用户名: 密码: 验证码:
树突状细胞-EBV-LMP2疫苗治疗鼻咽癌的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼻咽癌(Nasoparyngeal carcinoma, NPC)是我国南方一些省(自治区)的常见恶性肿瘤之一。目前放射治疗是鼻咽癌治疗的基本方法,但中晚期鼻咽癌治疗后常常复发或向远处转移,对于复发和转移的患者在临床上尚无有效治疗方案。树突状细胞(Dendritic cell, DC)为基础的疫苗在治疗肿瘤方面,尤其在某些晚期肿瘤如黑色素瘤、前列腺癌、结肠癌、尿道癌的临床治疗方面已经取得一些的成效,现在已进入Ⅱ期临床试验。但DC在治疗NPC方面,还处于起始阶段。
     目前治疗用的DC是其前体细胞在细胞因子作用下体外诱导培养获得的,但对于DC诱导培养条件文献报道不一。本研究首先通过对DC培养条件、前体细胞来源、细胞因子组合、细胞贴壁孵育时间、rAd-LMP2感染DC剂量,细胞冻融方面的进行探索,优化了DC培养条件。
     我们课题组以rAd-LMP2以灌胃、肌肉注射和滴鼻的方式感染小鼠,均可诱发小鼠针对LMP2的特异性体液免疫和细胞免疫;EBV-LMP2 DNA疫苗、腺相关病毒(adeno-associated virus,AAV)疫苗、非复制5型腺病毒疫苗(Ad5)联合免疫Balb/C小鼠能够更好地诱导机体产生特异性CTL。rAd-LMP2、rAd5F35-LMP2肌肉免疫恒河猴诱导EBV-LMP2特异性的CTL。pcDNAⅢ-LMP2真核表达质粒免疫小鼠可诱发LMP2特异性细胞和体液免疫。在此基础上,我们以DC-LMP2肌肉免疫方式,研究LMP2诱导的特异性CTL。
     通过与广西自治区人民医院合作,在获得伦理委员会批准下,依据自愿原则,选择部分NPC治疗进行初步DC-LMP2皮内免疫治疗,首次以LMP2肽库形式检测DC-LMP2免疫后所激发LMP2特异性CTL,探讨患者特异性CTL与NPC发展进程的关系。
     结果显示:普通培养瓶诱导培养DC的效果最差,带滤膜盖的细胞培养瓶次之,六孔细胞培养板诱导培养效果最好。rmGM-CSF+rmIL-4+rmTNF-α组合对骨髓前体细胞诱导培养DC的效果最好,终浓度为rmGM-CSF(200U)+rmIL-4(10U)+rmTNF-α(100U)/mL;对脾脏来源DC进行诱导培养,rmGM-CSF+rmTNF-α组合的阳性率最高,但最终获得DC数量远远少于骨髓来源DC。随着前体细胞孵育时间的增加获得DC细胞数量也随之增多,DC纯度无明显差异。rAd-LMP2感染骨髓细胞诱导培养的DC,以10、100、1000 MOI感染DC,100 MOI感染DC效果最好,40-60%的DC中有LMP2表达。苔盼蓝法检测-80℃、-196℃冻存骨髓和脾脏淋巴细胞复苏后存活率,骨髓细胞存活率(94.8±0.7%和82.85±3.8%)均大于脾脏细胞(80.98±2.2%和68.3±5.2%),DC前体细胞冻存复苏影响其诱导培养。以优化获得的DC培养条件诱导培养骨髓来源的DC,然后DC-LMP2免疫BALB/C鼠可诱导LMP2特异性免疫应答。第5周(308±167/106细胞,对照18±6/106细胞)强于第8周(196±81/106细胞,对照7±2/106细胞);肌肉注射方式免疫小鼠rAd-LMP2、DC-LMP2所诱导的LMP2特异性CTL, rAd-LMP2组(1178±228/106细胞)大大高于DC-LMP2组((308±167/106细胞)。在小鼠0,2,4周免疫后的第五周,DC-LMP2免疫组CD8+T/CD3+T细胞亚群的比值(22.6±1.7%)高于PBS(20.4±3.5%)和DC组(22.04±1.2%),在第八周DC-LMP2免疫组CD8+T/CD3+T细胞亚群的比值(15.5±1.7%)低于PBS(17.6±2.9%)和DC组(17.5±1.5%)。在小鼠0,2,4周DC-LMP2免疫后,小鼠血清中产生LMP2抗体。
     在NPC患者前臂内侧下缘皮内免疫0.1 mL生理盐水,含1-2×105个DC-LMP2,未出现明显过敏反应,表明皮内免疫DC-LMP2的途径、部位、剂量安全可行。参加皮内免疫的部分NPC患者,在在第五周LMP2特异性CTL检测中,15人中9人提高了LMP2特异性CTL(/106),6人在DC-LMP2免疫后LMP2特异性CTL降低。1人在第八周的特异性细胞免疫水平高于治疗前,1人低于治疗前。在NPC免疫前后的IgA/VCA和IgA/EA抗体滴度无明显改变,NPC患者经过初次临床常规治疗后3-21个月内,血清中EBV DNA载量均低于103copies/mL。
     总之,rmGM-CSF+rmIL-4+rmTNF-α组合对骨髓前体细胞诱导培养DC的效果最好,终浓度为rmGM-CSF(200U)+rmIL-4(10U)+rmTNF-α(100U)/mL; DC-LMP2免疫BALB/C鼠可诱导LMP2特异性CTL。CD8+T/CD3+T细胞亚群的比值先升高。DC-LMP2免疫NPC患者的的途径、部位、剂量安全可行,部分NPC患者提高了LMP2特异性CTL。
Nasopharyngeal carcinoma (NPC) is one of the common malignancies in southern regions China. Radiotherapy is the basic method of treatment for NPC cases. For patients with recurrence and metastasis there is still no effective treatment. Recent trials using dendritic cells (DC) for clinical immunotherapy make great progress in such advanced tumors as melanoma, prostate cancer, and urologic cancer. Some of them are in clinical phase II trial. However, immunotherapy based on DC for NPC is still in the initial stage.
