用户名: 密码: 验证码:
有机氯农药在湖泊水体和沉积物中的污染特征及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机氯农药是公认的环境优先控制污染物,也是典型的持久性污染物(POPs)。具有难以降解性、半挥发性、生物蓄积性和高毒性,在自然界中可长期存在,并通过食物链富集,对人类健康和环境的危害极大。虽然早在20世纪70年代,西方发达国家就已经开始禁用有机氯农药,而我国也于1983年禁止了它的生产和使用,但由于使用量大,在环境中降解缓慢、滞留时间长,使得有机氯农药仍然是在环境中检出率最高的一类POPs。
     有机氯农药可以通过工业废水及生活污水的排放,农业径流、大气的干湿沉降(降尘及降雨)、土壤浸蚀等各种途径进入水体,但是因为它具有疏水亲颗粒的特性,因此很容易被水体中的悬浮颗粒物质(如矿物、生物碎屑和胶体等)所吸附,并最终随着重力沉降等物理化学作用进入沉积物中,在水底的沉积物中富集。因此,沉积物被认为是有机氯农药迁移转化的归宿地与积蓄库。而沉积物中的有机氯农药还可以通过扩散、再悬浮等途径重新进入上覆水体,引起水体的二次污染。因此研究有机氯农药在水体和沉积物中迁移转化规律具有重要的意义,也是国内外关注的热点问题之一。
     湖泊具有调节江河径流、灌溉农田、沟通航运以及繁殖水产等一系列生态功能,与人类的生产生活息息相关。近年来,随着经济的发展以及对湖泊资源不合理的开发和利用,湖泊的水质环境已日益恶化,有机氯农药污染就是其中之一。目前,国内外对于有机氯农药污染的研究主要集中于海湾及河口一带,对湖泊的研究较少。洪湖是湖北省最大的湖泊,也是我国重要的淡水水产基地。但是,关于洪湖的有机氯农药污染研究还尚未见到报道。本文以洪湖为例,研究有机氯农药在湖泊水体和沉积物中的污染特征及动力学机制,探讨湖泊水体和沉积物中有机氯农药的来源与归宿,以及沉积物中有机氯农药的重新释放对湖泊水质的影响,对我们深入认识有机氯农药在湖泊水体和沉积物中的迁移转化行为具有十分重要的研究价值,可以为湖泊有机污染的控制与治理提供理论依据。
     首先,本文研究了不同季节洪湖表层水体中有机氯农药的含量水平和分布特征。在洪湖共设立了两条采样剖面,并分枯水期和丰水期两次在洪湖采集了表层水样。研究结果表明,在洪湖表层水体中总有机氯农药OCPs在枯水期的浓度范围为1.22-8.02 ng/L,平均值为3.47 ng/L;在丰水期浓度范围为1.15-4.69 ng/L,平均值为2.87 ng/L,枯水期的含量要略高于丰水期。而其中最主要的有机氯农药污染物是六六六和DDTs。两者的含量分别为:HCHs(包括α-HCH、β-HCH、γ-HCH和δ-HCH),在枯水期和丰水期的浓度范围分别为0.94-7.04 ng/L和0.79-4.0 ng/L,平均值分别为2.97 ng/L和2.36 ng/L;DDTs(包括p,p’-DDT、o,p’-DDT、p,p’-DDD和p,p’-DDE),在枯水期和丰水期的浓度范围分别为0.06-0.48 ng/L和0.15-0.83 ng/L,平均值分别为0.24 ng/L和0.41 ng/L。与其他地区相比,水体中HCHs和DDTs的浓度普遍低于国内外其他水域。从分布特征来看,洪湖水体中的有机氯农药基本呈现出距河流入湖口及岸边越近,含量越高的趋势,说明其主要来源于地表径流输入及沿岸污染输入。但是,这种分布趋势枯水期不如丰水期明显。据分析,枯水期的有机氯农药主要来源于底泥释放。而丰水期的有机氯农药主要来源于地表径流对土壤的冲刷浸蚀,从而导致土壤中残留的有机氯农药大量溶入或随土壤颗粒物进入水中。另外,在养渔场附近,因为悬浮颗粒物较多,易于吸附有机污染物,水体中有机氯农药的浓度也较高。从组成特征来看,洪湖水体中HCHs的主要成分是γ-HCH和β-HCH,说明洪湖目前还有林丹输入,但工业六六六则主要为以前残留。而DDTs的主要成分是DDE,说明其主要来源于以前的风化土壤残留。另外,硫丹的组成以硫丹2为主,也说明其主要来源于以前的农药残留。
     其次,本文研究了洪湖不同深度的水体中有机氯农药的含量分布与组成特征。通过表层水与底层水中有机氯农药的含量对比可以发现,大部分底层水中有机氯农药的浓度要高于表层水,说明底层水中的有机氯农药主要来源于沉积物释放。另外,洪湖间隙水中有机氯农药的含量要远远高于底层水和表层水,反映了有机氯农药在这些环境中经过了长期的沉积和积累,以及间隙水中的胶体对有机氯农药有很强的吸附作用。可能正是因为间隙水与上覆水体之间明显的浓度梯度,才导致有机氯农药从沉积物的孔隙中向湖水中迁移扩散。从组成来看,表、底层水中各有机氯农药的组成基本一致。
     第三,本文将洪湖表层沉积物分为上下两层,研究了洪湖表层沉积物中有机氯农药的含量水平和分布特征。从含量上看,含量最高的是DDTs类农药,在上层沉积物和下层沉积物中的含量范围分别为2.39-25.79 ng/g和1.22-27.5 ng/g,平均值分别为9.19 ng/g和8.73ng/g。其次为HCHs类农药,在上层沉积物和下层沉积物中的含量范围分别为2.05-18.95ng/g和0.66-11.25 ng/g,平均值分别为6.91 ng/g和4.73 ng/g。与国内外其他地区相比,洪湖沉积物中HCHs的含量要低于天津海河,但普遍高于其他地区;而DDTs的含量低于罗马尼亚的Merhei湖和天津海河,但高于其他地区。洪湖沉积物中的有机氯农药与水体中的有机氯农药一样,也基本呈现出在河流入湖口及近岸处含量增高的趋势,说明其主要来源于地表径流及近岸输入。另外,在养渔场附近,因为沉积物中有机质含量较多,因此有机氯农药的含量也较高。将上层与下层沉积物中有机氯农药的含量对比,可以发现它们的含量分布趋势相近,而下层沉积物中有机氯农药的含量普遍低于上层沉积物,说明下层沉积物中的有机氯农药可能主要来源于上层沉积物的渗透。从沉积物中各有机氯农药的组成来看,HCHs类农药以γ-HCH和β-HCH为主,说明其主要来源于林丹的使用及以前的工业六六六残留。而DDTs以DDE为主,硫丹以硫丹2和硫丹硫酸盐为主,说明其均主要来源于以前的农药残留。
     第四,对沉积物中的有机氯农药向水体中的释放动力学进行了实验研究。通过一系列的模拟实验,对三种状态下,即静止释放状态、紊动悬浮状态及换水清洗状态下沉积物中有机氯农药的释放规律进行了研究。研究发现,沉积物中有机氯农药的释放过程均明显呈现出在初始阶段释放速度快,而后释放速度减慢的规律。沉积物中有机氯农药的释放强度主要受化合物的水溶性控制。一般来说,水溶性高的物质,如α-HCH,在水中的释放浓度较高;而水溶性低的物质,如HCB,在水中的释放浓度较低。另外,温度对有机氯农药的释放也有重要的影响,随着温度的升高,沉积物中有机氯农药的释放明显加强。在静止释放状态下,沉积物中的有机氯农药向水体的释放过程极其缓慢,要相当长一段时间才可达到平衡。并且在此过程中,表层沉积物中的有机氯农药有向下迁移扩散的趋势。而对比静态释放,紊动悬浮状态下沉积物中有机氯农药的释放具有释放速率快,释放强度高的特点,并且在短期内就可达到释放平衡。在换水清洗实验中,在实验初期,随着换水次数的增加,水中有机氯农药的浓度逐渐降低,但达到一定的次数后,水体中有机氯农药的含量就基本不再变化。说明换水清洗对水体中的有机氯农药污染能起到一定的控制作用,但不能根本消除污染沉积物对水质的影响,沉积物的释放仍会使上覆水体中有机氯农药的浓度维持在一定水平上。最后,通过实验数据分析,建立了沉积物中有机氯农药释放的一级动力学模型并确定了模型参数。释放动力学模型的验证结果表明,实测值与模拟值吻合较好,说明该模型能够用来描述沉积物中有机氯农药向水体释放的动力学过程。
