AMPA receptor trafficking during synaptic plasticity [J]. Cell, 2002, 110(4): 443-455.
    
    79. Tomita, S., Adesnik, H., Sekiguchi, M., Zhang ,W., Wada, K., Howe, J.R., Nicoll, R.A., and Bredt, D.S. Stargazin modulates AMPA receptor gating and trafficking by distinct domains [J]. Nature, 2005,435(7045): 1052-8.
    
    80. Bats, C., Groc, L., and Choquet, D. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking [J]. Neruon, 2007, 53(5): 719-34.
    
    81. Rouach, N., Byrd, K., Petralia, R.S., Elias, G.M., Adesnik, H., Tomita, S., Karimzadegan, S., Kealey, C., Bredt, D.S., Nicoll, R.A. TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity [J]. Nat Neurosci., 2005, 8(11): 1525-33.
    
    82. Maletic-Savatic, M., Koothan, T., Malinow, R. Calcium-evoked dendrtic exocytosis in cultured hippocampal neurons. Part II: mediation by calcium /calmodulin -dependent protein kinasell [J]. J. Neurosci., 1998, 18(17): 6814-6821.
    
    83. John, M. Schmitt, Eric, S., Guire, Takeo, Saneyoshi, and Thomas, R. Soderling Calmodulin-Dependent Kinase Kinase/Calmodulin Kinase I Activity Gates Extracellular-Regulated Kinase-Dependent Long-Term Potentiation [J]. J. Neurosci, 2005, 25(5): 1281-1290.
    
    84. Sanhueza, M, McIntyre, C.C., Lisman, J.E. Reversal of Synaptic Memory by Ca~(2+)/Calmodulin-Dependent Protein Kinase II Inhibitor [J]. J. Neurosci, 2007, 27(19): 5190-5199.
    85. Wang, Y., Ju, W., Liu, L., Fam, S., D'Souza, S., Taghibiglou, C., Salter, M., and Wang, Y.T. α- Amino-3-hydroxy-5-methylisoxazole-4-propionic Acid Subtype Glutamate Receptor (AMPAR) Endocytosis Is Essential for N-Methyl-D-aspartate -induced Neuronal Apoptosis [J]. J. Biol. Chem., 2004, 279(40): 41267-41270.
    
    86. Ahmadian, G., Ju, W., Liu, L., Wyszynski, M., Lee, S.H., Dunah, A.W., Taghibiglou, C., Wang, Y., Lu, J., Wong, T.P., Sheng, M., Wang, Y.T. Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD [J]. EMBO J., 2004,23(5): 1040-50.
    
    87. Huang, Y.Y., Kandel, E.R. Postsynaptic induction and PKA-dependent expression of LTP in the latera amygdala [J]. Neuron, 1998, 21(1): 169-178.
    
    88. Toyoda, H., Wu, L.J., Zhao, M.G., Xu, H., Zhuo, M. Time-dependent postsynaptic AMPA GluR1 receptor recruitment in the cingulate synaptic potentiation [J]. Dev Neurobiol., 2007,67(4): 498-509.
    
    89. Garcia, E., Mehta, S., Blair, L., Wells, D., Shang, J., Fukushima, F., Fallon, J., Garner, C., J. MarshallJ SAP90 binds and clusters kainate receptors causing incomplete desensitization [J]. Neuron., 1998, 21(4): 727-739
    
    90. Cai, C.L., Li, H., Rivera, C., and Keinanen, K. Interaction between SAP97 and PSD-95, two Maguk proteins involved in synaptic trafficking of AMPA receptors [J]. J Biol. Chem, 2006, 281(7): 4267 - 4273.
    
    91. Hu, X.D, Huang, Q, Yang, X, and Xia, H.H. Differential regulation of AMPA receptor trafficking by neurabin-targeted synaptic protein phosphatase-1 in synaptic transmission and long-term depression in hippocampus [J]. J. Neurosci, 2007, 27(17): 4674-4686.
    
    92. Lu, W, Ziff, E.B. PICK1 interacts with ABP/GRIP to regulate AMPA receptor trafficking [J]. Neuron, 2005,47(3): 407-21.
    
    93. Chowdhury, S., Shepherd, J.D., Okuno, H., Lyford, G., Petralia, R.S., Plath, N., Kuhl, D., Huganir, R.L., and Worley, P.F. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking [J]. Neuron, 2006, 52(3): 445-59.
    