     DC is derived from progenitor cell cultured with cytokines in vitro, but different procedures were reported about DC's culturing condition. In this study, the optimization including screen of vessel, choice of progenitor cell, combination of cytokines, time of adherence, infection dose of recombinant adenovirus encoding Epstein-Barr virus latent membrane protein 2 (rAd-EBV-LMP2), store and thaw were conducted. Our previous data illustrated that LMP2-specific cytotoxicity lymphocyte (CTL) was induced in BALB/c mice with rAd-LMP2 by the way of lavage, intramuscle, and dropping. And powerful response was achieved in BALB/c mice combining pcDNA-LMP2 and adeno-associated virus encoding LMP2 (rAAV-LMP2) with uncompetent rAd-LMP2. The similar response was also observed in rhesus intrmuscle vaccination with rAd-LMP2 and rAd5F35-LMP2. In this study we examine LMP2 specific CTL in BALB/c mice intramuscle vaccination with rAd-LMP2 infected DC. With consensus of ethnic committee, some volunteers in The People's Hospital Guangxi Zhuang Autonomous Region were enrolled. Intradermal vaccinations DC with rAd-LMP2 infected were conducted on those cases. For the first time full LMP2 specific CTL were detected by enzyme-linked immunospot assay (ELISPOT) with LMP2 library.
     Result:Comparing to DC in the flask vessel, DC induced in the six-well plastic plate is optimal. The quality of mouse bone marrow-derived DC induced in the culture medium including the combination recombinant murine granulocyte macrophage colony-timulating factor (rmGM-CSF) and recombinant murine inerleukin 4 (rmIL-4) with recombinant murine tumor necrosis factor alpha (rmTNF-α) is optimal. Final concentrations of combining cytokines are rmGM-CSF (200U), rmIL-4(10U), and rmTNF-α(100) per milliliter. The combination rmGM-CSF with rmTNF-αis suit for spleen-derived DC. The number of DC from bone marrow is significantly increased by prolongable hours of conglutination, but the percentage of DC is not obviously discrepant. DC from mouse bone marrow was infected by rAd-LMP2 at doses of 10,100 and 1000 multiplicity of infection (MOI) respectively, and the LMP2 expression was detected by immunoenzyme up to 60 percent DC at 100 MOI. The survival of mouse bone marrow and spleen cells through freezing stock(-80℃and -196℃) and thaw was identified by staining of typan blue, and surviving cell from bone marrow (82.85±3.8% and 94.8±0.7%) is higher than that from spleen(68.3±5.2% and 80.98±2.2%). The procedure of DC deriving from progenitor cells is significantly interrupted through freezing stock and thaw. LMP2 specific CTL in BALB/c mice is detected at 5th week and 8th week and LMP2 specific CTL in BALB/c mice is more powerful at 5th week(308±167 per 106cells, negative control 18±6 per 106cells) than at 8th(196±81 per 106cells, negative control 7±2 per 106cells). Vaccination intramuscle with rAd-LMP2 stimulated more quantity of LMP2 specific CTL (1178±228 per 106cells) than that with DC-LMP2 (308±167 per 106cells) in mice. The ratio of CD8+T to CD3+ T subset is higher at DC-LMP2 group (22.6±1.7%) than injected PBS (20.4±3.5%) and DC (22.04±1.2%) groups at 5th week, but lower (15.5±1.7%) than in PBS(17.6±2.9%) and DC groups(17.5±1.5%) at 8th week. The antibody to LMP2 is detected in mice that DC-LMP2 or rAd-LMP2 was vaccinated.
     It is enough safe for NPC cases to vaccinate DC-LMP2 intradermal, and the treatment had minimal side-effects and was well tolerated by all patients. LMP2 CTL significantly increased in 9 of 15 and decreased in 6 of 15 at 5th week, and increased in 1 of 2 and decreased another at 8th week. IgA antibody titers to both virus capsid antigen (VCA) and early antigen (EA) is not significantly increased or decreased, and quantity of EBV DNA is less than 103copies per milliliter in serum comparison pre-and post-vaccination.
     Conclusion, combination rmGM-CSF, rmIL-4 with rmTNF-αis optimal choice for mouse bope marrow-derived DC. Final concentrations of combining cytokines are rmGM-CSF (200V), rmIL-4(10U) and rmTNF-α(100) per milliliter. LMP2 specific CTL in BALB/c mice is detected at 5th week and 8th week. The ratio of CD8+T to CD3+ T subset is higher at DC-LMP2 group than PBS and DC groups at 5th week, but lower than in PBS and DC groups at 8th week. It is enough safe for NPC cases to vaccinate DC-LMP2 intradermal, and the treatment had minimal side-effects and was well tolerated by all patients. LMP2 CTL significantly increased in NPC cases.
引文
1. Parkin DM, Muir CS:Cancer incidence in five continents Volume 7. Lyon, IARC Sci Publ; 1997. Electronic publication.
    2. Steinman RM The dendritic cell system and its role in immunogenicity. Annu Rev Immunol,1991, Vol9:271-296.
    3. Knight SC,and Stagg AJ. Antigen-presenting cell types. Curr.opin. immunol.1993,Vol5:374-382.
    4. Hart DN Dendritic cells:Unique leukocyte populations which control the primary immune response. Blood,1997,Vol90:3245-3287.
    5. Herbst H, et al. Epstein-Barr virus and CD30+ malignant lymphomas. Crit Rev Oncog, 1993,Vol4:191.
    6. Rooney M,Smith CA,Ng CYC,et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr virus related lymphoproliferation. Lancet,1995,345-349.
    7. Steven PL, Rosemary JT, Wendy AT et al. Conserved CTL epitopes within EBV latent membrane protein 2:a potential target for CTL-based tumor therapy. J Immunol,1997,Vol158:3325-3334.