     第五,对沉积物中的有机氯农药在厌氧条件下的降解动力学进行了实验研究。研究发现,在厌氧条件下,天然沉积物中大部分有机氯农药都可缓慢降解,其中降解较明显的是γ-HCH、p,p’-DDT及o,p’-DDT,降解较慢的是β-HCH和p,p’-DDE。而α-氯丹、α-HCH、HCB及p,p’-DDE的缺氧生物降解均符合准一级反应动力学方程,其厌氧降解速率常数分别为k_1=0.0137d~(-1),k_2=0.0078d~(-1),k_3=0.0042d~(-1),k_4=0.0005d~(-1)。
     第六,对沉积物中有机氯农药的向下迁移过程进行了渗滤实验研究。通过渗滤模拟实验,研究了渗滤液及不同深度沉积物中有机氯农药的含量变化趋势。结果表明,随着时间的延长,渗滤液中β-HCH的浓度呈逐渐降低趋势。但是由于沉积物的滞留作用,渗滤液中HCB及p,p’-DDE的浓度峰值出现不同程度的滞后,其中HCB的滞后尤其明显。另外,在渗滤过程中,表层0-5 cm沉积物中的HCHs和DDTs的向下迁移趋势明显,主要为表层0-5cm沉积物中HCHs和DDTs的含量明显降低,而下部5-15 cm沉积物中含量则显著增加,显示了表层沉积物中的HCHs和DDTs向下迁移扩散的趋势,但主要局限于15 cm的深度内,可能主要是由于TOC的吸附作用。而15-20 cm沉积物中的HCHs则还可以继续向深层沉积物迁移,但15 cm以下沉积物中DDTs的继续向下迁移趋势不明显。
     第七,对湖泊水质模型进行了研究。根据质量守恒原则,综合考虑各项影响因素,其中包括以前的水质模型未能正确考虑的污染沉积物对水体的释放,将根据模拟实验所建立的静态释放动力学方程引入水质模型中,建立了新的湖泊水质模型。并且以洪湖为例,给出各项参数的选取方法,对所建立的水质模型进行了分析和应用。结果表明,所建立的湖泊水质模型基本反映了水质的污染变化情况。说明建模的思路和方法是可取的,引入的静态释放动力学方程能基本反映沉积物与上覆水之间的物质交换通量。
Organochlorine pesticides (OCPs) are priority pollutants and typical persistent organicpollutants (POPs). Because of their persistence, half-volatility and high toxicity in theenvironment, and biological accumulation through the food web, OCPs have great harm to theenvironment and human health. Because they were used largely and are difficult to degraded,OCPs are still the most widespread POPs in the environment despite their ban or restricted use indeveloped countries in 1970s and in China in 1983.
     OCPs are transported into water through different pathways, such as industrial and domesticwastewater, agricultural runoff, atmospheric deposition and soil erosion. Because of theirhydrophobia, OCPs have a strong affinity for suspended particles and subsequently settle downinto sediments under gravity. Therefore, sediments are thought to be one of the major sinks.However, OCPs in sediments can release into water by diffusion and resuspension and lead tothe recontamination of water. The study on transferring and transforming pathways of OCPs inwater and sediments is very important and is a hotspot.
     Lakes have important function on adjusting river runoff, irrigating farmland, shipping andaquiculture. In the recent years, with the economical development and irrational exploitation andapplication on lakes, the ecologic environment of many lakes has worsened gradually. OCPscontamination is one of the environmental problems. At present, the studies on OCPs are mainlypaid attention to bays and estuaries, and very few studies on OCPs in lakes. Honghu Lake is thelargest lake in Hubei province, and is an important aquiculture base. However, no data areavailable for OCPs in Honghu Lake. Therefore, Honghu Lake was selected as our case study ofOCPs contamination and kinetics in water and sediments. Through the discussion about theorigin, tendency and release of OCPs, we can know the transferring and transforming pathwaysof OCPs in the water and sediments in Honghu Lake, which may provide theoretical foundationfor controlling and treating organic pollution of lakes.