    94. Terashima, A., Cotton, L., Dev, K.K., Zaman, S., Duprat, F., Henley, J.M., Collingridge, G.L., Isaac, J.T.R. Regulation of synaptic strength and AMPA receptor subunit composition by PICK1 [J]. J. Neurosci., 2004, 24(23): 5381-5390.
    95. Hanley, J.G., Henley, J.M. PICK1 is a calcium-sensor for NMDA-induced AMPA receptor trafficking [J]. EMBO J, 2005, 24(18): 3266-78.
    96. Ehrlich, I., Malinow, R. Postsynaptic Density 95 controls AMPA Receptor Incorporation during Long-Term Potentiation and Experience-Driven Synaptic Plasticity [J]. J. Neuroscience, 2004, 24(4): 916-927.
    97. Colledge, M., Snyder, E., Crozier, R., J. Soderling, Y. Jin, L. Langeberg, H. Lu, M. Bear, Scott,J. Ubiquitination Regulates PSD-95 Degradation and AMPA Receptor Surface Expression [J]. Neuron, 2003,40(3): 595-607.
    98. Brebner, K., Wong, T.P., Liu, L., Liu, Y., Campsall, P., Gray, S., Phelps, L., Phillips, A.G., Wang, Y.T. Nucleus accumbens long-term depression and the expression of behavioral sensitization [J]. Science, 2005, 310(5752): 1340-1343.
    99. Benke, T.A., Jones, O.T., Collingridge,G.L., Angelides, K,J. N-Methyl-D-aspartate receptors are clustered and immobilized on dendrites of living cortical neurons [J]. Proc Natl Acad Sci USA., 1993, 90(16): 7819-7823.
    