    8. Rooney CM, Aguilar LK, Huls MH et al. Adoptive immunotherapy of EBV-associated malignancies with EBV-specific cytotoxic T-cell lines. Curr Top Microbiol Immuno,2001; 258: 221-229.
    9. Savoldo B, Huls MH, Liu Z et al. Autologous Epstein-Barr virus (EBV)-specific cytotoxic T cells for the treatment of persistent active EBV infection. Blood,2002, Vol100(12):4059-66.
    10. Straahof KC, Bollard CM, Heslop HE. Immunotherapy for Epstein-Barr virus-associated cancers in children Oncologist,2003; Vol8(1):83-98.
    11.Straathof KC, Bollard CM, Popat U, et al. Treatment of nasopharyngeal carcinoma with Epstein-Barr virus--specific T lymphocytes. Blood,2005,Vol 105(5):1841-1842.
    12. Comili P, Pedrazzoli P,Maccario R, et al. Cell therapy of stage Ⅳ nasopharyngeal carcinoma with autologous Epstein-Barr virus-targeted cytotoxic T lymphocytes.J Clin Oncol,2005,Vol 23(35):8942-8949.
    13. Lin CL, Lo WF, Lee TH et al Immunization with Epstein-Barr Virus (EBV) peptide-pulsed dendritic cells induces functional CD8+ T-cell immunity and may lead to tumor regression in patients with EBV-positive nasopharyngeal carcinoma. Cancer Res,2002 Vol 62(23):6952-6958.
    14. Zuo JM, Zhou L, Chen ZJ, et al. Induction of cytotoxic T lymphocyte responses in vivo after immunotherapy with dendritic cells in patients with nasopharyngeal carcinoma.2006,J.Microbiol immunol,Vol 4(1):41-48.
    15. Pan Y, Zhang J, Zhou L, et al. In vitro anti-tumor immune response induced by dendritic cells transfected with EBV-LMP2 recombinant adenovirus.Biochem biophys res commun,2006,Vol 347 (3):551-557.
    16. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice Ⅰ Morphology quantitation tissue distribution.J Exp Med,1973, Vol137:1142-1162.
    17. Witmer-pack MD, Oliver W, Valinsky J et al.Granulocyte-macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells.J Exp Med,1987, Vol166(5):1484-1498.
    18. Innaba K,Steinman RM,Pack MW et al.Identification of proliferating dendritic cell precursors in mouse blood.J Exp Med,1992,Vol175(5):1157-1167.
    19. Santiago-Schwarz F, Belilos E, Diomond B et al. TNF in combination with GM-CSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages.J leukoc Biol,1992,Vol52(3):274-281.
    20. Scheicher C, Mehlig M, Zecher R et al.Dendritic cells from mouse bone marrow:in vitrto differentiation using low doses of recombinant granulocyte-macrophage colony-stimulating factor.J Immuno Methods,1992, Vol154(2):253-264.
    21. Reid CD, Stackpoole A, Meager A et al.Interaction of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in vitro from early bipotent CD34+ progenitors in human bone marrow. Immunol,1992,Vol149(8):2681-2688.
    22. Inaba K, InobaM Romani N et al.Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med,1992, Vol 176(6):1693-1702.
    23. Peters JH Xu H, Ruppert J et al. Signals required for differentiating dendritic cells from human monocyte in vitro.Adv Exp Med Biol,1993,Vol329:275-280.
    24. Tazi A,Bouchonnet F, Grandsaigne M at al. Evidence that granulocyte macrophage-colony-stimulating factor regulates the distribution and differentiated state of dendritic cells/Langerhans cells in human lung and lung cancers.J Clin Invest,1993,Vol91 (2):566-576 25. Inaba K, Inaba M, Deguchi M et al. Granulocytes macrophages and dendritic cells arise from a common major histocompatibility complex class Ⅱ-negative progenitor in mouse bone marrow. Proc Natl Acad Sci USA,1993,Vol90(7):3038-3042.
    26. Lu L,Woo J, Rao AS et al.Propagation of dendritic cell progenitors from normal mouse liver using granulocyte/macrophage colony-stimulating factor and their maturational development in the presence of type-1 collagen.J Exp Med,1994,Vol179(6):1823-1834.
    27. Romani N, Gruner S,Brang D et al.Proliferation dendritic cell progenitors in human blood. J Exp Med,1994,Vol180(1):83-93.
    28. Xu H, Kramer M Spengler HP et al. Dendritic cells differentiated from human monocytes through a combination of IL-4 GM-CSF and IFN-gamma exhibit phenotype and function of blood dendritic cells.Adv Exp Med Biol,1995,Vol378:75-78.
    29. Szabolcs P, Moore MA, Yong JW. Expansion of immunostimulatory dendritic cells among the myeloid progeny of human CD34+ bone marrow precursors cultured with c-kit ligand, granulocyte-macrophage colony-stimulating factor and TNF-alpha. JImmunol,1995,Vol154 (11):5851-5861
    30. Saroj K. Basak, AH, Marina S et al.Increased de ndritic cell number and function following continuous in vivo infusion of granulocyte macrophage-colony-stimulating factor and interleukin-4. Blood,2002, Vol99(8):2869-2879.
    31. Lardon F,Snoeck HW, Berneman ZN et al. Generation of dendritic cells from bone marrow progenitors using GM-CSF, TNF-aand additional cytokines:antagonistic effects of IL-4 and IFN-gamma and selective involvement of TNF-alpha receptor-1.Immunology,1997, Vol91:553-559.
    32. Feng B,Inaba M,Lian Z, et al.Development of mouse dendritic cells from lineage-negative c-kit(low) pluripotent hemopoietic stem cells in vitro.Stem Cells,2000,Vol18:53-60.
    33. Maraskovsky E, Brasel K, Teepe M, et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice:multiple dendritic cell subpopulations identified. J Exp Med.1996, Vol184:1953-1962.