     Firstly, the concentrations and distribution of OCPs in surface water of Honghu Lake in different seasons were studied. The surface water samples were collected from two sectionplanes of Honghu Lake in both low and high water seasons. The results showed that theconcentrations of OCPs in surface water of Honghu Lake in low and high water seasons rangedfrom 1.22 to 8.02 ng/L and 1.15 to 4.69 ng/L, respectively. The average concentrations of OCPsin surface water of Honghu Lake in low and high water seasons were 3.47 ng/L and 2.87 ng/L,respectively, and the average concentration of OCPs in low water season was higher than that inhigh water season. HCHs and DDTs were the most dominant compounds in OCPs in the water.The total HCHs (the sum of a-HCH,β-HCH,γ-HCH andδ-HCH) in low and high waterseasons ranged from 0.94 to 7.04 ng/L and 0.79 to 4.0 ng/L, respectively. The averageconcentrations of HCHs were 2.97 ng/L and 2.36 ng/L, respectively. The total DDTs (the sum ofp,p'-DDT, o,p'-DDT, p,p'-DDD and p,p'-DDE) in low and high water seasons ranged from 0.06to 0.48 ng/L and 0.15 to 0.83 ng/L, respectively. The average concentrations of DDTs were 0.24ng/L and 0.41 ng/L, respectively. Compared with other regions in the world, the concentrationsof HCHs and DDTs in Honghu water were lower than other water areas. The concentrations ofOCPs in Honghu surface water were higher when the sample sites were nearer the mouth ofrivers flowing into the lake and the bank of the lake. It showed that OCPs in Honghu water weremainly derived from the input of surface runoff and pollutants along the bank of the lake. Thisdistribution tendency in high water season was clearer than that in low water season. Accordingto the data analysis, OCPs in low water season were mainly derived from the release of thesediments. And OCPs in high water season were mainly derived from the input of surface runoff,because residual OCPs in soils can transfer to water by rush and erosion of surface runoff. Inaddition, the OCPs concentrations near the fishery were high because there are a lot ofsuspended particles that have a strong affinity to OCPs.γ-HCH andβ-HCH were the mostdominant compounds in HCHs in Honghu surface water, which indicated that there are still newLindane inputs in Honghu Lake, but technical HCHs were old. DDE andβ-endosulfane were themost dominant compounds in respectively DDTs and endosulfane, which indicated that they areboth old residues.
     Secondly, the distribution and composition of OCPs in different depth water of HonghuLake were studied. The concentrations of OCPs in bottom water in mostly sample sites werehigher than that in surface water, which indicated that OCPs in bottom water were mainlyderived from the release of the sediments. Moreover, the concentrations of OCPs in porewaterwas much higher than that in surface and bottom water, reflecting possible long-term depositionand accumulation of OCPs in the environment and the strong affinity of OCPs for colloids inporewater. The clear gradient in OCPs concentrations between porewater and overlying watersuggests that OCPs will be transported from sediment porewater to overlying water by processessuch as diffusion. OCPs compositions were almost same between surface and bottom water.
     Thirdly, this dissertation divided the surface sediments of Honghu Lake into upper layer anddown layer, and studies the OCPs concentrations and distribution of them. The concentrations of DDTs are highest among OCPs in the sediments. The concentrations in upper and down layersranged from 2.39 to 25.79 ng/g and 1.22 to 27.5 ng/g, and the averages were 9.19 ng/g and 8.73ng/g, respectively. HCHs had higher concentrations in the sediments. The concentrations ofHCHs in upper and down layers ranged from 2.05 to 18.95 ng/g and 0.66 to 11.25 ng/g, and theaverages were 6.91 ng/g and 4.73 ng/g, respectively. The HCHs concentrations in Honghusurface sediments were lower than Haihe River in Tianjin and higher than that in other areas; andthe DDTs concentrations were lower than Merhei Lake in Rumanian and Haihe River in Tianjin,but were higher than other areas. The OCPs concentrations in Honghu surface sediments tendedto increase gradually from the middle of the lake to the bank or the mouth of rivers flowing intothe lake, which was similar with the surface water. Therefore OCPs in the surface sedimentswere mainly derived from the inputs of runoff or the bank. In addition, the OCPs concentrationswere higher near the fishery because of high organic substance. OCPs in upper sediments hadsimilar distribution tendency with the down sediments, but the concentrations of OCPs in upperlayer were higher than down layer. So OCPs in the down sediments might be derived mainlyfrom penetration of the upper sediments.γ-HCH andβ-HCH were the most dominantcompounds in HCHs in the surface sediments, which indicated that HCHs were mainly derivedfrom the application of Lindane and the residues of technical HCHs. DDE was the mostdominant compound in DDTs, andβ-endosulfane and endosulfane-sulfate were the mostdominant compound in endosulfane, which indicated that they were both old.
     Fourthly, release kinetics of OCPs in the sediments were studied by experiments. Therelease rules were studied under static, suspended and washing by exchanging water conditions.The results showed that there were faster release speeds at the beginning of the experiment, andthe release speeds slow down gradually with the increasing time. The release intensities of OCPsin the sediments were influenced mainly by the water-solubility of OCPs. Generally, a compoundwith high water-solubility has high release intensity, such asα-HCH; and a compound with lowwater-solubility has low release intensity, such as HCB. Moreover, temperature has importantinfluence to the release of OCPs. With the increase of the temperature in the experiment, thereleases of OCPs in the sediments were enhanced. Under the static condition, the release speedof OCPs in the sediments was very slow, and the balances between desorption and adsorptionmight reach after a long time. In addition, OCPs in the surface sediment had the down tendencyby diffusion. Compared to the static condition, the release speeds of OCPs in the sediments werefaster and the release intensities were stronger under the suspended condition, and it took onlyseveral days to get desorption and adsorption balance. In the experiment exchanging water, theconcentrations of OCPs in the water decreased gradually with the increase of times exchangingwater at begin. However, the concentrations of OCPs in the water kept stabilization after fourtimes exchanging water. Therefore, exchanging water may decrease the OCPs concentrations inwater, but it cannot remove completely OCPs from water. At last the OCPs concentrations in theoverlying water will keep stable levels because of the release from the sediments. A desorption kinetic model of OCPs from aquatic sediments was set up on the basis of these data. The testresult showed that the simulation data by the kinetic model can well fit the measure data, so themodel can be used to describe the release kinetic process of OCPs from the sediments to water.