    100.Laurent, Groc, Martin, Heine, Laurent, Cognet, Kieran Brickley, F. Anne Stephenson, Brahim Lounis, Daniel Choquet. Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors [J]. Nature Neuroscience, 2004, 7(7):695 - 696
    101.Tovar, K.R., Westbrook, G.L. Mobile NMDA receptors at hippocampal synapses [J]. Neuron, 2002, 34(2): 255-264.
    102.Standley, S. Roche, K. McCallum, J. Sans, N. Wenthold, R. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants [J].Neuron, 2000, 28(3): 887.
    103.Bryce, Vissel, Johannes, J., Krupp, Stephen, F. Heinemann, Gary, Westbrook, L. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux [J]. Nat Neurosci., 2001,4(6):587-96.
    104.Lan, J.Y., Skeberdis, V.A., Teresa Jover, Grooms, S.Y., Ying, Lin, Ricardo, C. Araneda, Xin, Zheng, Michael, V. L. Bennett R. Suzanne Zukin. Protein kinase C modulates NMDA receptor trafficking and gating [J]. Nat Neurosci., 2001, 4(4):382-90.
    105.Lan, J.Y., Vytenis A. Skeberdis, Teresa Jover, Xin Zheng, Michael V. L. Bennett, R. Suzanne, Zukin. Activation of metabotropic glutamate receptor 1 accelerates NMDA receptor trafficking [J].J Neurosci, 2001,21(16):6058-68.
    106.Grosshans, D.R., Clayton, D.A., Coultrap, S.J., Browning,M.D. LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1 [J]. Nat Neurosci, 2002, 5(1):27-33.
    107.Snyder, E.M, Philpot, B.D., Huber, K.M, Xin Dong, Fallon, J.R, Bear, M.F. Internalization of ionotropic glutamate receptors in response to mGluR activation [J]. Nat Neurosci, 2001, 4(11): 1079-85.
    108.Williams, J. M, Guevremont, D, Kennard, J. T. T. Mason-Parker, S. E, Tate' W. P, Abraham, W. C. Long-term regulation of N-methyl-D-aspartate receptor subunits and associated synaptic proteins following hippocampal synaptic plasticity [J].Neuroscience, 2003, 118(4): 1003-13.
    109.Kazuyuki, Yamada, Masahiro, Fukaya, Hidemi, Shimizu, Kenji, Sakimura, Masahiko, Watanabe. NMDA receptor subunits GluRepsilon1, GluRepsilon3 and GluRzetal are enriched at the mossy fibre-granule cell synapse in the adult mouse cerebellum [J]. Eur, J. Neurosci., 2001, 13(11): 2025-36
    110.Mio, Nonaka, Tomoko Doi, Yoshinori Fujiyoshi, Sayaka Takemoto-Kimura, Haruhiko Bito. Essential contribution of the ligand-binding beta B/beta C loop of PDZ1 and PDZ2 in the regulation of postsynaptic clustering, scaffolding, and localization of postsynaptic density-95 [J]. J. Neuroscience, 2006, 26(3):763-774.
    111.Cheung, H.H, Lucy, Teves, M. Christopher, Wallace, James, W. Gurd. Increased phosphorylation of the NR1 subunit of the NMDA receptor following cerebral ischemia [J]. J. Neurochem, 2001, 78(5): 1179-82
    112.Katherine, W. Roche, Steve, Standley, Jennifer, McCallum, C. Dune Ly, Michael D. Ehlers, Robert, J. Wenthold. Molecular determinants of NMDA receptor internalization [J]. Nature. Neurosci, 2001,4(8): 794-802.
    113.Peng, h.x, Brian E. Derrick, Joe L. Martinez, J.R. Identification of upregulated SCG10 mRNA expression associated with late-phase long-term potentiation in the rat hippocampal Schaffer-CA1 pathway in vivo[J].J.Neurosci.,2003,23(16):6617-26.
    114.Frey,U.,Morris,R.G.Weak before strong:dissociating synaptic tagging and plasticity-factor accounts of late-LTP[J].Neuropharmacology,1998,37(4-5):545-52.
    115.Frey,U.,Morris,R.G.Synaptic tagging:implications for late maintenance of hippocampal long-term potentiation[J].Trends Neurosci,1998,21(5):181-8.
    Adesnik,H.,Nicoll,R.A.and England,P.M.(2005)Photoinactivation of native AMPA receptors reveals their real-time trafficking.Neuron,48,977-985.
    Ahmadian,G.,Ju,W.,Liu,L.et al.(2004)Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD.EMBO J.,23,1040-1050.
    Bauer,E.P.,Schafe,G.E.and LeDoux,J.E.(2002)NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral arnygdala.J.Neurosci.,22,5239-5249.
    Beattie,E.C.,Carroll,R.C.,Yu,X.,Morishita,W.,Yasuda,H.,von,Z.M.and Malenka,R.C.(2000)Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD.Nat.Neurosci.,3,1291-1300.
    Blair,H.T.,Schafe,G.E.,Bauer,E.P.,Rodrignes,S.M.and LeDoux,J.E.(2001)Synaptic plasticity in the lateral amygdala:a cellular hypothesis of fear conditioning.Learn.Mem.,8,229-242.