    34. Yamaguchi Y,Tsumusa H,Hiwa M et al.Contrasting effects of TGF-beta 1 and TNF-alpha on the development of dendritic cells from progenitors in mouse bone marrow.Stem Cells,1997, Vol15:144-153.
    35. Labeur MS,Roters B,Pers B et al.Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J Immunol,1999,Vol162:168-175.
    36. Storozynsky E,Woodward JG,Frelingger JG et al.Interleukin-3and granulocyte-macrophage colony-stimulating factor enhance the generation and function of dendritic cells.Immunology, 1999,Vol97:138-149.
    37. Sato M,Iwakabe K,Ohta A et al.Functional heterogeneity among bone marrow-derived dendritic cells conditioned by T(h)1 and T(h)2-biasing cytokines for the generation of allogeneic cytotoxic T lymphocytes.Int Immunol,2000,Vol12:335-342.
    38. van Kooten C,Banchereau J.CD40-CD40 ligand.J Leukoc Biol,2000,Vol67:2-17.
    39. Josien R,Li HL,Ingulli E et al.TRANCE, a tumor necrosis factor family member enhances the longevity and adjuvant properties of dendritic cells in vivo.J Exp Med,2000,Vol191:495-502.
    40. Katherine G, Pisana MR, Catherine M et al.Functional comparison of spleen dendritic cells and dendritic cells cultured In vitro from bone marrow precursors. Blood,,Vol 88:3508-3512
    41. Sullivan S, Bergstresser PR, Tigelarr RE et al.FASC purification of bone marrow-derived epidermal populations in mice:Langerhans cells and Thy-1+dendritic cells.J invest Dermatol, 1985,Vol84(6):491-495.
    42.朱伟严,周玲,王琦等。EB病毒潜伏膜蛋白2 DNA疫苗的构建及其初步免疫效果观察。中华微生物学和免疫学杂志,2002,Vol22(2):185-190.
    43.姚佳伟,周玲,王琦等。EB病毒潜伏膜蛋白2重组腺腺病毒的构建及其免疫效果的研究。中国肿瘤,2003,Vol12(1):45-47.
    44.左建民,周玲,王,曾毅等。含EBV-LMP2基因重组腺病毒疫苗的构建及其诱导CTL应答的初步探讨。中华微生物学和免疫学杂志,2003,Vol23(6):446-449.
    45.杨松梅,王湛,周玲等。携带EBV-LMP2基因的DNA疫苗、腺相关病毒疫苗和腺病毒疫苗免疫小鼠的特异性细胞免疫应答。中国科学C辑:生命科学,2009,Vol39(4):342-345.
    46.王湛,周玲,吴小兵等。Ad-LMP2重组腺病毒疫苗在恒河猴体内免疫效果的研究中华实验和临床病毒学杂志2006,Vol20(2):63.-65
    47.莫武宁,周玲,吴小兵等。rAd5F35-LMP2重组腺病毒疫苗免疫恒河猴诱导免疫应答。中华实验和临床病毒学杂志。2007,Vol:21(3):226-228.
    48. Mackensen A,Meidenbauer N,Vogl S et al. Phase Ⅰ study of adoptive T-cell therapy using antigen-specific CD8+T cells for the treatment of patients with metastatic melanoma. J Clin Oncol,2006,Vol24(31):5060-5069.
    49. Thomas R, Chambers M, Boytar R et al. Immature human monocyte-derived dendritic cells migrate rapidly to draining lymph nodes after intradermal injection for melanoma immunotherapy.Melanoma Res,1999 Vol9(5):474-481.
    50. Lambert LA, Gibson GR, Maloney M, et al.Intranodal immunization with tumor lysate-pulsed dendritic cells enhances protective antitumor immunity.Cancer Res,2001,Vol61(2):641-646.
    51.Lalvani A, Hill AV.Cytotoxic T-lymphocytes against malaria and tu-berculosis:from natural immunity to vaccine design.Clin Sci (Lond,1998,Vol95(5):531-538.
    52. Skinner PJ, Daniels MA, Schmidt CS, et al.Cutting edge:in situ te-tramer staining of antigen-specific T cells in tissues. J Immunol,2000,165(2):613-617.
    53. Morse MA, Coleman RE, Akabani G, et al.Migration of human den-dritic cells after injection in patients with metastatic malignancies.Can-cer Res,1999,Vol59(1):56-58.
    54. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma pa-tients with peptide or tumor lysate-pulsed dendritic cells.Nat Med,1998,4(3):328-332.
    55. Fong L, Brockstedt D, Benike C, et al.Dendritic cell-based xenoanti-gen vaccination for prostate cancer immunotherapy.J Immunol,2001,1Vol67(12):7150-7156.
    56. Smithers M,O'Connell K MacFadyen S et al.Clinical response after intradermal immature dendritic cell vaccination in metastatic melanoma is associated with immune response to particulate antigen.Cancer Immunol Immunother,2003,Vol 52(1):41-52.
    57. O'Rourke MG,Johnson MK,Lanaqan CM et al. Dendritic cell immunotherapy for stage Ⅳ melanoma. Melanoma Res,2007,Vol 17(5):316-322.
    58. Waeckerle-Men Y,Uetz-von Allmen E, Fopp M et al. Dendritic cell-based multi-epitope immunotherapy of hormone-refractory prostate carcinoma. Cancer Immunol Immunother,2006, Vol 55(12):1524-1533.
    59. Lemoine FM,Cherai M Giverne C et al. Masssive expansion of regulatory T-cells following interleutin 2 treatment during a phase Ⅰ-Ⅱ dendritic cell-based immunotherapy of metastatic renal cancer. Int Oncol,2009 Vol 35(3):569-581.
    60. Kuwabara K,Nishishita T,morishita M et al. Results of a phase Ⅰ clinical study using dendritic cell vaccination for thyroid cancer.Thyroid,2007,Vol 17(1):53-58.
    61. Svane IM,Pedersen AE, Nikolajsen K et al. Alterations in P53-specific T cells and other lymphocyte subsets in breast cancer patients during vaccination with P53-peptide loaded dendritic cells and low-dose interleukin-2,Vaccine,2008,Vol 26(36):4716-4724.
