用户名: 密码: 验证码:
Toll样受体在先天免疫和细胞损伤中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要

Toll-like receptor 2 (TLR2), a key immune receptor in the TLR family, is widely expressed in various systems, including the immune and nervous systems and plays a critical role in controlling innate and adaptive immune responses. We previously reported that opioids inhibit cell growth and trigger apoptosis. However, the underlying mechanism by which TLR2 mediates apoptosis in response to opioids is not yet known. Here we show that chronic morphine treatment in primary neurons dramatically increased the expression of TLR2 at both the messenger RNA and protein levels. In addition, TLR2 deficiency significantly inhibited chronic morphine-induced apoptosis in primary neurons. Activation of caspase-3 after morphine treatment is impaired in TLR2 deficient primary neurons. Moreover, morphine treatment failed to induce an increased level of phosphorylated glycogen synthase kinase 3 beta (GSK3β) in TLR2 deficient primary neurons, suggesting an involvement of GSK3βin morphine-mediated TLR2 signaling. These results thus demonstrate that opioids prime neurons to undergo apoptosis by inducing TLR2 expression. Our data suggest that inhibition of TLR2 is capable of preventing opioids-induced damage to neurons.
     Opioids are powerful pain relievers, but also potent inducers of dependence and tolerance. Chronic morphine administration (via subcutaneous pellet) induces morphine dependence in the nucleus accumbens, a key dependence region in the brain, yet the cellular mechanisms are mostly unknown. Toll-like receptor 2 (TLR2) plays an essential function in controlling innate and inflammatory responses. Using a knockout mouse lacking TLR2, we assessed the contribution of TLR2 to the development of morphine dependence and microglia activation. We report here that mice deficient in TLR2 inhibit morphine-induced the levels of microglia activation and proinflammatory cytokines. Moreover, in TLR2 knockout mice the main symptoms of morphine withdrawal were significantly attenuated. Our data demonstrate that TLR2 is critical for opioid dependence and is a factor in response to innate immune response.
     As resveratrol derivatives, resveratrol aliphatic acids were synthesized in our laboratory. Previously, we reported the improved pharmaceutical properties of the compounds compared to resveratrol, including better solubility in water and much tighter binding with human serum albumin. Here, we investigate the role of resveratrol aliphatic acids in Toll-like receptor 2 (TLR2)-mediated apoptosis. We showed that resveratrol aliphatic acid (R6A) significantly inhibits the expression of TLR2. In addition, overexpression of TLR2 in HEK293 cells caused a significant decrease in apoptosis after R6A treatment. Moreover, inhibition of TLR2 by R6A decreases serum deprivation-reduced the levels of phosphorylated Akt and phosphorylated glycogen synthase kinase 3(3 (GSK3β). Our study thus demonstrates that the resveratrol aliphatic acid inhibits cell apoptosis through TLR2 by the involvement of Akt/GSK3βpathway.
     TLR4 (Toll-like receptor-4), a key member of the TLRs family, has been well characterized by its function in induction of inflammatory products of innate immunity. However, the involvement of TLR4 in a variety of apoptotic events with an unknown mechanism recently interests great research focus. Our investigation found that TLR4 promoted apoptotic signaling through affecting glycogen synthase kinase-3β(GSK-3(3) pathway in the serum deprivation (SD)-induced apoptotic paradigm. SD induces GSK-3βactivation in a pathway that leads to subsequent cell apoptosis. Intriguingly, this apoptotic cascade is amplified in presence of TLR4 whereas greatly attenuated byβ-arrestin 2, another critical molecule implicated in TLR4 mediated immune responses. Our data suggest the association ofβ-arrestin 2 with GSK-3βcontributes to the stabilization of phospho-GSK-3(3, an inactive form of GSK-3p. It becomes a critical determinant for the attenuation of TLR4-initiated apoptosis byβ-arrestin 2. Taken together, we demonstrate that the TLR4 possesses the capability of accelerating GSK-3βactivation thereby deteriorating SD-induced apoptosis;β-arrestin 2 represents an inhibitory effect on TLR4-mediated apoptotic cascade, through controlling the homeostasis of activation and inactivation of GSK-3p.
     Stress, either physical or psychological, can modulate immune function. However, the mechanisms associated with stress-induced immune suppression remains to be elucidated. P-arrestin 2 serves as adaptors, scaffolds, and/or signal transducers. The role ofβ-arrestin 2 in stress-induced immune suppression is not known yet. Here, we demonstrate thatβ-arrestin 2 deficiency in mice increases the sensitivity of chronic stress-induced lymphocyte reduction. Interestingly, the stress-induced suppression of T help 1 (Th1) cytokine and increased production of Th2 cytokine was greatly increased in P-arrestin 2 deficient mice compared with wild type mice. Moreover, inhibition of PI3K in P-arrestin 2-deficient mice exerts an additive effect on stress-induced lymphocyte reduction. Our study thus demonstrates thatβ-arrestin 2 plays an important role in stress-induced immune suppression.
     Background:Although it is established that opioid and Mycobacterium tuberculosis are both public health problems, the mechanisms by which they affect lung functions remain elusive. Methodology/Principal Findings:We report here that mice subjected to chronic morphine administration and M. tuberculosis infection exhibited significant apoptosis in the lung in wild type mice as demonstrated by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay. Morphine and M. tuberculosis significantly induced the expression of Toll-like receptor 9 (TLR9), a key mediator of innate immunity and inflammation. Interestingly, deficiency in TLR9 significantly inhibited the morphine and M. tuberculosis induced apoptosis in the lung. In addition, chronic morphine treatment and M. tuberculosis infection enhanced the levels of cytokines (TNF-a, IL-1β, and IL-6) in wild type mice, but not in TLR9 knockout (KO) mice. The bacterial load was much lower in TLR9 KO mice compared with that in wild type mice following morphine and M. tuberculosis treatment. Morphine alone did not alter the bacterial load in either wild type or TLR9 KO mice. Moreover, administration of morphine and M. tuberculosis decreased the levels of phosphorylation of Akt and GSK3βin the wild type mice, but not in TLR9 KO mice, suggesting an involvement of Akt/GSK3p in morphine and M. tuberculosis-mediated TLR9 signaling. Furthermore, administration of morphine and M. tuberculosis caused a dramatic decrease in Bcl-2 level but increase in Bax level in wild type mice, but not in TLR9 KO mice, indicating a role of Bcl-2 family in TLR9-mediated apoptosis in the lung following morphine and M. tuberculosis administration. Conclusions/Significance:These data reveal a role for TLR9 in the immune response to opioids during M. tuberculosis infection.
     Opioids have been widely applied in clinics as one of the most potent pain relievers for centuries, but their abuse has deleterious physiological effects beyond addiction. We previously reported that opioids inhibit cell growth and trigger apoptosis in lymphocytes. However, the underlying mechanism by which microglia apoptosis in response to opioids is not yet known. In this study, we show that morphine induces microglia apoptosis and caspase-3 activation in an opioid-receptor dependent manner. Morphine decreased the levels of microglia phosphorylated Akt (p-Akt) and p-GSK-3β(glycogen synthase kinase 3 beta) in an opioid receptor dependent manner. More interestingly, GSK-3βinhibitor SB216763 significantly increased morphine-induced apoptosis in both BV-2 microglia and mouse primary microglial cells. Moreover, co-treatment of microglia with SB216763 and morphine led to a significant synergistic effect on the level of phospho-p38 mitogen-activated protein kinase (MAPK). In addition, inhibition of p38 MAPK by its specific inhibitor SB203580 significantly inhibited morphine-induced apoptosis and caspase-3 activation. Taken together, our data clearly demonstrates that morphine induces apoptosis in microglial cells, which is mediated via GSK-3βand p38 MAPK pathways.
引文
1. Takeda K, Kaisho T, Akira S, Toll like receptors. Annu Rev Immunol,2003; 21:335-376.
    2. Whitham S, Dinesh-Kumar SP, Choi D, et al. the product of the tobacco mosaic resistance gene N: similarity to Toll and the interleukin-1 receptor. Cell1994; 78:1101-1115.
    3. Rock FL, Hardiman G, Timans JC, et al. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 1998; 95:588-593.
    4. Akira S, Uematsu S, Takeuchi 0. Pathogen recognition and innate immunity. Cell 2006; 124: 783-801.
    5. Sutmuller R, et al.Toll like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 2006; 116:485-494.
    6. LaRosa DE, et al.T cell expression of MyD88 is required for resistance to Toxoplasma gondii. Proc Natl Acad Sci USA 2008; 105:3855-3860.
    7. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, et al. The kinase TAK1 can activate the NIK-I k B as well as the MAP kinase cascade in the IL-1 signaling pathway. Nature 1999; 398:252-256.
    8. Kawai T, Akira S et al, TLR signaling. Cell Death Differ 2006; 13:816-820.
    9. Butler MP, Hanly JA, Maynagh PN. Kinase active IRAKs promote polyubiquination and degradation of the pellino family:direct evidence for pellino proteins being E3 ubiquitin ligases. J Biol Chem 2007; 282:29729-29737.