     Fifthly, anaerobic degradation kinetics of OCPs in the sediments were studied. The resultsshowed that most OCPs might degrade slowly in natural sediments under anaerobic condition.The degradation ofγ-HCH, p,p'-DDT and o,p'-DDT was obvious, but the degradation ofβ-HCHand p,p'-DDE was very slow. The anaerobic degradation ofα-chlordane,α-HCH, HCB andp,p'-DDE fitted pesudo-first-order kinetics equation, with kinetic constants ofα-chlordane,α-HCH, HCB and p,p'-DDE were 0.0137d~(-1), 0.0078d~(-1), 0.0042d~(-1), 0.0005d~(-1), respectively.
     Sixthly, the processes of moving downwards of OCPs in the sediments were studied.Through the simulation experiment of penetration, the variable tendency of the OCPsconcentrations was studied in filtrate and sediments with different depth. The results showed thatthe concentrations ofβ-HCH in filtrate decreased gradually with the increase of time. However,the highest concentrations of HCB and p,p'-DDE in filtrate had obvious lags. Moreover, inpenetration process, the concentrations of HCHs and DDTs in 0-5cm sediments decreasedobviously, and the concentrations of HCHs and DDTs in the sediments with 5-15 cm depthincreased obviously. It indicated that HCHs and DDTs in surface sediment might movedownwards, but the moving distance was in the 15 cm depth because of sorption of TOC.Besides, HCHs in the sediment with the 15-20 cm depth might move continually down to thedeeper sediment, but the moving tendency of DDTs under 15 cm sediment was not obvious.
     Finally, the water quality model about lakes was studied. According to the qualityconservation rule, a new lake water quality model including a variety of influence factors was setup. This model considers correctly the adsorption and desorption of OCPs between sedimentsand water, and the desorption kinetic equation was used in the new model. At last, Honghu Lakewas regarded as a case, and the water quality model was analyzed and used. The results showedthat the model reflected basically the pollution variation of water. Therefore, it indicated that thethought and method of modeling were advisable, and the static release kinetic equation usedcould reflect basically exchanging fluxes of pollutant between sediments and overlying water.
引文
in the environment: from 1948 to 1997. The Science of The Total Environment, 1999, 232(3): 121.
    [15] Sahsuvar L., Helm P. A., Jantunen L. M., et al. Henry's law constants for [alpha]-, [beta]-, and [gamma]-hexachlorocyclohexanes (HCHs) as a function of temperature and revised estimates of gas exchange in Arctic regions. Atmospheric Environment, 2003, 37(7): 983.
    [16] Tao, S., Xu, F. L., Wang, X. J., et al. Organochlorine pesticides in agricultural soil and vegetables from Tianjin, China. Environ. Sci. Technol., 2005, 39: 2494-2499.
    [17] Li Y.F., Macdonald R.W.. Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: a review. The Science of the total Environment, 2005, 342: 87-106.
    [18] Gioia R., Offenberga J.H., Gigliotti C.L., et al. Atmospheric concentrations and deposition of organochlorine pesticides in the US Mid-Atlantic region. Atmospheric Environment, 2005, 39: 2309-2322.
    [19] Bidleman T F, Leone A D. Soil-air exchange of organochlorine pesticides in the southern United States. Environmental Pollution, 2004, 128: 49-57.
    [20] Roland K. Persistent organic pollutants (POPs) as environmental risk factors in remote high-altitude ecosystems. Ecotoxicology and Environmental Safety, 2006, 63: 100-107.
    [21] Alegria H A. Organochlorine pesticides in ambient air of Beline, Central America. Environmental Science & Technology, 2000, 34: 1953-1958.
    [22] Brubaker W W. OH reaction kinetics of gas-phase α- and β-hexachlorocyclohexane and hexachlorobenzene. Environmental Science & Technology, 1998, 32: 766-770.
    [23] Wania F., Mackay D.. Tracking the distribution of persistent organic pollutants. environmental science & technology, 1996, 30: 390-396A.
    [24] Tanabe S.. Contamination and toxic effects of persistent endocrine disrupters in marine mammals and birds. Marine Pollution Bulletin, 2002, 45: 69-77.
    [25] Covaci A., Tutudaki M., Tsatsakis A. M., et al.. Hair analysis: another approach for the assessment of humane exposure to selected persistent organochlorine pollutants. Chemosphere, 2002, 46: 413-418.
    [26] 张大弟,张晓红.农药污染与防治.北京:化学工业出版社,2001,15-19.
    [27] Shen L., Wania F.. Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides. Journal Of Chemical And Engineering Data, 2005, 50(3): 742-768.
    [28] 吴荣芳,解清杰,黄卫红,等.六氯苯的环境危害及其污染控制,化学与生物工程,2006,23(8):7-10.
    [29] Capkin E., Altinok I., Karahan S. Water quality and fish size affect toxicity of endosulfan, an organochlorine pesticide, to rainbow trout. Chemosphere, 2006, 64: 1793-1800.
    [30] Yao Z.W, Jiang G.B, Xu H.Z., et al.. Distribution of organochlorine pesticides in seawater of the Bering and Chukchi Sea. Environmental Pollution, 2002, 116: 49-56.
    [31] Van Meter P C. Historical trends in organochlorine compounds in river basins identified using sediment cores from reservoirs. Environ. Sci. Technol., 1997, 31: 2339.
    [32] Ribes A. Temperature and organic matter dependence of the distribution of organochlorine compounds in mountain soils from the subtropical Atlantic(Teide, Tenerife island). Environ. Sci. Technol. 2002, 36: 821.
    [33] Monirith, I U D, Takahashi S, Nakata H, et al. Asia-Pacific mussel watch: monitoring contamination of persistent organochlorine compounds in coastal waters of Asian countries. Marine Pollution Bulletin, 2003, 46: 281-300.