    62. Repp R, van Ojik HH, Valerius T et al. Phase Ⅰ clinical trial of the bispecific antibody MDX-H210 (anti-FcgammaRlx anti-HER-2/neu) in combination with filgrastim(G-CSF) for treatment of advanced breast cancer. Br cancer,2003,Vol (12):2234-2243.
    63. Yamaquchi Y Ohta K,Kawabuchi Y et al. Feasibility study of adoptive immunotherapy for metastatic lung tumors using Peptide-pulsed dendritic cell-activated killer(PDAK) cells. Anticancer Res,2005 Vol 25(3c):2407-2415.
    64. Timar J,ladanyi A,Forster-Horvath C et al. Neoadjuvant immunotherapy of oral squamous cells carcinoma modulates intratumoral CD4/CD8 ratio and tumor microenvironment:a multicenter phase II clinical trial. Clin Oncol,2005, Vol 23(15):3421-3432.
    65. Gomella LG,Mastrangelo MJ,Mccue PA et al. Phase Ⅰ study of intravesical vaccinia virus as a vector for gene therapy of bladder cancer. J Urol,2001,Vol 166(4):1291-1295.
    66. Hirooka Y, Itoh A, Kawashima H et al. A combination therapy of gemcitabine with immunotherapy for patients with inoperable locally advanced pancreatic cancer. Pancreas, 2009,Vol 38(3):69-74.
    67. Ueda Y,Itoh T, Nukaya I et al. Dendritic cell-based immunotherapy of cancer with carcinoembryonic antigen-derived HLA-A24-restricted CTL epitope clinical outcomes of 18 patients with metastatic gastrointestinal or lung adenocarcinomas. Int J Oncol,2004,Vol 24(4):909-917.
    68. Routy JP,Boulassel MR,Yassine-Diab B et al. Immunologic activity and safety of autologous HIV RNA-electroporated dendritic cells in HIV-1 infected patients receiving antiretroviral therapy.Clin Immunol,2010,Vol 134(2):140-147.
    69. Ferrara A, Nonn M, Sehr P et al. Dendritic cell-based tumor vaccine for cervical cancer II: results of a clinical pilot study in 15 individual patients,2003,Vol 129(9):521-530.
    70.周玲,姚庆云,Steve L et al.鼻咽癌病人和正常人群中EB病毒特异性T细胞对靶抗原的识别和应答。病毒学报,2001,1:11-14.
    71.Rooney CM, Smith CA, Ng CY at al.Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood,1998 Vol 92(5):1549-1555.
    72. Rooney CM, Roskrow MA, Suzuki N et al. Treatment of relapsed Hodgkin's disease using EBV-specific cytotoxic T cells.Ann Oncol.1998, Suppl 5:S129-132.
    73. Rooney CM, Heslop HE, Brenner MK. EBV specific CTL:a model for immune therapy. Vox Sang.1998, Suppl2:497-498.
    74. Whitney BM, Chan AT, Rickinson AB et al. Frequency of Epstein-Barr virus-specific cytotoxic T lymphocytes in the blood of Southern Chinese blood donors and nasopharyngeal carcinoma patients. J Med Virol.2002,Vol 67(3):359-363.
    75. TangM,Zeng Y, Poisson A et al.Haplotype-dependent HLA susceptibility to nasopharyngeal carcinoma in southern Chinese population.Genes Immun,2010, Jan,14:1-9(Epub ahead of print,advance online publication).
    76. Verdijk P, Aarntzen EH, Lesterhuis WJ et al. Limited amounts of dendritic cells migrate into the T-cell area of lymph nodes but have high immune activating potential in melanoma patients. Clin Cancer Res.2009, Vol15(7):2531-2540.
    77. Prince HM, Wall DM, Ritchie D et al.In vivo tracking of dendritic cells in patients with multiple myeloma. J Immunother.2008,Vol 31(2):166-179.
    78. Voigtlander C, Rossner S, Cierpka E et al.Dendritic cells matured with TNF can be further activated in vitro and after subcutaneous injection in vivo which converts their tolerogenicity into immunogenicity. J Immunother.2006,Vol 29(4):407-415.
    79. Morse MA, Coleman RE, Akabani G et al.Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res.1999,Vol 59(1):56-58.
    80. John J, Dalgleish A, Melcher A,et al. Cryopreserved dendritic cells for intratumoral immunotherapy do not require re-culture prior to human vaccination. J Immunol Methods. 2005,Vol 299(1-2):37-46.
    81. Mo WN,Tang AZh,Zhou L, et al. Analysis of Epstein-Barr virus DNA load, EBV-LMP2 spec(?)tic cytotosic T-lymphocytes and levels of CD4CD25 T cells pn patients with nasopharyngeal carcinomas positive for IgA antibody to EBV viral capsid antigen. Chinese Medical Journal,2009,Vol122(10):1173-1178,
    82. Guantitative analysis of the transrenal excretion of circulating EBV DNA in nasopharyngeal carcinoma patients.Clin Cancer Res,2008,Vol14(15):4809-4813.
    1. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice I Morphology quantitation tissue distribution.J Exp Med,1973,Vol137:1142-1162.
    2. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice Ⅱ. Functional properties in vitro. J Exp Med,1974,Vol139:380-397.
    3. Steinman RM, Lustiq DS, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. Ⅲ Functional properties in vivo. J Exp Med,1974,Vol139:1431-1445.
    4. Steinman RM, Adams JC,Cohn ZA Identification of a novel cell type in peripheral lymphoid organs of mice. Ⅳ.Identification and distribution in mouse spleen. J Exp Med,1975, Vol141:804-820.
    5. Steinman RM, Kaplan G,Witmer MD, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. V. Purification of spleen dendritic cells, new surface markers, and maintenance in vitro. J Exp Med,1975,Vol149:1-16.