    10. Matsuzawa A et al. Essential cytoplasmic translocation of a cytokine receptor assembled signaling complex. Sicence,2008,321:663-668.
    11. Jin MS, et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 2007; 130:906-917.
    12. Kim HM, et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist eritoran. Cell 2007; 130:906-917.
    13. Liu L et al. structure basis of Toll like receptor 3 signaling with double stranded RNA. Science 2008; 320:379-381.
    14. Kawai T, et al. Interferon alpha induction through toll like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nature Immunol.2004,5:1061-1068.
    15. Kagan J, et al. TRAM couples endocytosis of Toll like receptor 4 to the induction of interferon beta. Nature Immuol 2008; 9:361-368.
    16. Yamamoto M, Okamoto T, Takeda K et al. Key function for the Ubc13 E2 ubiquitin conjugating enzyme in immune receptor signaling. Nat Immunol 2006; 7:962-970.
    17. Oshiumi H et al, TIR containing adaptor molecule (TICAM)-2, a bridging adaptor recruiting to Toll like receptor 4 TICAM-1 that induces interferon beta. J Biol Chem.2003; 278:49751-49763.
    18. Byrd-Leifer CA, Block EF, Takeda K, et al. The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. Eur J Immunol.2001; 31:2448.
    19. Lund JM, Alexopoulou L, Sato A et al. Recognition of single-stranded RNA viruses by Toll like receptor 7. Proc Natl Acad Sci USA 2004; 101:5598.
    20. Boule MW, Broughton C, Mackay F, et al. Toll like receptor 9 dependent and independent dendritic cell activation by chromatin immunoglobulin G complexes. J Exp Med.2004,199:1631.
    21. Hacker H, et al. CpG DNA specific activation of antigen presenting cells requires stress kinase activity and is preceded by non specific endocytosis and endosomal maturation. EMBO J,1998; 17: 6230.
    22. Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 1999; 11:443.
    23. Doyle SE, et al. Toll like receptors induce a phagocytic gene program through p38. J Exp Med 2004; 199:81.
    24. Akira S, Takeda K. Toll like receptor signaling. Nat Rev Immunol 2004; 4:499.
    25. Hoshino K, Kaisho T, Iwabe T, et al. Differential involvement of IFN-beta in Toll like receptor stimulated dendritic cell activation. Int Immunol 2002; 14:1225-1231.
    26. Hemmi H, Kaisho T, Takeda K, et al. The roles of Toll like receptor 9, MyD88, and two distinct CpG DNAs on dendritic cell subsets. J Immunol 2003; 170:3059-3064.
    27. Meylan E, Tschopp J. Toll like receptors and RNA helicase:two parallel ways to trigger antiviral response. Mol Cell Immunol 2006; 22:561-569.
    28. Kariko K, Ni H, Capodici J, et al. mRNA is an endogenous ligand for Toll like receptor 3. J Biol. Chem 2004; 279:12542-12550.
    29. Lehnardt S, Schott E, Trimbuch T, et al. A vicious cycle involving release of heat shock 60 from injured cells and activation of Toll like receptor 4 mediateds neurodegeneration in the CNS. J Neurosci 2008; 28:2320-2331.
    30. Barrat FJ, Meeker T, Gregorio J, et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll like receptors and may promote systemic lupus erythematosus. J Exp. Med 2005; 202:1131-1139.
    31. Janko C, Schorn C, Grossmayer GE, et al. Inflammatory clearance of apoptotic remnants in systemic lupus erythematosus. Autoimmun Rev 2008,8:9-12.
    32. Park D, Tosello-Trampont AC, Elliot MR, et al. BAIlis an engulfinent receptor for apoptosis cells upstream of the ELMO/Dock180/Rac module. Nature 2007,450:430-434.
    33. Park SY, Jung MY, Kim HJ, et al. Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death Differ 2008,15:192-201.
    34. Laube K, Blumenthal SG, Waibel M, et al. Clearance of apoptotic cells:getting rid of the corpse. Mol Cell 2004,14:277-287.
    35. Kariko K, Ni H, Capodici J, et al. m RNA is an endogenous ligand for Toll like receptor 3. J Bio Chem 2004; 279:12542-12550.
    1. Yin, D., R. A. Mufson, R. Wang, and Y. Shi. Fas-mediated cell death promoted by opioids. Nature (1999)397:218.
    2. Yin, D., M. Woodruff, Y. Zhang, S. Whaley, J. Miao, K. Ferslew, J. Zhao, and C. Stuart. Morphine promotes Jurkat cell apoptosis through pro-apoptotic FADD/P53 and anti-apoptotic PI3K/Akt/NF-kappaB pathways. J.Neuroimmunol. (2006) 174:101-107.
    3. Yin, D., D. Tuthill, R. A. Mufson, and Y. Shi. Chronic restraint stress promotes lymphocyte apoptosis by modulating CD95 expression. J.Exp.Med. (2000) 191:1423-1428.
    4. Svensson, A. L., N. Bucht, M. Hallberg, and F. Nyberg. Reversal of opiate-induced apoptosis by human recombinant growth hormone in murine foetus primary hippocampal neuronal cell cultures. Proc.Natl.Acad.Sci.U.S.A (2008) 105:7304-7308.
    5. Hu, S., W. S. Sheng, J. R. Lokensgard, and P. K. Peterson. Morphine induces apoptosis of human microglia and neurons. Neuropharmacology (2002) 42:829-836.
    6. Doyle, S. L. and L. A. O'Neill. Toll-like receptors:from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochem.Pharmacol. (2006) 72:1102-1113.
    7. Tang, S. C., T. V. Arumugam, X. Xu, A. Cheng, M. R. Mughal, D. G. Jo, J. D. Lathia, D. A. Siler, S. Chigurupati, X. Ouyang, T. Magnus, S. Camandola, and M. P. Mattson. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc.Natl.Acad.Sci.U.S.A (2007) 104:13798-13803.
    8. Sabroe, I., S. K. Dower, and M. K. Whyte. The role of Toll-like receptors in the regulation of neutrophil migration, activation, and apoptosis. Clin.Infect.Dis. (2005) 41 Suppl 7:S421-S426.
    9. Chen, L., Y. Zhang, X. Sun, H. Li, G. LeSage, A. Javer, X. Zhang, X. Wei, Y. Jiang, and D. Yin. Synthetic resveratrol aliphatic acid inhibits TLR2-mediated apoptosis and an involvement of Akt/GSK3beta pathway. Bioorg.Med.Chem. (2009) 17:4378-4382.
    10. Li, Y., X. Sun, Y. Zhang, J. Huang, G. Hanley, K. E. Ferslew, Y. Peng, and D. Yin. Morphine promotes apoptosis via TLR2, and this is negatively regulated by beta-arrestin 2. Biochem.Biophys.Res.Commun. (2009) 378:857-861.
    11. Guha, M. and N. Mackman. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J.Biol.Chem. (2002) 277:32124-32132.
    12. Zhang, Y, Y. Zhang, J. Miao, G. Hanley, C. Stuart, X. Sun, T. Chen, and D. Yin. Chronic restraint stress promotes immune suppression through toll-like receptor 4-mediated phosphoinositide 3-kinase signaling. J.Neuroimmunol. (2008) 204:13-19.
    13. Lv, X., L. Su, D. Yin, C. Sun, J. Zhao, S. Zhang, and J. Miao. Knockdown of integrin beta4 in primary cultured mouse neurons blocks survival and induces apoptosis by elevating NADPH oxidase activity and reactive oxygen species level. Int.J.Biochem.Cell Biol. (2008) 40:689-699.
    14. Yin, D., Y. Zhang, C. Stuart, J. Miao, Y. Zhang, C. Li, X. Zeng, G. Hanley, J. Moorman, Z. Yao, and M. Woodruff. Chronic restraint stress modulates expression of genes in murine spleen. J.Neuroimmunol. (2006) 177:11-17.
    15. Stucky, C. L., M. S. Gold, and X. Zhang. Mechanisms of pain. Proc.Natl.Acad.Sci.U.S.A (2001) 98:11845-11846.
    16. Hua, F., J. Ma, T. Ha, Y. Xia, J. Kelley, D. L. Williams, R. L. Kao, I. W. Browder, J. B. Schweitzer, J. H. Kalbfleisch, and C. Li. Activation of Toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. J.Neuroimmunol. (2007) 190:101-111.
    17. Fukao, T. and S. Koyasu. PI3K and negative regulation of TLR signaling. Trends Immunol. (2003) 24:358-363.
    18. Akira, S. and K. Takeda. Toll-like receptor signalling. Nat.Rev.Immunol. (2004) 4:499-511.
    19. Carpentier, P. A., D. S. Duncan, and S. D. Miller. Glial toll-like receptor signaling in central nervous system infection and autoimmunity. Brain Behav.Immun. (2008) 22:140-147.
