用户名: 密码: 验证码:
六枝某高硫煤矸石中有害元素的赋存状态、释放规律及环境污染预测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矸石是我国矿山排放量最大的废渣之一。在1996年底,全国就有煤矸石山1500多座,累计堆存量已达30多亿吨,占地1.3万公顷。并随煤炭工业的发展以每年1.3亿吨的速度增加。大量的煤矸石就地堆放,在雨水和地表水的淋溶等作用下,一些有害元素就会全部或部分释放出来进入水体、土壤和大气环境,从而造成水体质量下降、土壤功能破坏、危害人体健康,尤其是在高硫煤地区的污染特别突出。因此,本文选取贵州最为典型的高硫煤区—六枝为本次的研究点。
     本论文主要采用酸中和潜力实验(ANC)和净产酸试验(NAG)、光片镜检、X衍射、逐级提取法和静态模拟方法,对六枝某高硫煤矸石堆场中,煤矸石的酸化预测与黄铁矿之间关系的研究,以及有害元素赋存状态和释放规律的研究。初步得出如下的认识:
     (1)结合酸中和潜力实验(ANC)和净产酸试验(NAG)、显微镜镜下观察以及X衍射方法,在本次试验样品中,得出顶板的含硫量很高(达到5.66%),却没有释放出酸,通过显微镜镜下光片观察,见顶板里的黄铁矿呈自然形状微晶结合提零星分布和条带状分布。因此,可能是顶板里主要产酸物质黄铁矿的结晶形态的缘故,使得释放出来的酸很少;而其它的底板、新鲜样品、风化样品都释放酸,其中新鲜的煤矸石样的酸化能力明显高于风化的煤矸石样品,并且新鲜煤矸石样的酸化风险极高。
     (2)通过连续提取试验的结果显示,绝大多数元素都具有一种以上的赋存状态,大部分的元素则以非常稳定的硅酸盐结合态及较为稳定的还原态为主。其中,新鲜样中Zn、Ni、Mn、Cr、Fe以有机物硫化物和残渣态存在的元素比风化样要高,而以Fe-Mn氧化物结合态存在的元素则要比风化样低。可能是该煤矸石堆场在风化的过程中,煤矸石中的以不易释放出来的部分元素逐渐的释放了出来。
     (3)浸泡试验结果显示,大多数污染物的浸出浓度随时间的延长而降低,浸出最大值出现在初始阶段。只有铜、锌、镉的浸出浓度是随时间增加的。新鲜矸石和风化矸石浸出液中有害元素的含量有所变化,新鲜矸石中Mn、Fe、Zn的含量大于风化矸石,而风化矸石浸出液中Cu的含量大于新鲜矸石,Pb、Ni的含量基本相同。
As one of the coal mining wastes,coal gangue is the largest amount of emissivity in China mining districts.by the end of 1996,there had existed more than 1,500 gangue hills,whose total stack capacity had amounted to over 30 billion tons and occupied 13,000-hectare land.Moreover,with the development of coal industry,the amount of gangues has increased at 130million tons each year.with the action of leaching by rain and water,the large amount of coal gangue piles on the spot,some hazardous minor element will be dissolved completely or partly into water or soil environment and atmosphere to deteriorate water quality and destroy soil function and influence ecology development and human health,especially in high sulfur coal section in Guizhou.So I select the high sulfur coal section,which is in Liuzhi as the important research in this paper.
     The paper adopt mostly these esperimental methods,which include Acid neutralizing capacity(ANC) and net acid generation(NAG),polished section identification,X-ray diffraction, sequential extraction and static simulation.All these methods were used to forecast of the connection between gangue's contamination and pyrite,and study of speciation distribution and release disciplinary of some hazardous element in coal mining wastes from some gangue pile in Liuzhi.The main research pointes are as follows:
     (1) Combining ANG and Nag,observing polished section,X-ray diffraction,we draw a conclusion that the sulfuric content is very high in top slab(5.66%),but the pyrite in top slab exist mainly in micro-crystal aggregation,therefore,in the samples of this experiment,when we dip top slab in H_2O_2,there is no acid to be released.But the bottom slab,the fresh gangue sample and weathering sample all have some potentials to produce acid,and among them,the fresh gangue sample's potential is obviously higher than that of the weathering gangue sample.
     (2) Gradual Chemical extraction shows:most elements have more than one existing status,and most of the element mostly exist in stable silicate and relatively stable deoxidize status.At the same time,Zn、Ni、Mn、Cr、Fe in the verdure sample,which are greatly high than weathering sample in stable silicate combing status and relatively stable deoxidizing status,but more low in Fe-Mn oxide status.it is likely to the guegus in the weathering process,elements exist in stable silicate combing status and relatively stable deoxidizing status may gradually release.
     (3) The soaking experiments show:most pollutant's lixiviating concentration decrease with the time's lengthening,the maximum come forth in the beginning,the max soaking value presented the beginning.Only the Cu,Zn and Cr's lixiviating concentration increase with the time's going.but the new gusgue sample lixiviating value is variety,.At the same time,the value of Mn、Fe、Zn in the verdure sample are greatly high than weathering sample,but the Cu in the lixiviating is high than new,and the Pb、Ni' value are basic sameness in the tow samples.
引文
[1]马毅红,易筱筠,党志.污染土壤中重金属的可萃取性与生物可利用性.华南理工大学学报[J](自然科学版),2002,30(12):93-96.
    [2]邓丁海,岑文龙.煤矸石堆放区的环境效应研究,中国矿业[J],1999,8(6):87-91.
    [3]王亚平,鲍征宇,侯书恩.尾矿库周围土壤中重金属存在形态特征研究.岩矿测试[J].2000.19(1):7-13.
    [4]王占岐,庄新国.六盘水市煤炭资源开发环境影响初探.地质科技情报[J].第19卷第2期.2000年6月.75-77.
    [5]王亚平,鲍征宇,王苏明.矿山固体废弃物的环境效应研究进展及大冶铜绿山尾矿的环境效应.矿物岩石地球化学通报[J],1998,17(2):28-54.
    [6]王心义,杨建,郭慧霞.矿区煤矸石堆放引起土壤重金属污染研究.煤炭学报[J].2006,31(6):808-812.
    [7]王运泉,张汝国,王良平等.煤中微量元素赋存状态的逐提试验研究.中国煤田地质[J],1997,9(3):23-25.
    [8]王起超,邵庆春,康淑莲等.燃煤灰渣中微量元素分布规律的研究.环境化学[J],1996,15(1):20-26.
    [9]王亚平,黄毅,王苏明等.土壤和沉积物中元素的化学形态及其顺序提取法.地质通报[J],2005,24(8):728.
    [12]冯启言,刘桂建.兖州煤田矸石中的微量有害元素及其对土壤环境的影响.中国矿业2002年第11卷第1期:67-69.
    [13]冯新斌,洪冰,倪建宇等.煤中部分潜在毒害微量元素在表生条件下的化学活动性.环境科学学报[J],1999,19(4):433-437.
    [14]冯新斌,洪业汤,洪冰等.煤中汞的赋存状态研究.矿物岩石地球化学通报[J],2001,20(2):71-78.
    [15]冯军会.合肥工业大学硕士学位论文.煤矸石有害元素赋存状态、迁移规律及复垦环境效应.2003年2月.55-57.