    6. Lardon F,Snoeck HW, Berneman ZN, et al. Generation of dendritic cells from bone marrow progenitors using GM-CSF, TNF-aand additional cytokines:antagonistic effects of IL-4 and IFN-gamma and selective involvement of TNF-alpha receptor-1. Immunology,1997, Vol 91:553-559.
    7. Romani N,Reider D,Heuer M, et al. Proliferating dendritic cell progenitor in human blood. J Exp Med,1994,Vol180:83-93.
    8. Wu L, Antica M,Johnson GR, et al. Developmental potential of the earliest precursor cells from the adult mouse thymus.J Exp.Med,1991,Vol174:1617-1627.
    9. Ardavin C, Wu L, Li C, et al. Thymic dendritic cells and T cells develop simultaneously within the thymus from a common precursor population.Nature,1993,Vol362:761-763.
    10. Steinman RM Nussenzweig MC. Dendritic cells:features and functions.Immunol Rev,1980, Vol 53:127-147.
    11. Steinman RM The dendritic cell system and its role in immunogenicity. Annu Rev Immunol,1991,Vol9:271-296.
    12. Knight SC,and Stagg AJ. Antigen-presenting cell types. Curr.opin. immunol.1993,Vol5:374-382.
    13. Hart DN Dendritic cells:Unique leukocyte populations which control the primary immune response. Blood,1997, Vol90:3245-3287.
    14. Crowsley M, Inaba K, Witmer-pack MD, et al. The cell surface of mouse dendritic cells:FACS analyses of dendritic cells from different tissues including thymus. Cell immunol,1989, Vol118:108-125.
    15. Vremec D, Shortman Dendritic cell subtypes in mouse lymphoid organs:Cross-correlation of surface markers changes with incubation and difference among thymus,spleen,and lymph nodes.J lmmunol,1997,Vol159; 565-573.
    16. Vremec D The isolation of mouse dendritic cells from lymphoid tissues and the identification of dendritic cell subtypes by multiparameter flow cytometry. Methods Mol Biol,2010,Vol 595:205-229.
    17. Schmitz J,Petrasch S, van Lunzen, et al. Optimizing follicular dendritic cells:isolation of follicular dendritic cells by discontinuous gradient centrifugations and use of the magnetic cell sorter(MACS).J Immunol Methods,1993,Vol159:189-196.
    18. Witmer-pack MD, Oliver W, Valinsky J, et al.Granulocyte-macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells.J Exp Med,1987,Vol166(5):1484-1498.
    19. Macpherson GG. Properties of lymph-borne(veiled) dendritic cells in culture. Ⅰ Modulation of phenotype survival and function:partial dependence on GM-CSF. Immunology,1989,Vol 68 (1):102-107.
    20. Markowicz S Engleman EG. Granulocyte-macrophage colony-stimulating factor promotes differentiation and survival of human peripheral blood dendritic cells in vitro. J clin invest, 1990,Vol85(3):955-961.
    21. Bowers WE,Ruhoff MS Goodell EM.Conditioned medium from activated rat macrophages and the recombinant factors, IL-1 beta and GM-CSF, enhance the accessory activity of dendritic cells.Immunobiol,1990,Vol180(4-5):362-384.
    22. Innaba K,Steinman RM,Pack MW, et al.Identification of proliferating dendritic cell precursors in mouse blood.J Exp Med,1992,Vol175(5):1157-1167.
    23. Santiago-Schwarz F, Belilos E, Diomond B, et al. TNF in combination with GM-CSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages.J leukoc Biol,1992,Vol52(3):274-281.
    24. Scheicher C, Mehlig M, Zecher R, et al.Dendritic cells from mouse bone marrow:in vitrto differentiation using low doses of recombinant granulocyte-macrophage colony-stimulating factor.J Immuno Methods,1992,Vol154(2):253-264.
    25. Reid CD, Stackpoole A, Meager A, et al.Interaction of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in vitro from early bipotent CD34+ progenitors in human bone marrow. Immunol,1992,Vol149(8):2681-2688.
    26. Inaba K, InobaM Romani N, et al.Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor.J Exp Med,1992,Vol176(6):1693-1702.
    27. Peters JH Xu H, Ruppert J, et al. Signals required for differentiating dendritic cells from human monocyte in vitro.Adv Exp Med Biol,1993,Vol329:275-280.
    28. Tazi A, Bouchonnet F,Grandsaigne M, at al. Evidence that granulocyte macrophage-colony-stimulating factor regulates the distribution and differentiated state of dendritic cells/Langerhans cells in human lung and lung cancers.J Clin Invest,1993,Vol91(2):566-576.
    29. Inaba K, Inaba M, Deguchi M, et al. Granulocytes macrophages and dendritic cells arise from a common major histocompatibility complex class Ⅱ-negative progenitor in mouse bone marrow.Proc Natl Acad Sci USA,1993,Vol90(7):3038-3042.
    30. Lu L,Woo J, Rao AS, et al.Propagation of dendritic cell progenitors from normal mouse liver using granulocyte/macrophage colony-stimulating factor and their maturational development in the presence of type-1 collagen.J Exp Med,1994,Vol179(6):1823-1834.
    31. Romani N, Gruner S,Brang D, et al.Proliferation dendritic cell progenitors in human blood. J Exp Med,1994,Vol180(1):83-93.
    32. Xu H, Kramer M Spengler HP, et al. Dendritic cells differentiated from human monocytes through a combination of IL-4 GM-CSF and IFN-gamma exhibit phenotype and function of blood dendritic cells.Adv Exp Med Biol,1995,Vol378:75-78.
    33. Szabolcs P, Moore MA, Yong JW.Expansion of immunostimulatory dendritic cells among the myeloid progeny of human CD34+ bone marrow precursors cultured with c-kit ligand granulocyte-macrophage colony-stimulating factor and TNF-alpha. J Immunol,1995, Vol 154(11):5851-5861.