    20. Song, L., T. Zhou, and R. S. Jope. Lithium facilitates apoptotic signaling induced by activation of the Fas death domain-containing receptor. BMC.Neurosci. (2004) 5:20.
    21. Yakovlev, A. G., K. Ota, G. Wang, V. Movsesyan, W. L. Bao, K. Yoshihara, and A. I. Faden. Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J.Neurosci. (2001)21:7439-7446.
    22. Smith M.F.Jr., Mitchell, A., Li, G.., et al Toll like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-k B activation and chemokine expression by epithelial cells. J. Bio. Chem. (2003) 278:32552.
    23. Werts, C. et al.Leptospiral lipopolysaccharide activates cells through a TLR2 dependent mechanism, Nat. Immunol. (2001)2:346.
    24. Hirschfeld M., et al. signaling by Toll like receptor 2 and 4 agonists results in differential gene expression in murine macrophage. Infect. Immun. (2001) 69:1477.
    1. Yin, D., R. A. Mufson, R. Wang, and Y. Shi.1999. Fas-mediated cell death promoted by opioids. Nature 397:218.
    2. Yin, D., M. Woodruff, Y. Zhang, S. Whaley, J. Miao, K. Ferslew, J. Zhao, and C. Stuart.2006. Morphine promotes Jurkat cell apoptosis through pro-apoptotic FADD/P53 and anti-apoptotic PI3K/Akt/NF-kappaB pathways. J.Neuroimmunol.174:101-107.
    3. Moorman, J., Y. Zhang, B. Liu, G. LeSage, Y. Chen, C. Stuart, D. Prayther, and D. Yin.2009. HIV-1 gp120 primes lymphocytes for opioid-induced, beta-arrestin 2-dependent apoptosis. Biochim.Biophys.Acta 1793:1366-1371.
    4. Holan, V., A. Zajicova, M. Krulova, V. Blahoutova, and H. Wilczek.2003. Augmented production of proinflammatory cytokines and accelerated allotransplantation reactions in heroin-treated mice. Clin.Exp.Immunol.132:40-45.
    5. Avila, A. H., N. C. Alonzo, and B. M. Bayer.2004. Immune cell activity during the initial stages of withdrawal from chronic exposure to cocaine or morphine. J.Neuroimmunol.147:109-113.
    6. Hutchinson, M. R., S. T. Bland, K. W. Johnson, K. C. Rice, S. F. Maier, and L. R. Watkins.2007. Opioid-induced glial activation:mechanisms of activation and implications for opioid analgesia, dependence, and reward. ScientificWorldJournal.7:98-111.
    7. Peterson, P. K., T. W. Molitor, and C. C. Chao.1998. The opioid-cytokine connection. J.Neuroimmunol.83:63-69.
    8. Aderem, A. and R. J. Ulevitch.2000. Toll-like receptors in the induction of the innate immune response. Nature 406:782-787.
    9. Medzhitov, R., P. Preston-Hurlburt, and C. A. Janeway, Jr.1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394-397.
    10. Kielian, T.2006. Toll-like receptors in central nervous system glial inflammation and homeostasis. J.Neurosci.Res.83:711-730.
    11. Kim, D., M. A. Kim, I. H. Cho, M. S. Kim, S. Lee, E. K. Jo, S. Y. Choi, K. Park, J. S. Kim, S. Akira, H. S. Na, S. B. Oh, and S. J. Lee.2007. A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J.Biol.Chem.282:14975-14983.
    12. Tang, S. C., T. V. Arumugam, X. Xu, A. Cheng, M. R. Mughal, D. G. Jo, J. D. Lathia, D. A. Siler, S. Chigurupati, X. Ouyang, T. Magnus, S. Camandola, and M. P. Mattson.2007. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc.Natl.Acad.Sci.U.S.A 104:13798-13803.
    13. Lehnardt, S., P. Henneke, E. Lien, D. L. Kasper, J. J. Volpe, I. Bechmann, R. Nitsch, J. R. Weber, D. T. Golenbock, and T. Vartanian.2006. A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J.Immunol.177:583-592.
    14. Zhou, S., A. Halle, E. A. Kurt-Jones, A. M. Cerny, E. Porpiglia, M. Rogers, D. T. Golenbock, and R. W. Finberg.2008. Lymphocytic Choriomeningitis Virus (LCMV) infection of CNS glial cells results in TLR2-MyD88/Mal-dependent inflammatory responses. J.Neuroimmunol.194:70-82.
    15. Owens, T., A. A. Babcock, J. M. Millward, and H. Toft-Hansen.2005. Cytokine and chemokine inter-regulation in the inflamed or injured CNS. Brain Res.Brain Res.Rev.48:178-184.
    16. Bohn, L. M., R. R. Gainetdinov, F. T. Lin, R. J. Lefkowitz, and M. G. Caron.2000. Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720-723.
    17. Shaw-Lutchman, T. Z., M. Barrot, T. Wallace, L. Gilden, V. Zachariou, S. Impey, R. S. Duman, D. Storm, and E. J. Nestler.2002. Regional and cellular mapping of cAMP response element-mediated transcription during naltrexone-precipitated morphine withdrawal. J.Neurosci.22:3663-3672.
    18. Porter, A. G. and R. U. Janicke.1999. Emerging roles of caspase-3 in apoptosis. Cell Death.Differ. 6:99-104.
    19. Raehal, K. M., J. J. Lowery, C. M. Bhamidipati, R. M. Paolino, J. R. Blair, D. Wang, W. Sadee, and E. J. Bilsky.2005. In vivo characterization of 6beta-naltrexol, an opioid ligand with less inverse agonist activity compared with naltrexone and naloxone in opioid-dependent mice. J.Pharmacol.Exp.Ther.313:1150-1162.
    20. Russo, S. J., C. A. Bolanos, D. E. Theobald, N. A. DeCarolis, W. Renthal, A. Kumar, C. A. Winstanley, N. E. Renthal, M. D. Wiley, D. W. Self, D. S. Russell, R. L. Neve, A. J. Eisch, and E. J. Nestler.2007. IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates. Nat.Neurosci.10:93-99.
    21. Akira, S. and K. Takeda.2004. Toll-like receptor signalling. Nat.Rev.Immunol.4:499-511.
    22. Takeda, K. and S. Akira.2005. Toll-like receptors in innate immunity. Int.Immunol.17:1-14.
    23. Carpentier, P. A., D. S. Duncan, and S. D. Miller.2008. Glial toll-like receptor signaling in central nervous system infection and autoimmunity. Brain Behav.Immun.22:140-147.
    24. Hutchinson, M. R., B. D. Coats, S. S. Lewis, Y. Zhang, D. B. Sprunger, N. Rezvani, E. M. Baker, B. M. Jekich, J. L. Wieseler, A. A. Somogyi, D. Martin, S. Poole, C. M. Judd, S. F. Maier, and L. R. Watkins.2008. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav.Immun.
    25. Aravalli, R. N., S. Hu, and J. R. Lokensgard.2007. Toll-like receptor 2 signaling is a mediator of apoptosis in herpes simplex virus-infected microglia. J.Neuroinflammation.4:11.
    26. Zhang, Y., Y. Zhang, J. Miao, G. Hanley, C. Stuart, X. Sun, T. Chen, and D. Yin.2008. Chronic restraint stress promotes immune suppression through toll-like receptor 4-mediated phosphoinositide 3-kinase signaling. J.Neuroimmunol.204:13-19.
    27. Tanga, F. Y., N. Nutile-McMenemy, and J. A. DeLeo.2005. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc.Natl.Acad.Sci.U.S.A 102:5856-5861.
    28. Olson, J. K. and S. D. Miller.2004. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J.Immunol.173:3916-3924.
    29. Liang, D. Y, X. Shi, X. Li, J. Li, and J. D. Clark.2007. The beta2 adrenergic receptor regulates morphine tolerance and physical dependence. Behav.Brain Res.181:118-126.
    1. Sexton, E., Van Themsche, C., LeBlanc, K., Parent, S., Lemoine, P., and Asselin, E. Mol.Cancer 2006,5,45.
    2. Filomeni, G., Graziani, I., Rotilio, G., and Ciriolo, M. R. Genes Nutr.2007,2,295.
    3. Pozo-Guisado, E., Alvarez-Barrientos, A., Mulero-Navarro, S., Santiago-Josefat, B., and Fernandez-Salguero, P. M. Biochem.Pharmacol.2002,64,1375.
    4. Hudson, T. S., Hartle, D. K., Hursting, S. D., Nunez, N. P., Wang, T. T., Young, H. A., Arany, P., and Green, J. E. Cancer Res.2007,67,8396.