    [16]刘杰,钟雪梅,梁延鹏,罗亚平,朱义年,张学洪.电镀废水污染水稻田土壤中重金属的形态分析.农业环境科学学报[J].2006.25(2):398-401.
    [17]刘玉荣,党志,尚爱安.煤矸石风化土壤中重金属的环境效应研究.农业环境科学学报[J],2003.22(1):64-66.
    [18]刘桂建,杨萍碉,彭子成等.煤矸石中潜在有害微量元素淋溶析出研究.高校地质学报[J],2001.7(4):449-457.
    [19]刘玉荣.污染土壤中重金属的生物可利用性评估方法研究.中国科学院硕士学位论文,2001.
    [20]朴河春,黄荣贵,万国江.富含黄铁矿的煤研石中碳酸盐影响其风化淋溶性质的研究.重庆环境科学[J],1995,17(3):24-28,38.
    [21]任德贻,赵峰华,代世峰,张军营,雒昆利著,煤的微量元素地球化学[M],2006,北京,科学出版社.
    [22]孙家寿,世界生物处理矿山废水技术的进展,国外金属矿选矿[J],1998,(8):39-43.
    [23]孙丽娜,金成洙.猫岭-T家崴子金矿采矿废料的酸化潜力研究.矿物岩石地球化学通报.2001.Vol,20,No,3.203-207.
    [24]向武.酸性矿山废水处理技术及其进展.地质灾害与环境保护[J],1998,9(2):38-41.
    [25]庄新国,龚家强,王占岐,曾荣树,徐文东.贵州六枝、水城煤田晚二叠世煤的微量元素特征.地质科技情报[J].第20卷第3期2001年9月53-58.
    [26]陈天虎,冯军会,徐晓春等.尾矿中硫化物风化氧化模拟实验研究.岩石矿物学杂志[J],2002,21(3):298-302.
    [27]陈天虎,冯军会,徐晓春.国外尾矿酸性排水和重金属淋滤作用研究进展.环境污染治理技术与设备[J],2001,2(2):41-46.
    [28]陈选,付开鑫,赵飞.高硫煤矸石回收硫精矿实践及其在综合利用中的作用.中国资源综合利用[J],2000,17-18.
    [29]李非里,刘丛强,宋照亮.土壤中重金属形态的化学分析总数-中国环境监测[J].2005,21(4):21-27.
    [30]李光德,张成.煤矸石模拟淋溶水重金属污染的研究.山东环境.1998.5(86)10-12.
    [31]李海珍,姜有.煤矸石的综合利用.煤炭技术[J],1999,18(5):25-26.
    [32]李尉卿,田鹰.粉煤灰煤矸石等废渣及其制品中有害金属元素在水中浸出的研究.粉煤灰[J],2002,18-21.
    [33]何振立,周启星,谢正苗.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社,1998.34-89.
    [34]何强,井文涌,王翊亭.环境学导论.北京:清华大学出版社[M],1994.
    [35]宋志敏,杨萍月,崔树军.河南新密一荥巩矿区煤矸石中有害微量元素的溶出.煤田地质与勘探[J],2002,30(4):14-15.
    [36]宋焕斌,张文彬.煤矸石的开发利用.化工矿物与加工[J],2000,12:23-25.
    [37]吴代赦,郑宝山,康往东,李修涛,傅强,刘正初,张金炉.煤矸石的淋溶行为与环境影响的研究---以淮南潘谢矿区为例.地球与环境[J].2004.32(1):55-59.
    [38]余运波,汤鸣皋.煤矸石堆放对水环境的影响.地学前缘[J],2001,8(1):163-169.
    [39]张军,杨芳,林华.半干旱地区煤矸石山生态分类研究.生态学杂志[J],1995,14(6):7-10.
    [40]张覃,胡其波,李其群.清洁生产与贵州煤炭工业可持续发展.煤炭加工与综合利用[J].2003年第6期.50-52.
    [41]张泰芳.淮南潘谢矿区煤矸石浸泡试验及对环境的影响.安庆师范学院学报(自然科学版).1999.5(3):102-106.
    [42]张军营等,1998(张军营,任德贻,赵峰华,许德伟.煤中微量元素附存状态研究方法.煤炭转化.1998.21(4):12-17.
    [43]张淑荃,尹金双,王淑英.云南帮卖盆地煤中锗存在形式的研究.沉积学报[J],1988,6(3):29-38.
    [44]林河成,稀土生产中的“三废”治理及环境保护.稀土[J].1996,17(6):54-58.
    [45]林奕宗,林华,邓承亮.铁笼坝废水净化技术的研究与应用.金属矿山[J],1997,(3):35-37.
    [46]陆晓华,Ali A,刘汉珍等.燃煤电厂排放颗粒物中重金属形态的研究.环境化学[J],1996,15(4):337^342.
    [47]尚爱安,刘玉荣,粱重山,等。土壤中重金属的生物有效性研究进展.土壤[J],2000,6:294-300.
    [48]尚爱安,党志,粱重山.土壤/沉积物中微量重金属的化学萃取方法研究进展.农业环境保护[J],2001,20(4):266-269.
    [50]赵英杰,李宽良,曹学军等.钻在黄土中的化学形态.辐射防护[J],2000,20W:218-222.
    [51]赵峰华,任德贻,尹金双等.煤中As赋存状态的逐级化学提取研究,环境科学[J],1999,20(2):79-81.
    [52]胡宏伟,束文圣,蓝崇钰等.乐昌铅锌尾矿的酸化及重金属溶出的淋溶实验研究[J].环境科学与技术,1999,3:1-3.
    [53]党志.煤矸石一水相互作用的溶解动力学及其环境地球化学效应研究.矿物岩石地球化学通报[J],1997,16(4):259-261.
    [54]党志,马英军,肖宝华,等.煤矸石自然风化过程中微量重金属元素的地球化学行为.
    自然科学进展[J],1998,8(3):314-318.
    