    Bliss,T.V.and Collingridge,G.L.(1993)A synaptic model of memory:long-term potentiation in the hippocampus.Nature,361,31-39.
    Boehm,J.,Kang,M.G.,Johnson,R.C.,Esteban,J.,Huganir,R.L.and Malinow,R.(2006)Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1.Neuron,51,213-225.
    Brebner,K.,Wong,T.P.,Liu,L.,Liu,Y.,Campsall,P.,Gray,S.,Phelps,L.,Phillips,A.G.and Wang,Y.T.(2005)Nucleus accumbens long-term depression and the expression of behavioral sensitization.Science,310,1340-1343.
    Bredt,D.S.and Nicoll,R.A.(2003)AMPA receptor trafficking at excitatory synapses.Neuron,40,361-379.
    Carroll,R.C.,Beattie,E.C.,von,Z.M.and Malenka,R.C.(2001)Role of AMPA receptor endocytosis in synaptic plasticity.Nat.Rev.Neurosci.,2,315-324.
    Chowdhury,S.,Shepherd,J.D.,Okuno,H.,Lyford,G,Petralia,R.S.,Plath,N.,Kuhl,D.,Huganir,R.L.and Worley,P.F.(2006)Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking.Neuron,52,445-459.
    Collingridge,G.L.,Isaac,J.T.and Wang,Y.T.(2004)Receptor trafficking and synaptic plasticity.Nat.Rev.Neurosci.,5,952-962.
    Crozier,R.A.,Wang,Y.,Liu,C.H.and Bear,M.F.(2007)Deprivation-induced synaptic depression by distinct mechanisms in different layers of mouse visual cortex.Proc Natl Acad Sci USA,104,1383-1388.
    Dalton,G.L.,Wang,Y.T.,Floresco,S.B.and Phillips,A.G.(2007)Disruption of AMPA Receptor Endocytosis Impairs the Extinction,but not Acquisition of Learned Fear.Neuropsychopharmacology.
    Dityatev,A.E.and Bolshakov,V.Y.(2005)Amygdala,long-term potentiation,and fear conditioning.Neuroscientist.,11,75-88.
    Doron,N.N.and LeDoux,J.E.(1999)Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat.J.Comp Neurol.,412,383-409.
    Dudek,S.M.and Bear,M.F.(1993)Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus.JNeurosci,13,2910-2918.
    Duffy,S.,Labrie,V.and Roder,J.C.(2007)D-Serine Augments NMDA-NR2B Receptor-Dependent Hippocampal Long-Term Depression and Spatial Reversal Learning.Neuropsychopharmacology.
    Fanselow,M.S.and Kim,J.J.(1994)Acquisition of contextual Pavlovian fear conditioning is blocked by application of an NMDA receptor antagonist D,L-2-amino-5-phosphonovaleric acid to the basolateral amygdala.Behav.Neurosci.,108,210-212.
    Hayashi,Y.,Shi,S.H.,Esteban,J.A.,Piccini,A.,Poncer,J.C.and Malinow,R.(2000)Driving AMPA receptors into synapses by LTP and CaMKⅡ:requirement for GluR1 and PDZ domain interaction.Science,287,2262-2267.
    Heinbockel,T.and Pape,H.C.(2000)Input-specific long-term depression in the lateral amygdala evoked by theta frequency stimulation.J.Neurosci.,20,RC68.
    Huang,Y.Y.and Kandel,E.R.(1998)Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala.Neuron,21,169-178.
    Humeau,Y.,Reisel,D.,Johnson,A.W.et al.(2007)A pathway-specific function for different AMPA receptor subunits in amygdala long-term potentiation and fear conditioning.J.Neurosci.,27,10947-10956.
    Kakegawa,W.and Yuzaki,M.(2005)A mechanism underlying AMPA receptor trafficking during cerebellar long-term potentiation.Proc Natl Acad Sci USA,102,17846-17851.
    Kaschel,T.,Schubert,M.and Albrecht,D.(2004)Long-term depression in horizontal slices of the rat lateral amygdala.Synapse,53,141-150.
    Kim,J.J.,DeCola,J.P.,Landeira-Fernandez,J.and Fanselow,M.S.(1991)N-methyl-D-aspartate receptor antagonist APV blocks acquisition but not expression of fear conditioning.Behav.Neurosci.,105,126-133.
    Kim,J.J.,Fanselow,M.S.,DeCola,J.P.and Landeira-Fernandez,J.(1992)Selective impairment of long-term but not short-term conditional fear by the N-methyl-D-aspartate antagonist APV.Behav.Neurosci.,106,591-596.
    Langton,J.M.,Kim,J.H.,Nicholas,J.and Richardson,R.(2007)The effect of the NMDA receptor antagonist MK-801 on the acquisition and extinction of learned fear in the developing rat.Learn.Mem.,14,665-668.
    Lee,H.and Kim,J.J.(1998)Amygdalar NMDA receptors are critical for new fear learning in previously fear-conditioned rats.J.Neurosci.,18,8444-8454.