    5. Signorelli, P. and Ghidoni, R. J.Nutr.Biochem.2005,16,449.
    6. Schwedhelm, E., Maas, R., Troost, R., and Boger, R. H. Clin.Pharmacokinet.2003,42,437.
    7. Jiang, Y. L. Bioorg.Med.Chem.2008,16,6406.
    8. Aderem, A. and Ulevitch, R. J. Nature 2000,406,782.
    9. Medzhitov, R., Preston-Hurlburt, P., and Janeway, C. A., Jr. Nature 1997,388,394.
    10. Doyle, S. L. and O'Neill, L. A. Biochem.Pharmacol.2006,72,1102.
    11. Gan, L. and Li, L. Immunol.Res.2006,35,295.
    12. Akira, S. and Hemmi, H. Immunol.Lett.2003,85,85.
    13. Kurt-Jones, E. A., Popova, L., Kwinn, L., Haynes, L. M., Jones, L. P., Tripp, R. A., Walsh, E. E., Freeman, M. W., Golenbock, D. T., Anderson, L. J., and Finberg, R. W. Nat.Immunol.2000,1,398.
    14. Arnold, R., Brenner, D., Becker, M., Frey, C. R., and Krammer, P. H. Eur.J.Immunol.2006,36, 1654.
    15. Arnold, R., Brenner, D., Becker, M., Frey, C. R., and Krammer, P. H. Eur.J.Immunol.2006,36, 1654.
    16. Zhang, G. and Ghosh, S. J.Clin.Invest 2001,107,13
    17. Krishnan, J., Selvarajoo, K., Tsuchiya, M., Lee, G., and Choi, S. Exp.Mol.Med.2007,39,421.
    18. Hussain, T., Nasreen, N., Lai, Y., Bellew, B. F., Antony, V. B., and Mohammed, K. A. Am.J.Physiol Lung Cell Mol.Physiol 2008,295, L461.
    19. Li, Y., Sun, X., Zhang, Y., Huang, J., Hanley, G., Ferslew, K. E., Peng, Y, and Yin, D. Biochem.Biophys.Res.Commun.2009,378,857.
    20. Fan, W., Ha, T., Li, Y, Ozment-Skelton, T., Williams, D. L., Kelley, J., Browder, I. W., and Li, C. Biochem.Biophys.Res.Commun.2005,337,840.
    21. Zhang, Y, Foster, R., Sun, X., Yin, Q., Li, Y, Hanley, G., Stuart, C., Gan, Y, Li, C., Zhang, Z., and Yin, D. J.Neuroimmunol.2008,200,71.
    22. Hu, X., Paik, P. K., Chen, J., Yarilina, A., Kockeritz, L., Lu, T. T., Woodgett, J. R., and Ivashkiv, L. B. Immunity.2006,24,563.
    23. Jope, R. S. and Johnson, G. V. Trends Biochem.Sci.2004,29,95.
    24. Martin, M., Rehani, K., Jope, R. S., and Michalek, S. M. Nat.Immunol.2005,6,777.
    25. Cantley, L. C. Science 2002,296,1655.
    26. Yin, D., Woodruff, M., Zhang, Y, Whaley, S., Miao, J., Ferslew, K., Zhao, J., and Stuart, C. J.Neuroimmunol.2006,174,101.
    27. Beaulieu, J. M., Sotnikova, T. D., Marion, S., Lefkowitz, R. J., Gainetdinov, R. R., and Caron, M. G Cell 2005,122,261.
    28. Franke, T. F., Kaplan, D. R., and Cantley, L. C. Cell 1997,88,435.
    29. Luo, H. R., Hattori, H., Hossain, M. A., Hester, L., Huang, Y, Lee-Kwon, W., Donowitz, M., Nagata, E., and Snyder, S. H. Proc.Natl.Acad.Sci.U.S.A 2003,100,11712.
    30. Zhang, Y, Zhang, Y, Miao, J., Hanley, G., Stuart, C., Sun, X., Chen, T., and Yin, D. J.Neuroimmunol.2008,204,13.
    31. Hua, F., Ha, T., Ma,J., Li, Y, Kelley, J., Gao, X., Browder, I. W., Kao, R. L., Williams, D. L., and Li, C. J.Immunol.2007,178,7317.
    32. Beurel, E. and Jope, R. S. Prog.Neurobiol.2006,79,173.
    33. Fukao, T. and Koyasu, S. Trends Immunol.2003,24,358.
    34. Fukao, T., Tanabe, M., Terauchi, Y, Ota, T., Matsuda, S., Asano, T., Kadowaki, T., Takeuchi, T., and Koyasu, S. Nat.Immunol.2002,3,875.
    35. Yin, D., Tuthill, D., Mufson, R. A., and Shi, Y. J.Exp.Med.2000,191,1423.
    1. Li X, Jiang S, Tapping RI. Toll-like receptor signaling in cell proliferation and survival. Cytokine. 2009 Sep 21.
    2. Barton GM, Medzhitov R. Toll like receptor signaling pathways. Science.2003 Jun 6; 300(5625):1524-5.
    3. Martin M, Rehani K, Jope RS, Michalek SM. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol.2005 Aug; 6(8):777-84.
    4. Wang H, Garcia CA, Rehani K, Cekic C, Alard P, Kinane DF, Mitchell T, Martin M. IFN-β production by TLR4-stimulated innate immune cells is negatively regulated by GSK3-β, J Immunol. 2008 Nov 15; 181(10):6797-802.
    5. Blanco AM, Valles SL, Pascual M, Guerri C. Involvement of TLR4/type ⅠIL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J Immunol.2005 Nov 15; 175(10):6893-9.
    6. Miyake K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol.2007 Feb; 19(1):3-10.
    7. Sodhi CP, Shi XH, Richardson WM, Grant ZS, Shapiro RA, Prindle T Jr, Branca M, Russo A, Gribar SC, Ma C, Hackam DJ. Toll-like-receptor-4 Inhibits Enterocyte Proliferation via Impaired β-catenin Signaling in Necrotizing Enterocolitis. Gastroenterology.2009 Sep 25.
    8. Vene R, Larghero P, Arena G, Sporn MB, Albini A, Tosetti F. Glycogen synthase kinase 3β regulates cell death induced by synthetic triterpenoids. Cancer Res.2008 Sep 1; 68(17):6987-96.
    9. Eom TY, Roth KA, Jope RS. Neural precursor cells are protected from apoptosis induced by trophic factor withdrawal or genotoxic stress by inhibitors of glycogen synthase kinase 3. J Biol Chem.2007 Aug 3; 282(31):22856-64.
    10. Revankar CM, Vines CM, Cimino DF, Prossnitz ER. Arrestins block G protein-coupled receptor-mediated apoptosis. J Biol Chem.2004 Jun 4;279 (23):24578-84.
    11. Povsic TJ, Kohout TA, Lefkowitz RJ. β-arrestinl mediates insulin-like growth factor 1(IGF-1) activation of phosphatidylinositol 3-kinase (PI3K) and anti-apoptosis. J Biol Chem.2003 Dec 19; 278(51):51334-9.
    12. DeFea KA, Vaughn ZD, O'Bryan EM, Nishijima D, Dery O, Bunnett NW. The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β-arrestin-dependent scaffolding complex. Proc Natl Acad Sci U S A.2000 Sep 26;97(20):11086-91.
    13. Hsu LC, Park JM, Zhang K, Luo JL, Maeda S, Kaufman RJ, Eckmann L, Guiney DG, Karin M. The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature.2004 Mar 18; 428 (6980):341-5.
    14. Banerjee A, Grumont R, Gugasyan R, White C, Strasser A, Gerondakis S. NF-kappaBl and c-Rel cooperate to promote the survival of TLR4-activated B cells by neutralizing Bim via distinct mechanisms. Blood.2008 Dec 15; 112(13):5063-73.
    15. Marsh B, Stevens SL, Packard AE, Gopalan B, Hunter B, Leung PY, Harrington CA, Stenzel-Poore MP. Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke:a critical role for IRF3. J Neurosci.2009 Aug 5;29(31):9839-49.
    16. Chao W, Toll-like receptor signaling:a critical modulator of cell survival and ischemic injury in the heart. Am J Physiol Heart Circ Physiol.2009 Jan; 296(1):H1-12.
    17. Cohen-Sfady M, Pevsner-Fischer M, Margalit R, Cohen IR. Heat shock protein 60, via MyD88 innate signaling, protects B cells from apoptosis, spontaneous and induced. J Immunol.2009 Jul 15; 183(2):890-6.
    18. Zhu X, Zhao H, Graveline AR, Buys ES, Schmidt U, Bloch KD, Rosenzweig A, Chao W. MyD88 and NOS2 are essential for toll-like receptor 4-mediated survival effect in cardiomyocytes. Am J Physiol Heart Circ Physiol.2006 Oct; 291(4):H1900-9.
    19. Szczepanski MJ, Czystowska M, Szajnik M, Harasymczuk M, Boyiadzis M, Kruk-Zagajewska A, Szyfter W, Zeromski J, Whiteside TL. Triggering of Toll-like receptor 4 expressed on human head and neck squamous cell carcinoma promotes tumor development and protects the tumor from immune attack. Cancer Res.2009 Apr 1; 69(7):3105-13.
    20. Hetman M, Cavanaugh JE, Kimelman D, Xia Z. Role of glycogen synthase kinase-3β in neuronal apoptosis induced by trophic withdrawal. J Neurosci.2000 Apr 1; 20(7):2567-74.