    [55]高荣久,胡振琪.煤矿区固体废弃物煤矸石的最佳利用途径.辽宁工程技术大学学报[J],2002,21(6):825-826.
    [56]顾继光,周启星.镉污染土壤的治理及植物修复.生态科学,2002.21(4):352-356.
    [57]唐修义,黄文辉著.煤中微量元素[M].2004,北京:商务出版社.
    [58]徐磊,张华,桑树勋.煤矸石中微量元素的地球化学行为.煤田地质与勘探[J],2002,30(4)1-3.
    [59]常允新,朱学顺,宋长斌等.煤矸石的危害与防治.中国地质灾害与防治学报[J],2001,12(6):39-43.
    [60]葛银堂.山西煤矸石中的微量元素及其对环境的影响.中国煤田地质.1996.第8卷第4期.:58-62.
    [61]蒋爱良.煤矸石的组成特征及利用途径,中国煤炭[J],2000,26(3):25-27.
    [62]焦建伟.贵州西部煤层中若干有害微量元素的分布及迁移富集规律.华北地质矿产杂志[J]1998,9,13(3):236-242.
    [63]谢黎虹,许梓荣重.金属镉对动物及人类的毒陛研究进展.浙江农业学报,2003.15(6):376-381.
    [64]谭凯旋,郝新才.湖南湘西金矿尾矿一水相互作用的动力学.大地构造与成矿学[J],1998,22(2):156-162.
    [65]蔡美芳,党志,文震,等.矿区周围土壤中重金属危害性评估研究.生态环境[J],2004,13(1):6-8
    [66]Allan Kolker,F.E.Huggins,etc.2000.Mode of occurrence of arsenic in four US coals.Fuel processing Technology,(63):167-178.
    [67]Arunachalam J,Emons H,Krasnodebska B.1996,Sequential extraction studies on homogenized forest soil samp le.Sequential Total.Environment,181:147.
    [68]BC A_MD Task Force,1989.Draft Acid Rock Drainage Technical Guide,Volume 1,British Columbia Acid Mine Drainage Task Force Report prepared by Steffen Robertson and Kirsten,Norelco Environmental Consultants,and Gormely Process Engineering,August 1989.
    [69]BC AMD Task Force,1990.Monitoring Acid Mine Drainage,British Columbia Acid Mine Drainage Task Force Report prepared by E.Robertson in association with Steffen Robertson and Kirsten,Inc.,BiTech Publishers,Ltd.,Vancouver,B.C.,66 pp.
    [70]Benvenuti M,Mascaro I,Corsini F,Lattanzi P,Parfini P,Tanelli G:1993,Mine waste dump and heavy metal pollution in abandoned mining district of Boccheggiano(Southern Tuscany,Italy)[J].Environmental Geology,21:242-250.
    [71]Blowes D.W.,Jambor J.L.1990,The pore-water geochemistry and the mineralogy of the vadose zone of sulfide tailings,Waite Amulet,Quebec,Canada[J].ApplGeochem,(5):327-346.
    [72]Dalway J.Swaine.2000.Why trace elements are important.Fuel Processing Technology,65:21-33.
    [73]Caruccio,F.T.,Ferm,J.C.,Home,J.,Geidel,G.,and Baganz,B.,1977.Paleoenvironment of Coal and its Relation to Drainage Quality,U.S.Environmental Protection Agency Report EPA 600/7-77-067,118 p.
    [75]Chadwick,M.J.,N.H.and Lindman,N.1987:Environmental impacts of Coal mining and utilization.Pergamonp ress.
    [76]Dreher G B,_Finkelman R B.1992,Selenium mobilization in a surface coalmine,Powder River basin,Wyoming,USA Environ.Geol.Water Sci.19(3):155-167.
    [77]EPA and Hardrock Mining,2003,A Source Book for Industry in the Northwest and Alaska,Appendix C:Characterization of Ore,Waste Rock,and Tailings.
    [78]F Emandez-Turiel J.L.etc.1994.Mobility of heavy metals from coal fly ash.Environment,23:264^270.
    [79]E E.Huggins,N.Shah,etc.2000,Mode of occurrence of chromium in four US coals.Fuel processing Technology,(63):79^92.
    [80]Ferguson,K.D.,and Erickson,P.M.,1988,Pre-Mine Prediction of Acid Mine Drainage,in Salomons,W.,and Forstner,U.,eds.,Dredged Material and Mine Tailings,Springer-Verlag Berlin Heidelberg.
    [81]Finkelman B B,GifFin D E.1986,Hydrogen peroxide xidation:an improved method for rapidly assessing acicd-generating potential of sediments and sedimentary rocks.Recreation and Revegetation Research,5(1):521-534.
    [82]G.Rauret,a J.F.Lo'pez-Sa'nchez,a A.Sahuquillo,a R.Rubio,a C.Davidson,b A.1999,Ureb and Ph.Quevauvillerc.Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials.J.Environ.Monit.,1,57-61.
    [83]Gupta,SK,1975,Chert K Y Environ Lett 10,129.
    [84]Hossner.L R(Ed.).1988.Reclamation of surface-mined lands[M].CRC Press,Boca Raton,Florida.
    [85]Kay L. Laban, brian P.Atkin. 1999,The determination of minor and trace element associations in coal using a sequential microwave digestion procedure. International journal of coal geology, 41(4):351 — 369.
    