    [34] Rajendran R B, Imagawa T, Tao H, et al. Distribution of PCBs, HCHs and DDTs, and their ecotoxicological implications in Bay of Bengal, India. Environment International, 2005, 31(4): 503-512.
    [35] Fu J M, Mai B X, Sheng G Y, et al. Persistent organic pollutants in environment of the Pearl River Delta, China: an overview. Chemosphere, 2003, 52(9): 1411-1422.
    [36] Luo X J, Mai B X, Yang Q S, et al. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China. Marine Pollution Bulletin, 2004, 48: 1102-1115.
    [37] Oliver W., Jeffrey P. O., Paul K. S.L. Distribution of organochlorines in the dissolved and suspended phase of the sea-surface microlayer and seawater in Hong Kong, China. Marine Pollution Bulletin, 2006, 52: 768-777.
    [38] 李建芬,王宏,夏威岚等。渤海湾西岸~(210)Pbexc、~(137)Cs测年与现代沉积速率,地质调查与研究,2003,26(2):114-128。
    [39] Suckow A, Morgenstern U, Kudrass H-R. Absolute dating of recent sediments in the cyclone-influence shelf area off Bangladesh: comparison of gamma spectrometric (~(137)Cs, ~(210)Pb, ~(228)Ra), radiocarbon, and ~(32)Si ages. Radiocarbon, 2001, 43(2B): 917-927.
    [40] 陈建芳,叶新荣,周怀阳等.长江口—杭州湾有机污染历史初步研究——BHC和DDT的地层学记录.中国环境科学,1999,19(3):206-210.
    [41] 池继松,颜文,张干.大亚湾海域多环芳烃和有机氯农药的高分辨率沉积记录.热带海洋学报,2005,24(6):44-52.
    [42] Venkatesan M I, Leon R P, Geen A, et al. Chlorinated hydrocarbon pesticides and polychlorinated biphenyls in sediment cores from San Francisco Bay. Marine Chemistry, 1999, 64: 85-97.
    [43] Mark D M, Steve J G. The relationship between land use and organochlorine compounds in streambed sediments and fish in the central Columbia Plateau, Washington and Idaho. USA. Environmental Toxicology, 1997, 16(9): 1877-1887.
    [44] Bergquist P A, Stradberg B, Ekelund R, et al. Temporal monitoring of organochlorine compounds in seawater by semipermeable memberanes following episode in Western Europe. Environ. Sci. Technol., 1998, 32: 3887-3892.
    [45] Zhang Gan, Andrew Parker, Alan House. Sedimentary records of DDT and HCH in the pearl river delta, South China. Environ. Sci. Technol. 2002, 36: 3671-3677.
    [46] 康跃惠,盛国英,傅家谟等.珠江澳门河口沉积物柱样中有机氯农药的垂直分布特征.环境科学,2001,22(1):81-85.
    [47] Santschi P H, Presley B J, Wade T L, et al. Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galvestom Bay and Tampa Bay sediment cores. Marine Environmental Research, 2001, 52: 51-79.
    [48] 陈伟琪,张珞平,徐立等.厦门港湾沉积物中有机氯农药和多氯联苯的垂直分布特征.海洋科学,1996,2:56-60.
    [49] Hitch R K, Day H P. Unusual persistence of DDT in some Western USA soils. Bull Environ. Contam. Toxicol., 1992, 48: 255-264.
    [50] Zeng E Y, Venkatesan M I. Dispersion of sediment DDTs in the coastal ocean off southern California. The Science of the Total Environment, 1999, 229: 195-208.
    [51] Quensen Ⅲ J F, Mueller S A, Jain M K, et al. Reductive dechlorination of DDE to DDMU in marine sediment microcosms. Science 1998, 280: 722-724.
    [52] Fuller C C, van Geen A, Baskaran M, et al. Sediment chronology in San Francisco Bay, California, defined by ~(210)Pb, ~(234)Th, ~(137)Cs, and ~(239,240)pu. Mar. Chem. 1999, 64: 7-27.
    [53] Fowler S W. Critical review of selected heavy metal and chlorinated hydrocarbon concentrations in the marine environment. Marine Environment Research, 1990, 29(1): 1-64.
    [54] 张元标,林辉.厦门海域表层沉积物中DDTs,HCHs和PCBs的含量与分布[J].台湾海峡,2004,23(4):423-428.
    [55] Zhou J L, Hong H, Zhang Z, et al. Multi-phase Distribution of organic micropollutants in Xiamen Harbour, China. Water Research, 2000, 34(7): 2132-2150.
    [56] 刘现明,徐学仁,张笑天等.大连湾沉积物中的有机氯农药和多氯联苯.海洋环境科学,2001,20(4):40-44.
    [57] 赵元凤,吕景才,徐恒振等.大连湾养殖海域有机氯农药污染研究.农业工程学报,2002,18(4):108-112.
    [58] Hong H., Xu L., Zhang L., et al. environmental fate and chemistry of organic pollutants in the sediment of Xiamen and Victoria Harbors. Marine Pollution Bulletin, 1995, 31: 229-236.
    [59] 陈伟琪,洪华生,张珞平等.闽江口—马祖海域表层沉积物中有机氯污染物的残留水平与分布特征.海洋通报,2000,19(2):53~58.
    [60] Mai B.X., Fu J.M., Sheng G.Y., et al., Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China, Environmental Pollution, 2002, 117: 457-474.
    [61] 陈伟琪,洪华生,张珞平,等.珠江口表层沉积物和悬浮颗粒物中的持久性有机氯污染物.厦门大学学报(自然科学版),2004,43:230-235.
    [62] 麦碧娴,王锡莉,祁士华,等.澳门水域沉积物中难降解有机物的污染现状及来源初 探[A].王志石.第三届澳门环境与城市发展研讨会科学论文集,澳门:澳门大学出版社,2001:62-84
    [63] 李洪,付宇众,周传光,等。大连湾和锦州湾表层沉积物中有机氯农药和多氯联苯的分布特征。海洋环境科学,1998,17(2):73-76。
    [64] 蔡福龙,林志锋,陈英,等.热带海洋环境中BHC和DDT的行为特征研究(Ⅰ).海洋环境科学,1997,16(2):9-14;
    [65] 蔡福龙,林志锋,陈英,等.热带海洋环境中BHC和DDT的行为特征研究(Ⅱ).海洋环境科学,1998,17(2):1-7.