    21. Chao W, Shen Y, Zhu X, Zhao H, Novikov M, Schmidt U, Rosenzweig A. Lipopolysaccharide improves cardiomyocyte survival and function after serum deprivation. J Biol Chem.2005 Jun 10; 280(23):21997-2005.
    22. Pap M, Cooper GM. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J Biol Chem.1998 Aug 7; 273(32):19929-32.
    23. Wakefield JG, Stephens DJ, Tavare JM. A role for glycogen synthase kinase-3 in mitotic spindle dynamics and chromosome alignment. J Cell Sci.2003 Feb 15; 116(Pt 4):637-46.
    24. Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci U S A.1998 Sep 15;95 (19):11211-6.
    25. Sun J, Lin X. Beta-arrestin 2 is required for lysophosphatidic acid-induced NF-kappaB activation. Proc Natl Acad Sci U S A.2008 Nov 4; 105(44):17085-90.
    26. Witherow DS, Garrison TR, Miller WE, Lefkowitz RJ. beta-Arrestin inhibits NF-kappaB activity by means of its interaction with the NF-kappaB inhibitor IkappaBalpha. Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8603-7.
    27. Wang Y, Tang Y, Teng L, Wu Y, Zhao X, Pei G. Association of beta-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol.2006 Feb; 7(2):139-47.
    28. Zhang Y, Zhang Y, Miao J, Hanley G, Stuart C, Sun X, Chen T, Yin D. Chronic restraint stress promotes immune suppression through Toll-like receptor 4-mediated phosphoinositide 3-kinase signaling. J Neuroimmunol 2008; 204:13-19.
    29. Yin D, Tuthill D, Mufson RA, Shi Y. Chronic restraint stress promotes lymphocyte apoptosis by modulating CD95 expression. J Exp Med 2000;191:1423-1428.
    30. Chen L, Zhang Y, Sun X, Li H, LeSage G, Javer A, Zhang X, Wei X, Jiang Y, Yin D. Synthetic resveratrol aliphatic acid inhibits TLR2-mediated apoptosis and an involvement of Akt/GSK3beta pathway. Bioorg Med Chem.2009 Jul 1;17(13):4378-82.
    31. Luttrell LM, Lefkowitz RJ. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci.2002 Feb 1;115(Pt 3):455-65.
    32. Parameswaran N, Pao CS, Leonhard KS, Kang DS, Kratz M, Ley SC, Benovic JL.Arrestin-2 and G protein-coupled receptor kinase 5 interact with NFkappaB1 p105 and negatively regulate lipopolysaccharide-stimulated ERK1/2 activation in macrophages. J Biol Chem.2006 Nov 10;281(45):34159-70.
    33. Fan H, Luttrell LM, Tempel GE, Senn JJ, Halushka PV, Cook JA. Beta-arrestins 1 and 2 differentially regulate LPS-induced signaling and pro-inflammatory gene expression. Mol Immunol. 2007 May;44(12):3092-9.
    34. Kohout TA, Lin FS, Perry SJ, Conner DA, Lefkowitz RJ. beta-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci U S A.2001 Feb 13;98(4):1601-6.
    35. Doble BW, Woodgett JR.GSK-3:tricks of the trade for a multi-tasking kinase. J Cell Sci.2003 Apr 1;116(Pt 7):1175-86.
    36. Beaulieu JM, Marion S, Rodriguiz RM, Medvedev IO, Sotnikova TD, Ghisi V, Wetsel WC, Lefkowitz RJ, Gainetdinov RR, Caron MG. A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell.2008 Jan 11; 132(1):125-36.
    37. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG. An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell.2005 Jul 29;122(2):261-73.
    38. Ougolkov AV, Fernandez-Zapico ME, Savoy DN, Urrutia RA, Billadeau DD. Glycogen synthase kinase-3beta participates in nuclear factor kappaB-mediated gene transcription and cell survival in pancreatic cancer cells. Cancer Res.2005 Mar 15;65(6):2076-81.
    39. Liu S, Yu S, Hasegawa Y, Lapushin R, Xu HJ, Woodgett JR, Mills GB, Fang X. Glycogen synthase kinase 3beta is a negative regulator of growth factor-induced activation of the c-Jun N-terminal kinase. J Biol Chem.2004 Dec 3;279(49):51075-81.
    40. Bihl F, Salez L, Beaubier M, Torres D, Lariviere L, Laroche L, Benedetto A, Martel D, Lapointe JM, Ryffel B, Malo D. Overexpression of Toll-like receptor 4 amplifies the host response to lipopolysaccharide and provides a survival advantage in transgenic mice. J Immunol.2003 Jun 15;170(12):6141-50.
    1. Frieri M. (2003) Neuroimmunology and inflammation:implications for therapy of allergic and autoimmune diseases. Ann.Allergy Asthma Immunol.90,34-40.
    2. Yang E.V. & Glaser R. (2002) Stress-associated immunomodulation and its implications for responses to vaccination. Expert.Rev.Vaccines.1,453-459.
    3. Sonnenfeld G (1998) Immune responses in space flight. Int.J.Sports Med.19 Suppl 3, S195-S202.
    4. Dhabhar F.S. & McEwen B.S. (1997) Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo:a potential role for leukocyte trafficking. Brain Behav.Immun.11, 286-306.
    5. Shi Y., Devadas S., Greeneltch K.M., Yin D., Allan M.R., & Zhou J.N. (2003) Stressed to death: implication of lymphocyte apoptosis for psychoneuroimmunology. Brain Behav.Immun.17 Suppl 1, S18-S26.
    6. Reiche E.M., Nunes S.O., & Morimoto H.K. (2004) Stress, depression, the immune system, and cancer. Lancet Oncol.5,617-625.
    7. Quan N., Avitsur R., Stark J.L., He L., Shah M., Caligiuri M., Padgett D.A., Marucha P.T., & Sheridan J.F. (2001) Social stress increases the susceptibility to endotoxic shock. J.Neuroimmunol. 115,36-45.
    8. Zhang Y, Zhang Y, Miao J., Hanley G., Stuart C., Sun X., Chen T., & Yin D. (2008) Chronic restraint stress promotes immune suppression through toll-like receptor 4-mediated phosphoinositide 3-kinase signaling. J.Neuroimmunol.204,13-19.
    9. Zorrilla E.P., Luborsky L., McKay J.R., Rosenthal R., Houldin A., Tax A., McCorkle R., Seligman D.A.,& Schmidt K. (2001) The relationship of depression and stressors to immunological assays:a meta-analytic review. Brain Behav.Immun.15,199-226.
    10. Yin D., Tuthill D., Mufson R.A., & Shi Y. (2000) Chronic restraint stress promotes lymphocyte apoptosis by modulating CD95 expression. J.Exp.Med.191,1423-1428.
    11. Yin D., Zhang Y, Stuart C., Miao J., Zhang Y., Li C., Zeng X., Hanley G., Moorman J., Yao Z., & Woodruff M. (2006) Chronic restraint stress modulates expression of genes in murine spleen. J.Neuroimmunol.177,11-17.
    12. Zhang Y., Foster R., Sun X., Yin Q., Li Y, Hanley G, Stuart C., Gan Y, Li C., Zhang Z., & Yin D. (2008) Restraint stress induces lymphocyte reduction through p53 and PI3K/NF-kappaB pathways. J.Neuroimmunol.200,71-76.
    13. Cao L., Hudson C.A., & Moynihan J.A. (2007) Chronic foot shock induces hyperactive behaviors and accompanying pro-and anti-inflammatory responses in mice. J.Neuroimmunol.186,63-74.
    14. Zhang Y, Woodruff M., Zhang Y, Miao J., Hanley G, Stuart C., Zeng X., Prabhakar S., Moorman J., Zhao B., & Yin D. (2008) Toll-like receptor 4 mediates chronic restraint stress-induced immune suppression. J.Neuroimmunol.194,115-122.
    15. Franke T.F., Kaplan D.R., & Cantley L.C. (1997) PI3K:downstream AKTion blocks apoptosis. Cell 88,435-437.
    16. Cantley L.C. (2002) The phosphoinositide 3-kinase pathway. Science 296,1655-1657.
    17. Okkenhaug K. & Vanhaesebroeck B. (2003) PI3K in lymphocyte development, differentiation and activation. Nat.Rev.Immunol.3,317-330.
    18. Williams D.L., Li C., Ha T., Ozment-Skelton T., Kalbfleisch J.H., Preiszner J., Brooks L., Breuel K., & Schweitzer J.B. (2004) Modulation of the phosphoinositide 3-kinase pathway alters innate resistance to polymicrobial sepsis. J.Immunol.172,449-456.
    19. Arruda M.A., Rossi A.G., de Freitas M.S., Barja-Fidalgo C., & Graca-Souza A.V. (2004) Heme inhibits human neutrophil apoptosis:involvement of phosphoinositide 3-kinase, MAPK, and NF-kappaB. J.Immunol.173,2023-2030.