    34. Alters SE, Gadea JR, Holm B, et al. IL-13 can substitute for IL-4 in the generation of dendritic cells for the induction of cytotoxic T lymphocytes and gene therapy [J]. J Immunother, 1999;Vol22 (3):229-236.
    35. Ferlazzo G, Klein J, Paliard X, et al. Dendritic cells generated from CD34+ progenitor cells with flt3 ligand, ckit ligand, GM-CSF, IL-4, and TNF-alpha are functional antigen presenting cells resembling mature monocytederived dendritic cells [J]. J Immunother,2000,Vol23(1):48-58.
    36. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocytemacrophage colonystimulating factor plus interleukin 4 and downregulated by tumor necrosis factor-a [J].J Exp Med,1994;179(6):1109-1116.
    37. Luft T, Pang KC, Thomas E, et al. Type I IFNs enhance the terminal differentiation of dendritic cells [J]. J Immunol,1998,Vol161(4):1947-1953.
    38. Urnher MC. Radmayr, R. Ramoner, et al.Human renal-cell carcinoma tissue contains dendritic cells. Int. J. Cancer 1996,Vol 68:1.-7.
    39. Toriyama K., Wen DR., Paul E,et al. Variations in the distribution, frequency, and phenotype of Langerhans cells during the evolution of malignant melanoma of the skin. J. Invest. Dermatol., 1993,Vol100:269S-273S.
    40. Nestle FO, Burg G., Fah J, et al. Human sunlight-induced basal-cell-carcinoma-associated dendritic cells are deficient in T cell costimulatory molecules and are impaired as antigen-presenting cells. Am. J. Pathol,1997, Vol150:641-651.
    41. Tas, M., Simons, P., Balm, F., and Drexhage, H. Depressed monocyte polarization and clustering of dendritic cells in patients with head and neck cancer:in vitro restoration of this immunosuppression y thymic hormones. Cancer Immunol. Immunother,1993, Vol36:108-114,.
    42. Gabrilovich DI, Cork J, Ciernik IF, er al. Decreased antigen presentation by dendritic cells in patients with breast cancer Clin Cancer Res,1997,Vol3(3):483-490.
    43. Troy, A., P. Davidson, C. Atkinson, D. Hart.. Renal cell carcinoma and prostate cancer inhibit dendritic cell activation. Aust. NZJ Surg,1999,Vol69:A111.
    44. Shurin, M. R., Z. R. Yurkovetsky, I. L. Tourkova, L. Balkir, G. V. Shurin.2002. Inhibition of CD40 expression and CD40-mediated dendritic cell function by tumor-derived IL-10. Int. J. Cancer 101:61.-68.
    45. Kugler A, Stuhler G, Walden P. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hy-brids. Nat Med,2000,Vol 6(3):332-336.
    46. Murphy GP, Tjon BA, Simmons SJ, et al.Infusion of dendritic cells pulsed with HLA-A2-specific prostate-specific membrane antigen peptides:a phase II prostate cancer vaccine trial involving patients with hormone-refractory metastatic disease.Prostate,1999,Vol38(1):73-78.
    47. Thery C, Regnault A, Garin J, et al.Molecular characterization of den-dritic cell-derived exosomes:selective accumulation of the heat shock protein hsc73.J Cell Biol,1999, Vol147(3):599-610.
    48. Nair,SK; Hull,S; Coleman,D; Gilboa,E; Lyerly,HK; Morse,MA Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T-lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA. Int J of Cancer.1999,Vol82(1):121-124.
    49. Nair SK, Boczkowski D, Morse M, et al. Induction of primary carcinoembryonic antigen(CEA)-specific Cytotoxic T lymphocytes in vitro using human dendritic cells trabfected with RNA. Nat Biothechnol.1998,Vol16(4):364-369.
    50. Ashley DM, Faiola B, Nair S, et al. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immu-nity against central nervous system tumors. J Exp Med,1997,Vol186(7):1177-1182.
    51. Ishida T, Chada S, Stipanov M, et al.Dendritic cells transduced with wild-type p53gene elicit potent anti-tumour immune responses.Clin Exp Immunol,999,Vol117(2):244-251.
    52. Melero I, Duarte M, Ruiz J, et al.Intratumoral injection of bone-mar-row derived dendritic cells engineered to produce interleukin-12in-duces complete regression of established murine transplantable colon adenocarcinomas.Gene Ther,1999,Vol6(10):1779-1784.
    53. Perez-Diez A, Marincola FM.Immunotherapy against anti-genic tu-mors:a game with a lot of players.Cell Mol Life Sci,2002,59(2):230-240.
    54. Murphy GP, Tjon BA, Simmons SJ,et al. Infusion of dendritic cells pulsed with HLA-A2-specific prostate-specific membrane antigen peptides:a phase II prostate cancer vaccine trial involving patients with hormone-refractory metastatic disease.Prostate,1999,Vol38(1):73-78.
    55. Ashley DM, Faiola B, Nair S, et al.Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immu-nity against central nervous system tumors.J Exp Med,1997,Vol186(7):1177-1182.
    56. Andre F, Andersen M, Wolfers J, et al.Adv Exp Med Biol,2001,495(2):349-354.
    57. Mackensen A,Meidenbauer N,Vogl S et al. Phase I study of adoptive T-cell therapy using antigen-specific CD8+T cells for the treatment of patients with metastatic melanoma. J Clin Oncol,2006,Vol24(31):5060-5069.
    58. Thomas R, Chambers M, Boytar R et al. Immature human monocyte-derived dendritic cells migrate rapidly to draining lymph nodes after intradermal injection for melanoma immunotherapy.Melanoma Res,1999 Vol9(5):474-481.
    59. Lambert LA, Gibson GR, Maloney M, et al.Intranodal immunization with tumor lysate-pulsed dendritic cells enhances protective antitumor immunity.Cancer Res,2001,Vol61(2):641-646.
    60. Lalvani A, Hill AV.Cytotoxic T-lymphocytes against malaria and tu-berculosis:from natural immunity to vaccine design.Clin Sci (Lond),1998,Vol95(5):531-538.