    Lee,H.J.,Choi,J.S.,Brown,T.H.and Kim,J.J.(2001)Amygdalar nmda receptors are critical for the expression of multiple conditioned fear responses.J.Neurosci.,21,4116-4124.
    Lee,O.,Lee,C.J.and Choi,S.(2002)Induction mechanisms for L-LTP at thalamic input synapses to the lateral amygdala:requirement of mGluR5 activation.Neuroreport,13,685-691.
    Lin,J.W.,Ju,W.,Foster,K.,Lee,S.H.,Ahmadian,G.,Wyszynski,M.,Wang,Y.T.and Sheng,M.(2000)Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization.Nat Neurosci,3,1282-1290.
    Lin,J.W.and Sheng,M.(1998)NSF and AMPA receptors get physical.Neuron,21,267-270.
    Liu,L.,Wong,T.P.,Pozza,M.F.,Lingenhoehl,K.,Wang,Y.,Sheng,M.,Auberson,Y.P.and Wang,Y.T.(2004)Role of NMDA receptor subtypes in goveming the direction of hippocampal synaptic plasticity.Science,304,1021-1024.
    Lu,W.,Man,H.,Ju,W.,Trimble,W.S.,MacDonald,J.F.and Wang,Y.T.(2001)Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons.Neuron,29,243-254.
    Luscher,C.,Nicoll,R.A.,Malenka,R.C.and Muller,D.(2000)Synaptic plasticity and dynamic modulation of the postsynaptic membrane.Nat Neurosci,3,545-550.
    Luscher,C.,Xia,H.,Beattie,E.C.,Carroll,R.C.,von,Z.M.,Malenka,R.C.and Nicoll,R.A.(1999)Role of AMPA receptor cycling in synaptic transmission and plasticity.Neuron,24,649-658.
    Mahanty,N.K.and Sah,P.(1999)Excitatory synaptic inputs to pyramidal neurons of the lateral amygdala.Eur.J.Neurosci.,11,1217-1222.
    Malenka,R.C.(2003)Synaptie plasticity and AMPA receptor trafficking.Ann.N.Y.Acad.Sci.,1003,1-11.
    Malenka,R.C.and Bear,M.F.(2004)LTP and LTD:an embarrassment of riches.Neuron,44,5-21.
    Malenka,R.C.and Nicoll,R.A.(1999)Long-term potentiation—a decade of progress? Science,285,1870-1874.
    Maletic-Savatic,M.,Koothan,T.and Malinow,R.(1998)Calcium-evoked dendritic exocytosis in cultured hippoeampal neurons.Part Ⅱ:mediation by calcium/calmodulin-dependent protein kinase Ⅱ.J.Neurosci.,18,6814-6821.
    Malinow,R.and Malenka,R.C.(2002)AMPA receptor trafficking and synaptic plasticity.Annu.Rev.Neurosci.,25,103-126.
    Man,H.Y.,Ju,W.,Ahmadian,G.and Wang,Y.T.(2000a)Intracellular trafficking of AMPA receptors in synaptic plasticity.Cell Mol.Life Sci.,57,1526-1534.
    Man,H.Y.,Lin,J.W.,Ju,W.H.,Ahmadian,G.,Liu,L.,Becker,L.E.,Sheng,M.and Wang,Y.T.(2000b)Regulation of AMPA receptor-mediated synaptie transmission by elathrin-dependent receptor internalization.Neuron,25,649-662.
    McDonald,A.J.(1998)Cortical pathways to the mammalian amygdala.Prog.Neurobiol.,55,257-332.
    McKeman,M.G.and Shinnick-Gallagher,P.(1997)Fear conditioning induces a lasting potentiation of synaptic currents in vitro.Nature,390,607-611.
    Miserendino,M.J.,Sananes,C.B.,Melia,K.R.and Davis,M.(1990)Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala.Nature,345,716-718.
    Mulkey,R.M.and Malenka,R.C.(1992)Mechanisms underlying induction ofhomosynaptic long-term depression in area CA1 of the hippocampus.Neuron,9,967-975.
    Pare,D.,Pape,H.C.and Dong,J.(1995)Bursting and oscillating neurons of the cat basolateral amygdaloid complex in vivo:electrophysiological properties and morphological features.J.Neurophysiol.,74,1179-1191. Pitkanen, A., Savander, V. and LeDoux, J. E. (1997) Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci., 20, 517-523.
    Rainnie, D. G., Asprodini, E. K. and Shinnick-Gallagher, P. (1991) Excitatory transmission in the basolateral amygdala. J.Neurophysiol., 66,986-998.
    Repa, J. C., Muller, J., Apergis, J., Desrochers, T. M., Zhou, Y. and LeDoux, J. E. (2001) Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat.Neurosci., 4,724-731.
    Rodrigues, S. M., Schafe, G. E. and LeDoux, J. E. (2001) Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J.Neurosci., 21,6889-6896.
    Rodrigues, S. M., Schafe, G.E. and LeDoux, J. E. (2004) Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron, 44,75-91.
    Rogan, M. T. and LeDoux, J. E. (1995) LTP is accompanied by commensurate enhancement of uditory-evoked responses in a fear conditioning circuit. Neuron, 15, 127-136.
    Rogan, M. T., Staubli, U. V. and LeDoux, J. E. (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature, 390,604-607.
    