    20. Povsic T.J., Kohout T.A., & Lefkowitz R.J. (2003) Beta-arrestinl mediates insulin-like growth factor 1 (IGF-1) activation of phosphatidylinositol 3-kinase (PI3K) and anti-apoptosis. J.Biol.Chem. 278,51334-51339.
    21. Beaulieu J.M., Sotnikova T.D., Marion S., Lefkowitz R.J., Gainetdinov R.R., & Caron M.G. (2005) An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122,261-273.
    22. Lefkowitz R.J. & Shenoy S.K. (2005) Transduction of receptor signals by beta-arrestins. Science 308,512-517.
    23. Moore C.A., Milano S.K., & Benovic J.L. (2006) Regulation of Receptor Trafficking by GRKs and Arrestins. Annu.Rev.Physiol.
    24. Buchanan F.G. & DuBois R.N. (2006) Emerging roles of beta-arrestins. Cell Cycle 5,2060-2063.
    25. Nelson C.D., Perry S.J., Regier D.S., Prescott S.M., Topham M.K., & Lefkowitz R.J. (2007) Targeting of diacylglycerol degradation to M1 muscarinic receptors by beta-arrestins. Science 315, 663-666.
    26. Fong A.M., Premont R.T., Richardson R.M., Yu Y.R., Lefkowitz R.J., & Patel D.D. (2002) Defective lymphocyte chemotaxis in beta-arrestin2-and GRK6-deficient mice. Proc.Natl.Acad.Sci.U.S.A 99,7478-7483.
    27. Revankar C.M., Vines C.M., Cimino D.F., & Prossnitz E.R. (2004) Arrestins block G protein-coupled receptor-mediated apoptosis. J.Biol.Chem.279,24578-24584.
    28. Sheridan J.F., Dobbs C., Jung J., Chu X., Konstantinos A., Padgett D., & Glaser R. (1998) Stress-induced neuroendocrine modulation of viral pathogenesis and immunity. Ann.N.YAcad.Sci. 840,803-808.
    29. Yin D., Zhang L., Wang R., Radvanyi L., Haudenschild C., Fang Q., Kehry M.R., & Shi Y. (1999) Ligation of CD28 in vivo induces CD40 ligand expression and promotes B cell survival. J.Immunol. 163,4328-4334.
    30. Yin D., Woodruff M., Zhang Y, Whaley S., Miao J., Ferslew K., Zhao J., & Stuart C. (2006) Morphine promotes Jurkat cell apoptosis through pro-apoptotic FADD/P53 and anti-apoptotic PI3K/Akt/NF-kappaB pathways. J.Neuroimmunol.174,101-107.
    31. Dhabhar F.S. & McEwen B.S. (1999) Enhancing versus suppressive effects of stress hormones on skin immune function. Proc.Natl.Acad.Sci.U.S.A 96,1059-1064.
    32. Kim S.H., Bianco N.R., Shufesky W.J., Morelli A.E., & Robbins P.D. (2007) MHC class Ⅱ+ exosomes in plasma suppress inflammation in an antigen-specific and Fas ligand/Fas-dependent manner. J.Immunol.179,2235-2241.
    33. Moorman J., Zhang Y, Liu B., LeSage G., Chen Y, Stuart C., Prayther D., & Yin D. (2009) HIV-1 gp120 primes lymphocytes for opioid-induced, beta-arrestin 2-dependent apoptosis. Biochim.Biophys.Acta 1793,1366-1371.
    34. Zhao M., Zhou G, Zhang Y, Chen T., Sun X., Stuart C., Hanley G, Li J., Zhang J., & Yin D. (2009) beta-arrestin2 inhibits opioid-induced breast cancer cell death through Akt and caspase-8 pathways. Neoplasma 56,108-113.
    35. Li Y, Sun X., Zhang Y, Huang J., Hanley G, Ferslew K.E., Peng Y, & Yin D. (2009) Morphine promotes apoptosis via TLR2, and this is negatively regulated by beta-arrestin 2. Biochem.Biophys.Res.Commun.378,857-861.
    36. Bohn L.M., Gainetdinov R.R., Lin F.T., Lefkowitz R.J., & Caron M.G. (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408, 720-723.
    37. Bohn L.M., Lefkowitz R.J., Gainetdinov R.R., Peppel K., Caron M.G., & Lin F.T. (1999) Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286,2495-2498.
    38. Adi S., Wu N.Y., & Rosenthal S.M. (2001) Growth factor-stimulated phosphorylation of Akt and p70 (S6K) is differentially inhibited by LY294002 and Wortmannin. Endocrinology 142,498-501.
    39. Hawkley L.C. & Cacioppo J.T. (2004) Stress and the aging immune system. Brain Behav.Immun. 18,114-119.
    40. Makarenkova V.P., Bansal V., Matta B.M., Perez L.A., & Ochoa J.B. (2006) CDllb+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J.Immunol.176, 2085-2094.
    41. Kono K., Takahashi A., Iizuka H., Fujii H., Sekikawa T., & Matsumoto Y (2001) Effect of oesophagectomy on monocyte-induced apoptosis of peripheral blood T lymphocytes. Br.J.Surg.88, 1110-1116.
    42. Osaki M., Kase S., Adachi K., Takeda A., Hashimoto K., & Ito H. (2004) Inhibition of the PI3K-Akt signaling pathway enhances the sensitivity of Fas-mediated apoptosis in human gastric carcinoma cell line, MKN-45. J.Cancer Res.Clin.Oncol.130,8-14.
    1. Yin,D., R.A.Mufson, R.Wang, and Y.Shi.1999. Fas-mediated cell death promoted by opioids. Nature 397:218.
    2. Yin,D., M.Woodruff, YZhang, S.Whaley, J.Miao, K.Ferslew, J.Zhao, and C.Stuart.2006. Morphine promotes Jurkat cell apoptosis through pro-apoptotic FADD/P53 and anti-apoptotic PI3K/Akt/NF-kappaB pathways. J.Neuroimmunol.174:101-107.
    3. Boronat,M.A., M.J.Garcia-Fuster, and J.A.Garcia-Sevilla.2001. Chronic morphine induces up-regulation of the pro-apoptotic Fas receptor and down-regulation of the anti-apoptotic Bcl-2 oncoprotein in rat brain. Br.J.Pharmacol.134:1263-1270.
    4. Lin,X., Y.J.Wang, Q.Li, Y.Y.Hou, M.H.Hong, Y.L.Cao, Z.Q.Chi, and J.G.Liu.2009. Chronic high-dose morphine treatment promotes SH-SY5Y cell apoptosis via c-Jun N-terminal kinase-mediated activation of mitochondria-dependent pathway. FEBS J.276:2022-2036.
    5. Wang,J., R.A.Barke, J.Ma, R.Charboneau, and S.Roy.2008. Opiate abuse, innate immunity, and bacterial infectious diseases. Arch.Immunol.Ther.Exp.(Warsz.) 56:299-309.
    6. Kaufmann,S.H.2006. Tuberculosis:back on the immunologists' agenda. Immunity.24:351-357.
    7. Durante,A.J., P.A.Selwyn, and P.G.O'Connor.1998. Risk factors for and knowledge of Mycobacterium tuberculosis infection among drug users in substance abuse treatment. Addiction 93:1393-1401.
    8. MacGregor,R.R., D.Dunbar, and A.L.Graziani.1994. Tuberculin reactions among attendees at a methadone clinic:relation to infection with the human immunodeficiency virus. Clin.Infect.Dis. 19:1100-1104.
    9. Lopez,M., L.M.Sly, Y.Luu, D.Young, H.Cooper, and N.E.Reiner.2003. The 19-kDa Mycobacterium tuberculosis protein induces macrophage apoptosis through Toll-like receptor-2. J.Immunol.170:2409-2416.
    10. Aderem,A. and R.J.Ulevitch.2000. Toll-like receptors in the induction of the innate immune response. Nature 406:782-787.
    11. Medzhitov,R., P.Preston-Hurlburt, and C.A.Janeway, Jr.1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394-397.
    12. Doyle,S.L. and L.A.O' Neill.2006. Toll-like receptors:from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochem.Pharmacol.72:1102-1113.
    13. Gan,L. and L.Li.2006. Regulations and roles of the interleukin-1 receptor associated kinases (IRAKs) in innate and adaptive immunity. Immunol.Res.35:295-302.
    14. Akira,S. and H.Hemmi.2003. Recognition of pathogen-associated molecular patterns by TLR family. Immunol.Lett.85:85-95.
    15. Kurt-Jones,E.A., L.Popova, L.Kwinn, L.M.Haynes, L.P.Jones, R.A.Tripp, E.E.Walsh, M.W.Freeman, D.T.Golenbock, L.J.Anderson, and R.W.Finberg.2000. Pattern recognition receptors TLR4 and CD 14 mediate response to respiratory syncytial virus. Nat.Immunol. 1:398-401.