    [66] Leland H V, Bruce W N, Chlorinated hydrocarbon insecticides in sediments if southern Lake Michigan. Environ. Sci. Technol., 1973, 7: 833-838.
    [67] Young J L, Spycher G. Water dispersible soil organic mineral particles: Ⅰ. Carbon and nitrogen distribution. Soil Sci. Soc. Am. J., 1979, 43: 324-328.
    [68] Karickhoff S W, Brown D S, Scott T A. Sorption of hydrophobic pollutants on nature sediments. Water Res., 1979, 13: 241-248.
    [69] Choi W W, Chen K Y. Associations of chlorinated hydrocarbons with fine particles and humic substances in nearshore surficial sediments. Environ. Sci. Technol., 1976, 10(8): 782-786.
    [70] Garbarini D R, Lion L W. Influence of the nature of soil organics on the sorption of toluene and trichloroethylene. Environ. Sci. Technol., 1986, 20(12): 1263-1269.
    [71] 吴启航,麦碧娴,彭平安.不同粒径沉积物中多环芳烃和有机氯农药分布特征.中国环境监测,2004,20(5):1-6.
    [72] 姚子伟,江桂斌,蔡亚歧等.北极地区表层海水中持久性有机污染物和重金属污染的现状.科学通报,2002,47(15):1196-1200.
    [73] 胡雄星,夏德祥,韩中豪等.苏州河水及沉积物中有机氯农药的分布与归宿.中国环境科学,2005,25(1):124-128.
    [74] Barakat A.O., Kim M., Qian Y.R., et al. Organochlorine pesticides and PCB residues in sediments of Alexandria Harbor, Egypt. Marine Pollution Bulletin, 2002, 44: 1426-1434.
    [75] Dannenberger D. Chlorinated micropollutants in surface sediments of the Baltic Sea-investigations in the Belt Sea, the Arkona Sea and the Pomeranian Bight. Marine Pollution Bulletin, 1996, 32(11): 772-781.
    [76] Luo X.J., Mai B.X., Yang Q.S., et al. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China. Marine Pollution Bulletin, 2004, 48: 1102-1115.
    [77] Maldonado C. and Bayona J.M. Organochlorine compounds in the North-western Black Sea water: distribution and water column process. Estuarine, Coastal and Shelf Science, 2002, 54: 527-540.
    [78] Zeng E.Y, Yu C.C, Tran K. In situ measurements of chlorinated hydrocarbons in the water column off the Palos Verdes Peninsula, California. Environ. Sci. Technol., 1999, 33: 392-398.
    [79] 杨清书,麦碧娴,罗孝俊.澳门水域水体有机氯农药的垂线分布特征.环境科学学报,2004,24(3):428-434.
    [80] Zhang, Z.L., Hong, H.S., Zhou, J.L., Huang, J., Yu, G., Fate and assessment of persistent organic pollutants in water and sediment from Minjiang River Estuary, Southeast China, Chemosphere, Volume 52, Issue 9, September, 2003, 1423-1430.
    [81] 张祖麟,陈伟琪,哈里德等.九龙江口水体中有机氯农药分布特征及归宿.环境科学,2001,22(3):88-92.
    [82] Yang R.Q., Jiang G.B., Zhou Q.F., et al. Occurrence and distribution of organochlorine pesticides (HCH and DDT) in sediments collected from East China Sea. Environment International, 2005, 31: 799-804.
    [83] Fytianosa K., Voudriasb E., Kokkalis E. Sorption-desorption behaviour of 2,4-dichlorophenol by marine sediments. Chemosphere, 2000, 40: 3-6.
    [84] Narbonne J. F., Djomo J. E., Ribera D., et al. Accumulation Kinetics of Polycyclic Aromatic Hydrocarbons Adsorbed to Sediment by the Mollusk Corbicula fluminea. Ecotoxicology and Environmental Safety, 1999, 42: 1-8.
    [85] Sathishkumar M., Binuptiy A.R., Kavith D. Kinetic and isothermal studies on liquid-phase adsorption of 2,4-dichlorophenol by palm pith carbon. Bioresource Technology, 2007, 98: 866-873.
    [86] Hendricks D. W., Kuratti L. G. Distribution of organic compounds between mesorporous solids and solutions Wat. Res. 1982, 16: 829.
    [87] Weber W. J., Rumen R. R. Dynamics of diffusion of organic compounds in polymers. Wat. Resour. Res. 1965, 5: 361-366.
    [88] Kissao G., Tobschall H.J. Heavy metal release from phosphorite tailings into seawater: a simulated laboratory study. The Science of the Total Environment, 1999, 236: 181-190.
    [89] Montavon G., Markai S., Ribet S., et al. Modeling the complexation properties of mineral-bound organic polyelectrolyte: An attempt at comprehension using the model system alumina/polyacrylic acid/M (M=Eu, Cm, Gd). Journal of Colloid and Interface Science, 2007, 305: 32-39.
    [90] Millward G.E., Liu Y.P. Modelling metal desorption kinetics in estuaries. The Science of the Total Environment, 2003, 314-316: 613-623.
    [91] Austin E R, Lee G F, Nitrogen release from lake sediments. Wat Pollut Control Fed, 1973, 45: 870-879.
    [92] 李剑超,褚均达,丰华丽.河流底泥冲刷悬浮对水质影响途径的实验研究.长江流域资源与环境,2002,11(2):137-140.
    [93] Boers P C, O Van Hese, Phosphorus release from the peaty sediments of the Loosdrecht Lakes (The Netherlands). Water Research, 1988, 22: 355-363.
    [94] 韩伟明.底泥释磷及其对杭州西湖富营养化的影响.湖泊科学,1993,5(1):71-77.
    [95] 范成新.隔湖沉积物理化性质及磷释放模拟.湖泊科学,1995,7(4):341-350.
    [96] Markert B.E. An in-situ sediment oxygen demand sampler. Water Research, 1983, 17(6): 603-606.