    Rothman, J. E. (1994) Mechanisms of intracellular protein transport. Nature, 372, 55-63.
    Rumpel, S., LeDoux, J., Zador, A. and Malinow, R. (2005) Postsynaptic receptor trafficking underlying a form of associative learning. Science, 308,83-88.
    Sah, P., Faber, E. S., Lopez De, A. M. and Power, J. (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev., 83,803-834.
    Sheng, M. and Hyoung Lee, S. (2003) AMPA receptor trafficking and synaptic plasticity: major unanswered questions. Neurosci Res, 46, 127-134.
    Sheng, M. and Kim, M. J. (2002) Postsynaptic signaling and plasticity mechanisms. Science, 298, 776-780.
    Shi, S., Hayashi, Y., Esteban, J. A. and Malinow, R. (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell, 105,331-343.
    Shi, S. H., Hayashi, Y., Petralia, R. S., Zaman, S. H., Wenthold, R. J., Svoboda, K. and Malinow, R. (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science, 284,1811-1816.
    Sigurdsson, T., Doyere, V., Cain, C. K. and LeDoux, J. E. (2007) Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology, 52, 215-227.
    Sotres-Bayon, F., Bush, D. E. and LeDoux, J. E. (2007) Acquisition of fear extinction requires activation of NR2B-containing NMDA receptors in the lateral amygdala. Neuropsychopharmacology, 32,1929-1940.
    Sun, X., Zhao, Y. and Wolf, M. E. (2005) Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons. J Neurosci, 25, 7342-7351.
    Toyoda, H., Wu, L. J., Zhao, M. G., Xu, H. and Zhuo, M. (2007) Time-dependent postsynaptic AMPA GluR1 receptor recruitment in the cingulate synaptic potentiation. Dev.Neurobiol., 67, 498-509.
    Tsvetkov, E., Carlezon, W. A., Benes, F. M., Kandel, E. R. and Bolshakov, V. Y. (2002) Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala.Neuron,34,289-300.
    Yurrigiano,G.G.(2000)AMPA receptors unbound:membrane cycling and synaptic plasticity.Neuron,26,5-8.
    Wang,Y.,Ju,W.,Liu,L.,Fam,S.,D'Souza,S.,Taghibiglou,C.,Salter,M.and Wang,Y.T.(2004)alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype glutamate receptor (AMPAR)endocytosis is essential for N-methyl-D-aspartate-induced neuronal apoptosis.J.Biol.Chem.,279,41267-41270.
    Wang,Y.T.(2007)Probing the role ofAMPAR endocytosis and long-term depression in behavioural sensitization:relevance to treatment of brain disorders,including drug addiction.Br J Pharmacol.
    Wang,Y.T.and Linden,D.J.(2000)Expression of cerebellar long-term depression requires postsynaptic elathrin-mediated endoeytosis.Neuron,25,635-647.
    Weisskopf,M.G.,Bauer,E.P.and LeDoux,J.E.(1999)L-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala.J.Neurosci.,19,10512-10519.
    Weisskopf,M.G.and LeDoux,J.E.(1999)Distinct populations of NMDA receptors at subcortieal and cortical inputs to principal cells of the lateral amygdala.J.Neurophysiol.,81,930-934.
    Wong,T.P.,Howland,J.G.,Robillard,J.M.et al.(2007)Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment.Proc Natl Acad Sci U SA,104,11471-11476.
    Zhu,J.J.,Qin,Y.,Zhao,M.,Van,A.L.and Malinow,R.(2002)Ras and Rap control AMPA receptor trafficking during synaptic plasticity.Cell,110,443-455. Bliss TV, Collingridge GL. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31
    R. C. Malenka, R. A. Nicoll. (1999) Long-Term Potentiation--A Decade of Progress?, Science 285, 1870.
    M. F. Bear, R. C. Malenka. (1994) Synaptic plasticity: LTP and LTD., Curr. Opin. Neurobiol. 4, 389.
    