    16. Li,Y., X.Sun, Y.Zhang, J.Huang, G.Hanley, K.E.Ferslew, Y.Peng, and D.Yin.2009. Morphine promotes apoptosis via TLR2, and this is negatively regulated by beta-arrestin 2. Biochem.Biophys.Res.Commun.378:857-861.
    17. Hu,X., P.K.Paik, J.Chen, A.Yarilina, L.Kockeritz, T.T.Lu, J.R.Woodgett, and L.B.Ivashkiv.2006. IFN-gamma suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity.24:563-574.
    18. Jope,R.S. and G.V.Johnson.2004. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem.Sci.29:95-102.
    19. Martin,M., K.Rehani, R.S.Jope, and S.M.Michalek.2005. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat.Immunol.6:777-784.
    20. Bafica,A., C.A.Scanga, C.GFeng, C.Leifer, A.Cheever, and A.Sher.2005. TLR9 regulates Thl responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J.Exp.Med.202:1715-1724.
    21. Holscher,C., N.Reiling, U.E.Schaible, A.Holscher, C.Bathmann, D.Korbel, I.Lenz, T.Sonntag, S.Kroger, S.Akira, H.Mossmann, C.J.Kirschning, H.Wagner, M.Freudenberg, and S.Ehlers.2008. Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2,-4 and-9. Eur.J.Immunol.38:680-694.
    22. Yin,D., D.Tuthill, R.A.Mufson, and Y.Shi.2000. Chronic restraint stress promotes lymphocyte apoptosis by modulating CD95 expression. J.Exp.Med.191:1423-1428.
    23. Moorman,J., Y.Zhang, B.Liu, G.LeSage, Y.Chen, C.Stuart, D.Prayther, and D.Yin.2009. HIV-1 gp120 primes lymphocytes for opioid-induced, beta-arrestin 2-dependent apoptosis. Biochim.Biophys.Acta 1793:1366-1371.
    24. Wang,J., R.A.Barke, R.Charboneau, R.Schwendener, and S.Roy.2008. Morphine Induces Defects in Early Response of Alveolar Macrophages to Streptococcus pneumoniae by Modulating TLR9-NF-{kappa}B Signaling. J.Immunol.180:3594-3600.
    25. Akira,S. and K.Takeda.2004. Toll-like receptor signalling. Nat.Rev.Immunol.4:499-511.
    26. Pugazhenthi,S., A.Nesterova, C.Sable, K.A.Heidenreich, L.M.Boxer, L.E.Heasley, and J.E.Reusch. 2000. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J.Biol.Chem.275:10761-10766.
    27. Jozsef,L., T.Khreiss, and J.G.Filep.2004. CpG motifs in bacterial DNA delay apoptosis of neutrophil granulocytes. FASEB J.18:1776-1778.
    28. Reed,J.C.1997. Double identity for proteins of the Bcl-2 family. Nature 387:773-776.
    29. Singh,R.P., S.S.Jhamb, and P.P.Singh.2008. Effects of morphine during Mycobacterium tuberculosis H37Rv infection in mice. Life Sci.82:308-314.
    30. Ogus,A.C., B.Yoldas, T.Ozdemir, A.Uguz, S.Olcen, I.Keser, M.Coskun, A.Cilli, and O.Yegin.2004. The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur.Respir.J.23:219-223.
    31. Bafica,A., C.A.Scanga, C.G.Feng, C.Leifer, A.Cheever, and A.Sher.2005. TLR9 regulates Thl responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J.Exp.Med.202:1715-1724.
    32. Shaw-Lutchman,T.Z., M.Barrot, T.Wallace, L.Gilden, V.Zachariou, S.Impey, R.S.Duman, D.Storm, and E.J.Nestler.2002. Regional and cellular mapping of cAMP response element-mediated transcription during naltrexone-precipitated morphine withdrawal. J.Neurosci.22:3663-3672.
    33. Shaw-Lutchman,T.Z., M.Barrot, T.Wallace, L.Gilden, VZachariou, S.Impey, R.S.Duman, D.Storm, and E.J.Nestler.2002. Regional and cellular mapping of cAMP response element-mediated transcription during naltrexone-precipitated morphine withdrawal. J.Neurosci.22:3663-3672.
    34. Porter,A.G. and R.U.Janicke.1999. Emerging roles of caspase-3 in apoptosis. Cell Death.Differ. 6:99-104.
    35. Chen,L., Y.Zhang, X.Sun, H.Li, G.LeSage, A.Javer, X.Zhang, X.Wei, YJiang, and D.Yin.2009. Synthetic resveratrol aliphatic acid inhibits TLR2-mediated apoptosis and an involvement of Akt/GSK3beta pathway. Bioorg.Med.Chem.17:4378-4382.
    36. Yin,D., L.Zhang, R.Wang, L.Radvanyi, C.Haudenschild, Q.Fang, M.R.Kehry, and Y.Shi.1999. Ligation of CD28 in vivo induces CD40 ligand expression and promotes B cell survival. J.Immunol. 163:4328-4334.
    1. Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, Le Meur M, Dolle P, Tzavara E, Hanoune J, Roques BP, Kieffer BL. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature.383 (1996) 819-823.
    2. Roy S, Barke RA, Loh HH. MU-opioid receptor-knockout mice:role of mu-opioid receptor in morphine mediated immune functions. Brain Res Mol Brain Res.61 (1998) 190-194.
    3. Yin D, Mufson RA, Wang R, Shi Y. Fas-mediated cell death promoted by opioids. Nature.397 (1999)218.
    4. Yin D, Woodruff M, Zhang Y, Whaley S, Miao J, Ferslew K, Zhao J, Stuart C. Morphine promotes Jurkat cell apoptosis through pro-apoptotic FADD/P53 and anti-apoptotic PI3K/Akt/NF-kappaB pathways. J Neuroimmunol.174 (2006) 101-107.
    5. Li Y, Sun X, Zhang Y, Huang J, Hanley G, Ferslew KE, Peng Y, Yin D. Morphine promotes apoptosis via TLR2, and this is negatively regulated by beta-arrestin 2. Biochem Biophys Res Commun.378 (2009) 857-861.
    6. Moorman J, Zhang Y, Liu B, LeSage G, Chen Y, Stuart C, Prayther D, Yin D. HIV-1 gp120 primes lymphocytes for opioid-induced, beta-arrestin 2-dependent apoptosis. Biochim Biophys Acta.1793 (2009) 1366-1371.
    7. Li Y, Li H, Zhang Y, Sun X, Hanley GA, Zhang Y, Sun S, Peng Y, Yin D. Toll-like receptor 2 is required for opioids-induced neuronal apoptosis. Biochem Biophys Res Commun. In press.
    8. Svensson AL, Bucht N, Hallberg M, Nyberg F. Reversal of opiate-induced apoptosis by human recombinant growth hormone in murine foetus primary hippocampal neuronal cell cultures. Proc Natl Acad Sci U S A.105 (2008) 7304-7308.
    9. Mazumder S, Plesca D, Almasan A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol.414 (2008) 13-21.
    10. Horvath RJ, DeLeo JA. Morphine enhances microglial migration through modulation of P2X4 receptor signaling. J Neurosci.29 (2009) 998-1005.
    11. Song P, Zhao ZQ. The involvement of glial cells in the development of morphine tolerance. Neurosci Res.39 (2001) 281-286.
    12. Lee P, Lee J, Kim S, Lee MS, Yagita H, Kim SY, Kim H, Suk K. NO as an autocrine mediator in the apoptosis of activated microglial cells:correlation between activation and apoptosis of microglial cells. Brain Res.892 (2001) 380-385.
    13. Hu S, Sheng WS, Lokensgard JR, Peterson PK. Morphine induces apoptosis of human microglia and neurons. Neuropharmacology.42 (2002) 829-836.
    14. Fruman DA, Cantley LC. Phosphoinositide 3-kinase in immunological systems. Semin Immunol. 14(2002)7-18.
    15. Cantley LC. The phosphoinositide 3-kinase pathway. Science.296 (2002) 1655-1657.
    16. Zhang Y, Foster R, Sun X, Yin Q, Li Y, Hanley G, Stuart C, Gan Y, Li C, Zhang Z, Yin D. Restraint stress induces lymphocyte reduction through p53 and PI3K/NF-kappaB pathways. J Neuroimmunol. 200(2008)71-76.
    17. Shi Y, Feng Y, Kang J, Liu C, Li Z, Li D, Cao W, Qiu J, Guo Z, Bi E, Zang L, Lu C, Zhang JZ, Pei G. Critical regulation of CD4+ T cell survival and autoimmunity by beta-arrestin 1. Nat Immunol.8 (2007)817-824.
    18. Fukao T, Koyasu S. PI3K and negative regulation of TLR signaling. Trends Immunol.24 (2003) 358-363.
    19. Fukao T, Tanabe M, Terauchi Y, Ota T, Matsuda S, Asano T, Kadowaki T, Takeuchi T, Koyasu S. PI3K-mediated negative feedback regulation of IL-12 production in DCs. Nat Immunol.3 (2002) 875-881.