    [97] 丁辉,王胜强,孙津生,等.海河干流底泥中六氯苯残留及其释放规律.环境科学,2006,27(3):533-537.
    [98] Kumar M., Philip L. Adsorption and desorption characteristics of hydrophobic pesticide endosulfan in four Indian soils. Chemosphere, 2006, 62: 1064-1077.
    [99] Carroll K M, Harkness M R, Bracco, A A, et al. Application of a permeant/polymer diffusional model to the desorption of polychlorinated biphenyls from Hudson river sediments[J]. Environ. Sci. Technol., 1994, 28(1): 253-258.
    [100] 黄廷林.水体沉积物中重金属的释放动力学及试验研究.环境科学学报,1995,15(4):440-445.
    [101] Sendergaard M, Kristensen P, Jeppesen E. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arresoe, Denmark. Hydrobiologia, 1992, 228(1): 91-99.
    [102] Robarts D R, Waiser M J, Hadas O, et al. Relaxation of phosphorus limitation due to typhoon-induced mixing in two morphologically distinct basins of Lake Biwa, Japan. Limnology and Oceanography, 1998, 43(6): 1023-1036.
    [103] Muftikian R, Femando Q, Koret N. A method for rapid dechlorination of low molecula weight chlorinated hydrocarbons in water. Water Res, 1995, 29: 2434-2439.
    [104] Schlimm C, Heitz E. Development of a wastwater treatment process reductive dehalogenation of chlorinated hydrocarbons by metals. Environ Prog, 1996, 15: 38-47.
    [105] Wu W.Z., Xu y. Study of sorption, biodegration and isomerization of HCHs in stimulated sedment/water system. Chemosphere. 1997, 35(9): 1887-1894.
    [106] 孟紫强.环境毒理学.北京:中国环境科学出版社,2000.202-207.
    [107] Deane, C.L.. Trichloroethylene biodearadation by a methane-oridizinff bacterium. Appl. Environ. Microbiol., 1998, 54: 951-955.
    [108] Chen S.T., Berthouex P.M., Ascem A.M. Use of ananaerobic sludge digestion process to treat pentachlorophenol (PCP) contaminated soil. Environ Eng, 2003, 129(12): 1112-1119.
    [109] Cho Y.C., Kwon O.S., Sokol R.C., et al. Microbial PCB dechlorination in dredged sediments and the effect of moisture. Chemosphere, 2001, 43(8): 1119-1126.
    [110] 陈兴吴,马瑞霞,孙安强,等.β-BHC(乙体)微生物厌氧降解的研究.环境化学,1983,2(3):31-36.
    [111] 杨汉东,蔡述明.洪湖生态环境的化学结构.生态学报,1995,15(4):392-397.
    [112] 王学雷,刘兴土,吴宜进.洪湖水环境特征与湖泊湿地净化能力研究.武汉大学学报(理学版),2003,49(2):217-220.
    [113] 杜耘,陈萍,Sato K,等.洪湖水环境现状及主导因子分析.长江流域资源与环境,2005,14(4):481-485.
    [114] 胡学玉,陈德林,艾天成.1990~2003年洪湖水体环境质量演变分析.湿地科学,2006,4(2):115-120.
    [115] 陈世俭.洪湖的环境变迁及其生态对策.华中师范大学学报(自然科学版),2001,35(1):107-110.
    [116] 林峥,麦碧娴,张干,等.沉积物中多环芳烃和有机氯农药定量分析的质量保证和质量控制.环境化学,1999,18(2):115-121.
    [117] Pandit G.G., Sahu S.K., Sharma S., et al. Distribution and fate of persistent organochlorine pesticides in coastal marine environment of Mumbai. Environment International, 2006, 32: 240-243.
    [118] Fernandez M A, Alonso C, Gonzalez M J, et al. Occurrence of organochlorine insecticides, PCOCs and PCOCs congeners in water and sediments of the Ebro river (Spain) [J]. Chemosphere, 1999, 38: 33-43.
    [119] Turgut C. The contamination with organochlorine pesticides and heavy metals in surface water in Kucuk Menderes River in Turkey, 2000-2002 [J]. Environ Intern, 2003, 29: 29-32.
    [120] 杨清书,麦碧娴,傅家谟,等.珠江干流河口水体有机氯农药的时空分布特征.环境科学,2004,25(2):150-156.
    [121] 夏凡,胡雄星,韩中豪,等.黄浦江表层水体中有机氯农药的分布特征.环境科学研究,2006,19(2):11-15.
    [122] Zhou J. L., Maskaoui K., Qiu Y.W., et al. Polychlorinated biphenyl congeners and organochlodne insecticides in the water column and sediments of Daya Bay, China. Environmental Pollution, 2001, 113: 373-384.
    [123] Fatoki O.S., Awofolu R.O. Method for selective determination of persistent organochlorine pesticide residues in water and sediments by capillary gas chromatography and electro-capture detection. Journal of Chromatography A, 2003, 983: 225-236.
    [124] Sankararamakrishnan N., Kumar Sharma A., Sanghi R. Organochlorine and organophosphorous pesticide residues in groundwater and surface waters of Kanpur, Uttar Pradesh, India. Environment International, 2005, 31: 113-120.
    [125] Covaci A, Gheorghe A, Hulea O, et al. Levels and distribution of organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in sediments and biota from the Danube Delta, Romania. Environmental Pollution, 2006, 140: 136-149.
    [126] Rawn D F K, Lackhart W L, Wilkinson P. Historical contamination of Yukon Lake sediments by PCBs and organochlorine pesticides: Influence of local sources and watershed characteristics. Sci Total Environ, 2001, 280(1-3): 17-37.
    [127] Doong R. A., Peng C. K., Sun Y. C., et al. Composition and distribution of organochlorine pesticide residues in surface sediments from the Wu-Shi River estuary, Taiwan. Marine Pollution Bulletin, 2002, 45: 246-253.
    [128] Xue N D, Zhang D, Xu X B. Organochlorinated pesticide multiresidues in surface sediments from Beijing Guanting reservoir. Water Research, 2006, 40: 183-194.