    61. Skinner PJ, Daniels MA, Schmidt CS, et al.Cutting edge:in situ te-tramer staining of antigen-specific T cells in tissues.J Immunol,2000,Vol165(2):613-617.
    62. Morse MA, Coleman RE, Akabani G, et al.Migration of human den-dritic cells after injection in patients with metastatic malignancies.Can-cer Res,1999,Vol59(1):56-58.
    63. Nestle FO, Alijagic S, Gilliet M, et al.Vaccination of melanoma pa-tients with peptide or tumor lysate-pulsed dendritic cells.Nat Med,1998,Vol4(3):328-332.
    64. Fong L, Brockstedt D, Benike C, et al.Dendritic cell-based xenoanti-gen vaccination for prostate cancer immunotherapy.J Immunol,2001,Vol167(12):7150-7156.
    65. Tsujitani S,Kakeji Y, Orita H, et al. Postoperative adjuvant immunochemotherapy and infiltration of dendritic cells for patients with advanced gastric cancer. Anticancer Res,1992, Vol12(3):645-648.
    66. Smithers M,O'Connell K MacFadyen S, et al.Clinical response after intradermal immature dendritic cell vaccination in metastatic melanoma is associated with immune response to particulate antigen.Cancer Immunol Immunother,2003,Vol 52(1):41-52. human dendritic cells by an adeno-associated virus vector. Cancer Gene Ther,2001, Vol8(12):948-957.
    78. Santin AD, Hermonat PL, Ravaggi A, et al. Induction of human papillomavirus-specific CD4(+) and CD8(+) lymphocytes by E7-pulsed autologous dendritic cells in patients with human papillomavirus type 16-and 18-positive cervical cancer. J Virol.1999, Vol73(7):5402-5410.
    79. Santin AD, Bellone S, Palmieri M, et al. HPV16/18 E7-pulsed dendritic cell vaccination in cervical cancer patients with recurrent disease refractory to standard treatment modalities. Gynecol Oncol,2006,Vol100(3):469-478.
    80. Santin AD, Hermonat PL, Ravaggi A, et al. Development, characterization and distribution of adoptively transferred peripheral blood lymphocytes primed by human papillomavirus 18 E7--pulsed autologous dendritic cells in a patient with metastatic adenocarcinoma of the uterine cervix.Eur J Gynaecol Oncol.2000, Vol21(1):17-23.
    81.Nesselhut T. Influence of MAb (F(Ab)2 OC 125 on the survival rate of ovarian carcinoma patients. Hybridoma,1993, Vol12(5):567-570.
    82. Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res.2004,Vol64(14):4973-4979.
    83. Yamanaka R. Cell-and peptide-based immunotherapeutic approaches for glioma. Trends Mol Med,2008,Vol14(5):228-235.
    84. Caruso DA, Orme LM, Amor GM, et al.Results of a Phase I study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children with Stage 4 neuroblastoma. Cancer,2005,Vol103(6):1280-1291.
    85. Stift A, Sachet M, Yagubian R, et al. Dendritic cell vaccination in medullary thyroid carcinoma.Clin Cancer Res.2004 May 1;10(9):2944-2953.
    86. Chiappori AA, Soliman H, Janssen WE, et al. INGN-225:a dendritic cell-based p53 vaccine (Ad.p53-DC) in small cell lung cancer:observed association between immune response and enhanced chemotherapy effect.Expert Opin Biol Ther,2010,Vol10(6):983-991.
    67. Butterfield LH, Ribas A,Dissette VB, et al. Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma.2003, Clin Cancer Res,Vol9(3):998-1008.
    68. Hersey P Menzies SW, Halliday GM, et al. Phase Ⅰ/Ⅱ study of treatment with dendritic cell vaccines in patients with disseminated melanoma. Cancer Immunol Immunother. Cancer immunol immunother,2004 Vol53(2):125-134.
    69. Mayordomo JI, Andres R, Isla MD, et al. Results of a pilot trial of immunotherapy with dendritic cells pulsed with autologous tumor lysates in patients with advanced cancer. Tumori.2007,Vol 93(1):26-30.
    70. O'Rourke MG, Johnson MK, Lanagan CM, et al.Dendritic cell immunotherapy for stage IV melanoma. Melanoma Res.2007,Vol 17(5):316-322
    71. Pandha HS, John RJ, Hutchinson J, et al.Dendritic cell immunotherapy for urological cancers using cryopreserved allogeneic tumour lysate-pulsed cells:a phase Ⅰ/Ⅱ study. BJU Int,2004,Vol94(3):412-418
    72. Mu LJ, Kyte JA, Kvalheim G, et al Immunotherapy with allotumour mRNA-transfected dendritic cells in androgen-resistant prostate cancer patients. Br J Cancer,2005, Vol93(7):749-756.
    73. Lin CL, Lo WF, Lee TH, et al Immunization with Epstein-Barr Virus (EBV) peptide-pulsed dendritic cells induces functional CD8+ T-cell immunity and may lead to tumor regression in patients with EBV-positive nasopharyngeal carcinoma. Cancer Res,2002 Vol 62(23):6952-6958.
    74. Zuo JM, Zhou L, Chen ZJ, et al. Induction of cy to toxic T lymphocyte responses in vivo after immunotherapy with dendritic cells in patients with nasopharyngeal carcinoma.2006,J.Microbiol immunol,Vol4(1):41-48.
    75. Pan Y, Zhang J, Zhou L, et al. In vitro anti-tumor immune response induced by dendritic cells transfected with EBV-LMP2 recombinant adenovirus.Biochem biophys res commun,2006, 347(3):551-557.
    76. Avigan D, Vasir B, Gong J, et al. Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses. Clin Cancer Res,2004, Vol10(14):4699-4708.
    77. Liu Y, Chiriva-Internati M, Grizzi F, Salati E, et al. Rapid induction of cytotoxic T-cell response against cervical cancer cells byhuman papillomavirus type 16 E6 antigen gene delivery into

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700