    [86]Kleinman, R.L.P. and Erickson, P.M., 1983. Control of Acid Drainage from Coal Refuse using Anionic Surfactants, U.S. Bureau of Mines Report of Investigations 88-47.
    
    [87]Lapakko, K., 1988, Prediction of acid mine drainage from Duluth Complex mining wastes in northeastern Minnesota, Mine Drainage and Surface Mine Reclamation: Mine Water and Mine Waste. Proceedings of the 1988 Mine Drainage and Surface Mine Reclamation Conference, Bureau of Mines IC 9183, p. 180-190.
    
    [88]Lapakko, K., 2002, Metal Mine Rock and Waste Characterization Tools: An Overview, International Institute for Environment and Development.
    
    [89]Lapakko, K., 1991. Mine Waste Drainage Quality Prediction: A Literature Review, Draft report to the Minnesota Department of Natural Resources, 50 pp.
    
    [90]Lawrence R.W.,Scheske M.A 1997,method to calculated the neutralization potential of mining wastes.Environmental Geology, 32(2):10G~113.
    
    [91]Lin Z. 1997,Mineralogical and chemical characterization of wastes from the sulfuric acid industry in Falun ,Sweden [J]. Environmental Geology, 30 (3/4) :152 - 162.
    
    [92]Lundgren, D.G. and Silver, M., 1980. Ore Leaching by Bacteria, Annual Review of Microbiology, vol. 34, pp. 263-283.
    
    [93]Mckibben M.A.,Barnes H.L. 1980 ,Oxidation of Pyrite in low temperature acidic solution:rate laws and surface textures[J].Geochim Cosmochim Acta, 50 :1509~1520.
    
    [94]Miller S D, Jeffery J J,Wong J W C. 1991.Use and misuse of the acid-base account for AMD prediction [A]. Proceedings of the Second International Conference on the Abatement of AcidDrainage [C]. Montreal, 16-18.
    
    [95]Miller S D, Jeffery JJ, Wong J W C , 1991 ,In-pit identification and management of acid forming waste rock at the Golden Cross Gold Mine,New Zealand . Proceedings of the Second Intematinal Conferencr on the Abatement of Acidic Grainage .Montreal, 137—151.
    
    [96]Paola Adamo,Laurence Denaixb,Fabio Terribile,et al. 2003 ,Characterization of heavy metals in contaminated volcanic soils of the Solofrana river valley (Southern Italy) [J] . Geoderma. 117 (3 - 4) :347 - 366.
    
    [97]Pavel Janoa,Lucie Herzogova,Jaroslav Rejnek,et al. 2004 ,Assessment of heavy metals leachability from metal organic sorbent-iron humate-with the aid of sequential extraction test [J]. Talanta. 62 (3): 497 - 5011.
    [98]Pirrie D.,Gamm G.S.,Sear L.G,Hughes S.H. 1997,Mineralogical and geochemical signature of mine waste contamination,Trsillian River,FalEstuary Cornwall, UK. Environmental Geology, 29(1/2):58~65.
    
    [99]Ph. Quevauviller. 2002 , Operationally defined extraction procedures for soil and sediment analysis. Part 3: new crms for trace-element extractable contents [J]. Trends in Analytical Chemistry. 21(11) :774 - 7861.
    