    [129] Yang, R.Q., Lv, A.H., Shi, J.B., Jiang, G.B. The levels and distribution of organochlorine pesticides (OCPs) in sediments from the Haihe River, China. Chemosphere, 2005, 61: 347-354.
    [130] 张伟玲,张干,祁士华,等.西藏错鄂湖和羊卓雍湖水体及沉积物中有机氯农药的初步研究.地球化学,2003,32(4):363-367.
    [131] Bidleman T.F., Jantunen L.M.M., Helm P.A., et al. Chlordane enantiomers and temporal trends of chlordane isomers in arctic air. Environmental Science & Technology, 2002, 36(4): 539-544.
    [132] Evans R.D. Empirical evidence of the importance of sediment resuspension in lakes. Hydrobiologia, 1994, 284: 5-12.
    [133] Christiansen C., Gertz F., Laima M.J., et al. Nutrient (P, N) dynamics in the southwestern Kattegat, Scandinavia: sedimentation and resuspention effects. Environmental Geology, 1997, 29(2): 66-77.
    [134] 范成新,张路,秦伯强,等.风浪作用下太湖悬浮态颗粒物中磷的动态释放估算.中国科学(D辑),2003,33(8):760-768.
    [135] Ken K.C., Lo S.L. Desorption kinetics of PCP-contaminated soil: effect of temperature. Water Research, 2002, 36: 284-290.
    [136] Olila O G, Influence of pH on Phophorus Retention in Oxidized Lake Sediments. Soil Science Society American Journal, 1995, 59: 946-959.
    [137] Garnier J.M., Ciffroy P., Benyahy L. Implications of short and long term (30 days) sorption on the desorption kinetic of trace metals (Cd, Zn, Co, Mn, Fe, Ag, Cs) associated with river suspended matter. Science of the Total Environment. 2006, 366: 350-360.
    [138] Kleineidam S., Rugner H., Grathwohl P.. Desorption kinetics of phenanthrene in aquifer material lacks hysteresis. Environ. Sci. Technol. 2004, 38: 4169-4175.
    [139] Fitzsimons M.F., Millward G.E., Revitt D.M. Desorption kinetics of ammonium and methylamines from estuarine sediments: Consequences for the cycling of nitrogen. Marine Chemistry, 2006, 101: 12-26.
    [140] Enell A., Reichenberg F., Ewald G., et al. Desorption kinetics studies on PAH-contaminated soil under varying temperatures. Chemosphere, 2005, 61: 1529-1538.
    [141] 朱广伟.运河杭州段沉积物污染特征释放规律及其环境效应的研究:[博士论文].杭州:浙江大学,2001.
    [142] Schwarzenbach R P, et al;王连生等译.环境有机化学.北京:化学工业出版社,2004.707-716.
    [143] 黄廷林,沈晋,周孝德.渭河沉积物中Cd释放的实验研究.西安建筑科技大学学报,1995,27(1):25-29.
    [144] John F. Dechlorination of four commercial polychlorinated biphenyl mixture (Aroclors) by anaerobic microorganisms from sediments. Appl Environ Micro, 1990, 56: 2360-2369.
    [145] John M. Degradation of chlorinated phenol by a toluence enriched microbial culture. Water Res, 1994, 28: 1897-1906.
    [146] 王帅杰,全燮,赵慧敏,等.Fe~(2+)对辽河沉积物中DDT、HCB缺氧生物降解影响研究.大连理工大学学报,2002,42(2):181-184.
    [147] Chang B.V., Chou, S.W., Yuan S.Y. Microbial dechlorination of polychlorinated biphenyls in anaerobic sewage sludge, Chemosphere, 1999, 39(1): 45-54.
    [148] Drenzek N.J., Eglinton T.I., Wirsen C.O., et al. The absence and application of stable carbon isotopic fractionation during the reductive dechlorination of polychlorinated biphenyls. Environ. Sci. Technol., 2001, 3310-3313.
    [149] Dai S., Vaillancourt F.H., Maaroufi H., et al. Identification andanalysis of a bottleneck in PCB biodegradation. Nature Structural Biology, 2002, 9(12): 934-939.
    [150] Adriaens P., Chang P.R., Barkovskii A.L.. Dechlorination of PCDD/F by organic and inorganic electron transfer molecules in reduced environments. Chemosphere, 1996, 32: 433-441.
    [151] Van Eekert M.H.A., Schroder T.J., Starns A.J.M., et al. Degradation and fate of carbon tetrachloride in unadapted methanogenic granular sludge. Appl. Environ. Microbiol, 1998, 64: 2350-2356.
    [152] Yuan S.Y., Su C.J., Chang B.V. Microbial dechlorination of hexachlorobenzene in anaerobic sewage sludge. Chemosphere, 1999, 38(5): 1015-1023.
    [153] Assaf-anid N., Nies L., Vogel T.M.. Reductive dechlorination of a polychlorinated biphenyl congener and hexachlorobenzene by Vitamin B_(12). Appl. Environ. Microbiol., 1992, 58: 1057-1060.
    [154] 贾青竹,王昶,李桂菊,等.HCB与γ-HCH在辽河沉积物中的缺氧降解动力学.中国环境科学,2005,25(Suppl.):52-55.
    [155] Eganhouse R P, Pontolillo J, Leiker T J. Diagenetic fate of organic contaminants on the Palos Verdes Shelf, California. Marine Chemistry 2000, 70: 289-315.
    [156] 马文漪,杨柳燕.环境微生物工程.南京:南京大学出版社,1998.127-128.
    [157] Gevao B., T. Harner, K. Jones. Sedimentary record of polychlorinated naphthalene concentrations and deposition fluxes in a dated Lake Core. Environmental Science and Technology, 2000, 34(1): 33-38.
    [158] 袁旭音,王禹,陈骏,等.太湖沉积物中有机氯农药的残留特征及风险评估.环境科学,2003,24(1):121-125.
    [159] Sloan J J, Dowdy R H, Dolan M S. Recovery of biosolids-applied heavy metals sixteen years after application. Journal of Environmental Quality, 1998, 27(6): 1312-1317.
    [160] Richards B K, Steenhuis T S, Peverly J H, and McBride M B. Metal mobility at an old, heavily loaded sledge application site. Environmental Pollution, 1998, 99: 365-377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700