    M. Nishiyama, K. Hong, K. Mikoshiba, M. M. Poo, K. Kato, (2000) Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408, 584.
    J. A. Cummings, R. M. Mulkey, R. A. Nicoll, R. C. Malenka, (1996) Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron 16, 825.
    P. H. Seeburg, (1993) The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci. 16,359.
    
    A. Wenzel, J. M. Fritschy, H. Mohler, D. Benke, (1997) NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. J. Neurochem. 68, 469.
    
    D. J. Laurie, I. Bartke, R. Schoepfer, K. Naujoks, P. H. Seeburg, (1997) Regional, developmental and interspecies expression of the four NMDAR2 subunits, examined using monoclonal antibodies. Brain Res. Mol. Brain Res. 51,23.
    E. D. Kirson, Y. Yaari, (1996) Synaptic NMDA receptors in developing mouse hippocampal neurones: functional properties and sensitivity to ifenprodil. J. Physiol. 497, 437.
    
    K. R. Tovar, G.L. Westbrook, (1999) The Incorporation of NMDA Receptors with a Distinct Subunit Composition at Nascent Hippocampal Synapses In Vitro . J. Neurosci. 19,4180.
    
    M. Sheng, J. Cummings, L. A. Roldan, Y. N. Jan, L. Y. Jan, (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368, 144.
    H. Monyer, N. Burnashev, D. J. Laurie, B. Sakmann, P. H. Seeburg, (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529.
    M. Sheng, D. T. Pak, (2000) Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu. Rev. Physiol. 62, 755. G.Kohr et al., (2003) Intracellular Domains of NMDA Receptor Subtypes Are Determinants for Long-Term Potentiation Induction. J. Neurosci. 23, 10791.
    K. Williams, (2001) Ifenprodil, a novel NMDA receptor antagonist: site and mechanism of action. Curr. Drug Targets 2,285.
    V. Mutel et al., (1998) In vitro binding properties in rat brain of [3H]Ro 25-6981, a potent and selective antagonist of NMDA receptors containing NR2B subunits. J.Neurochem. 70,2147.
    N. Kemp, J. McQueen, S. Faulkes, Z. I. Bashir, (2000) Different forms of LTD in the CA1 region of the hippocampus: role of age and stimulus protocol. Eur. J.Neurosci. 12, 360.
    
    A. L. Buller et al., (1994) The molecular basis of NMDA receptor subtypes: native receptor diversity is predicted by subunit composition . J. Neurosci. 14, 5471.
    J. Zhu, Y. Qin, M. Zhao, L. Van Aelst, R. Malinow, (2002) Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 110, 443.
    T. Mizuno, I. Kanazawa, M. Sakurai, (2001) Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor. Eur. J. Neurosci. 14, 701.
    
    B. Mockett, C. Coussens, W. C. Abraham, (2002) NMDA receptor-mediated metaplasticity during the induction of long-term depression by low-frequency stimulation. Eur. J. Neurosci. 15, 1819.
    G. Q. Bi, M. M. Poo, (1998) Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type J. Neurosci. 18, 10464.
    H. Markram, J. Lubke, M. Frotscher, B. Sakmann, (1997) Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs . Science 275,213.
    
    N. J. Emptage, C. A. Reid, A. Fine, T. V. Bliss, (2003) Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses. Neuron 38, 797.
    L. M. Ritter, D. M. Vazquez, J. H. Meador-Woodruff, (2002) Ontogeny of ionotropic glutamate receptor subunit expression in the rat hippocampus. Brain Res. Dev. Brain Res. 139,227.
    
    M. L. Errington et al., (1995) Stimulation at 1-5 Hz does not produce long-term depression or depotentiation in the hippocampus of the adult rat in vivo . J. Neurophysiol. 74, 1793.
    
    K. Sakimura et al., (1995) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 373, 151.
    Y. P. Tang et al., (1999) Genetic enhancement of learning and memory in mice. Nature 401, 63.
    A. W. Hendricson, C. L. Miao, M. J. Lippmann, R. A. Morrisett, (2002) Ifenprodil and Ethanol Enhance NMDA Receptor-Dependent Long-Term Depression. J. Pharmacol. Exp. Ther. 301, 938.
    
    A. L. Barth, R. C. Malenka, (2001) NMDAR EPSC kinetics do not regulate the critical period for LTP at thalamocortical synapses. Nature Neurosci. 4,235.
    
    B. D. Philpot, A. K. Sekhar, H. Z. Shouval, M. F. Bear, (2001) Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29, 157.
    A. Erisir, J. L. Harris, (2003) Decline of the Critical Period of Visual Plasticity Is Concurrent with the Reduction of NR2B Subunit of the Synaptic NMDA Receptor in Layer 4. J. Neurosci. 23, 5208.
    Y. Yoshimura, T. Ohmura, Y. Komatsu, (2003) Two Forms of Synaptic Plasticity with Distinct Dependence on Age, Experience, and NMDA Receptor Subtype in Rat Visual Cortex . J. Neurosci. 23, 6557.
    N. Chen, T. Luo, L. A. Raymond, (1999) Subtype-Dependence of NMDA Receptor Channel Open Probability. J. Neurosci. 19, 6844.
    R. Sprengel et al., (1998) Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell, 92,279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700