    [101]Plumlee, G. S., 1999, The Environmental Geology of Mineral Deposits, in Plumlee, G.S., and Logsdon, M. J., eds., The Environmental Geochemistry of Mineral Deposits.Part A: Processes, Techniques, and Health Issues: Littleton, CO, Society of Economic Geologists, p. 71-116.
    
    [102]Pratt A.R.,Nesbitt H.W.Nuir I.J. 1994,Generation of acids-from mine waste:oxidative leaching of pyrrhotite in dilute H2SO4 solution at pH 3.0[J].Geochim Cosmochim Acta, 58:5174-5159.
    
    [103]Richard W.Lawrence etc. 1997,A method to calculate the neutralization potential of mining wastes.Environmental Geology, 32(2): 100-106.
    
    [104]Sobek, A. A., Schuller, W. A., Freeman, J. R., and Smith, R. M., 1978, Field and Laboratory Methods Applicable to Overburdens and Minesoils: US Environmental Protection Agency, EPA-600/2-78-054.
    
    [105]Shaw S.C.,Gorat L.A.,Jambor J.L.,Blowes D.W.,Hanton-Fong C.J. 1998,Mineralogical study of base metal tailings with various sulfide contents,oxidized in laboratory columns and field lysimeters[J].Environmental Geology, 33(2/3):209~217.
    
    [106]Sherlock E.J.,Lawrence R.W.,Poulin P. 1995, On the neutralization of acid rock drainage by carbonate and silicate minerals [J] .Environmental Geology, 25:43-54.
    
    [107]Schuring J.etc. 1997,The potential formation of acid mine drainage in pyrite-bearing hard-coal tailings under water-saturated conditions:an experimental approach. Environmental Geology, 31(1/2):59~65.
    
    [108]Sherlock J W, R. W. Lawrence ,R. Poulin ,1995.In the neutralization of acid rock drainage by carbonate and silicate minerals[J].Environment Geology , 25 :43 - 54.
    
    [109]Shaw L A ,Groat J L J . 1998 , Mineralogical study of base metal tailing with various sulfilde contents ,oxidized in laboratory columns and field lysimeters[J]. Environmental Geology , 33 (2/3) :209 - 217.
    
    [110] Sarah Giles,1998.acid mine generation from coal waste.the university of queensland department of chemical engineering .4~
    [111]Schuring J ,Kolling M,Schulz H D. 1997, The potential formation of acid mine drainage in pyrite-bearing hard-coal tailing under water-saturated condition :an experimental approach[J].Environmental Geology , 31(1/2) :59-65.
    
    [112]Sherlock, E.J., Lawrence, R.W., and Poulin, R., 1995. On the Neutralization of Acid Rock Drainage by Carbonate and Silicate Minerals, Environmental Geology, vol. 25, pp. 43-54.
    
    [113]Shu W S, Ye Z H, Lan C Y, et al. 1996. Acid forming potential of a Pb/Zn mine tailings at Lechang [A]. International Conference on the Remediation and Management of Degraded Lands [C]. Hong Kong, 3-6.
    
    [114] Shuman, 1985,L.M.Siol Sci. 140,11-22.
    
    [115]TeixeiraE.C.,OrtizL.S,Alves M.F.C.C, etal. 2001, Distribution of selected heavy metals in fluvial sediments of the coal mining region of Baixo Jacui, RS, Brazil,Environmental Geology, 41:145-154.
    
    [116]Tessier A, Campbell P G and Blsson M. 1979, Sequential extraction procedure for the speciation particulate trace metals. Anal. Chem., 51(7):844^851.
    
    [117]U.S. EPA, 1994, Technical Document - Acid Mine Drainage Prediction: Office of Solid Waste, Special Waste Branch, EPA530-R-94-036.
    
    [118] Urasa 1 T and Macha S F. 1996,Speciation of heavy metals in soils, sediments, and sludge using DC-plasma emission spectrometry coupled with ion chromatograph. Intern. J. Environ. Anal. Chem., 64(2):83-95.
    
    [119]White, W. W., III, Lapakko, K., and Cox, R. L., 1999, Static-Test Methods Most Commonly Used To Predict Acid-Mine Drainage: Practical Guidelines for Use and Interpretation, in Plumlee, G. S., and Logsdon, M. J., eds., The Environmental Geochemistry of Mineral Deposits. Part A: Processes, Techniques, and Health Issues: Littleton, CO, Society of Economic Geologists, Inc., p. 325-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700