    20. Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 29(2004)95-102.
    21. Martin M, Rehani K, Jope RS, Michalek SM. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol.6 (2005) 777-784.
    22. Beurel E, Jope RS. The paradoxical pro-and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol.79 (2006) 173-189.
    23. Zhao M, Zhou G, Zhang Y, Chen T, Sun X, Stuart C, Hanley G, Li J, Zhang J, Yin D. beta-arrestin2 inhibits opioid-induced breast cancer cell death through Akt and caspase-8 pathways. Neoplasma. 56(2009)108-113.
    24. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature.410 (2001) 37-40.
    25. Ichijo H. From receptors to stress-activated MAP kinases. Oncogene.18 (1999) 6087-6093.
    26. Tegeder I, Geisslinger G. Opioids as modulators of cell death and survival-unraveling mechanisms and revealing new indications. Pharmacol Rev.56 (2004) 351-369.
    27. Ma W, Zheng WH, Powell K, Jhamandas K, Quirion R. Chronic morphine exposure increases the phosphorylation of MAP kinases and the transcription factor CREB in dorsal root ganglion neurons: an in vitro and in vivo study. Eur J Neurosci.14 (2001) 1091-1104.
    28. Macey TA, Lowe JD, Chavkin C. Mu opioid receptor activation of ERK1/2 is GRK3 and arrestin dependent in striatal neurons. J Biol Chem.281 (2006) 34515-34524.
    29. Cui Y, Chen Y, Zhi JL, Guo RX, Feng JQ, Chen PX. Activation of p38 mitogen-activated protein kinase in spinal microglia mediates morphine antinociceptive tolerance. Brain Res.1069 (2006) 235-243.
    30. Porras A, Zuluaga S, Black E, Valladares A, Alvarez AM, Ambrosino C, Benito M, Nebreda AR. P38 alpha mitogen-activated protein kinase sensitizes cells to apoptosis induced by different stimuli. Mol Biol Cell.15 (2004) 922-933.
    31. Chang CW, Tsai WH, Chuang WJ, Lin YS, Wu JJ, Liu CC, Tsai PJ, Lin MT. Procaspase 8 and Bax are up-regulated by distinct pathways in Streptococcal pyrogenic exotoxin B-induced apoptosis. J Biol Chem.284 (2009) 33195-33205.
    32. Shah VB, Huang Y, Keshwara R, Ozment-Skelton T, Williams DL, Keshvara L. Beta-glucan activates microglia without inducing cytokine production in Dectin-1-dependent manner. J Immunol.180 (2008) 2777-2785.
    33. Mandrekar S, Jiang Q, Lee CY, Koenigsknecht-Talboo J, Holtzman DM, Landreth GE. Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J Neurosci.29 (2009) 4252-4262.
    34. Yin D, Tuthill D, Mufson RA, Shi Y. Chronic restraint stress promotes lymphocyte apoptosis by modulating CD95 expression. J Exp Med.191 (2000) 1423-1428.
    35. Chen L, Zhang Y, Sun X, Li H, LeSage G, Javer A, Zhang X, Wei X, Jiang Y, Yin D. Synthetic resveratrol aliphatic acid inhibits TLR2-mediated apoptosis and an involvement of Akt/GSK3beta pathway. Bioorg Med Chem.17 (2009) 4378-4382.
    36. Yin D, Zhang L, Wang R, Radvanyi L, Haudenschild C, Fang Q, Kehry MR, Shi Y. Ligation of CD28 in vivo induces CD40 ligand expression and promotes B cell survival. J Immunol.163 (1999) 4328-4334.
    37. Zhang Y, Zhang Y, Miao J, Hanley G, Stuart C, Sun X, Chen T, Yin D. Chronic restraint stress promotes immune suppression through toll-like receptor 4-mediated phosphoinositide 3-kinase signaling. J Neuroimmunol.204 (2008) 13-19.
    38. Abell AN, Granger DA, Johnson GL. MEKK4 stimulation of p38 and JNK activity is negatively regulated by GSK3beta. J Biol Chem.282 (2007) 30476-30484.
    39. Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ. Role of glycogen synthase kinase-3beta in cardioprotection. Circ Res.104 (2009) 1240-1252.
    40. Kotliarova S, Pastorino S, Kovell LC, Kotliarov Y, Song H, Zhang W, Bailey R, Maric D, Zenklusen JC, Lee J, Fine HA. Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res.68 (2008) 6643-6651.
    41. Singhal PC, Bhaskaran M, Patel J, Patel K, Kasinath BS, Duraisamy S, Franki N, Reddy K, Kapasi AA. Role of p38 mitogen-activated protein kinase phosphorylation and Fas-Fas ligand interaction in morphine-induced macrophage apoptosis. J Immunol.168 (2002) 4025-4033.
    42. Gomez-Lazaro M, Galindo MF, Melero-Fernandez de Mera RM, Fernandez-Gomez FJ, Concannon CG, Segura MF, Comella JX, Prehn JH, Jordan J. Reactive oxygen species and p38 mitogen-activated protein kinase activate Bax to induce mitochondrial cytochrome c release and apoptosis in response to malonate. Mol Pharmacol.71 (2007):736-743.
    43. Boronat MA, Garcia-Fuster MJ, Garcia-Sevilla JA. Chronic morphine induces up-regulation of the pro-apoptotic Fas receptor and down-regulation of the anti-apoptotic Bcl-2 oncoprotein in rat brain. Br J Pharmacol.134 (2001) 1263-1270.
    44. Lin X, Wang YJ, Li Q, Hou YY, Hong MH, Cao YL, Chi ZQ, Liu JG. Chronic high-dose morphine treatment promotes SH-SY5Y cell apoptosis via c-Jun N-terminal kinase-mediated activation of mitochondria-dependent pathway. FEBS J.276 (2009) 2022-2036.
    45. Olson JK, Miller SD. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol.173 (2004) 3916-3924.
    46. Hertz L, McFarlin DE, Waksman BH. Astrocytes:auxiliary cells for immune responses in the central nervous system? Immunol Today.11 (1990) 265-268.
    47. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science.270 (1995) 1326-1331.
    48. Nelyudova A, Aksenov N, Pospelov V, Pospelova T. By blocking apoptosis, Bcl-2 in p38-dependent manner promotes cell cycle arrest and accelerated senescence after DNA damage and serum withdrawal. Cell Cycle.6 (2007) 2171-2177.
    1. Gay NJ, Keith FJ. Drosophila Toll and IL-1 receptor. Nature 1991; 351:355.
    2. Whitham S, Dinesh-Kumar SP, Choi D, et al. the product of the tobacco mosaic resistance gene N: similarity to Toll and the interleukin-1 receptor. Cell1994; 78:1101-1115.
    3. Medzhitov R, Preston-Hurlburt P, JanewayCA et al. A Homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388:394-397.
    4. Rock FL, Hardiman G, Timans JC, et al. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 1998; 95:588-593.
    5. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124: 783-801.
    6. Williams ME, Chang TL, Burke SK, et al. Activation of functionally distinct subsets of CD4+ T lymphocytes. Res I mmunol 1991; 142:23-28.
    7. Takeda K, Kaisho T, Akira S. Toll like receptors. Annu Rev Immunol.2003; 21:335-376.
    8. Bryson KJ, Wei XQ, Alexander J. Interleukin-18 enhances a Th2 biased response and susceptibility to Leishmanis Mexicana in BALB/c mice. Microbes Infect 2008; 10:834-839.
    9. Sutmuller R, et al.Toll like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 2006; 116:485-494.
    10. LaRosa DE, et al.T cell expression of MyD88 is required for resistance to Toxoplasma gondii. Proc Natl Acad Sci USA 2008; 105:3855-3860.
    11. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, et al. The kinase TAK1 can activate the NIK-I k B as well as the MAP kinase cascade in the IL-1 signaling pathway. Nature 1999; 398:252-256.
    12. Kawai T, Akira S et al, TLR signaling. Cell Death Differ 2006; 13:816-820.
    13. Butler MP, Hanly JA, Maynagh PN. Kinase active IRAKs promote polyubiquination and degradation of the pellino family:direct evidence for pellino proteins being E3 ubiquitin ligases. J Biol Chem 2007; 282:29729-29737.
    14. Keating SE, Maloney GM, Morna EM et al. IRAK-2 participates in multiple Toll like receptor signaling pathways to NF-k B via activation of TRAF6 ubiquitination. J Biol Chem 2007; 282: 33435-33443.
    15. Kim YM, Brinkmann MM, Paquet ME et al. UNC93B1 delivers nucleotide sensing toll like receptors to endolysosomes. Nature 2008,452,234-238.
    16. Carty M, Goodbody R, Schroder M et al. The human adaptor SRAM negatively regulates adaptor protein TRIF-dependent Toll like receptor signaling. Nat Immunol 2006; 7:1074-1081.
    17. Marshak R. A Toll like receptors in systemic autoimmune disease. Nature Rev. Immunol.2006 6, 823-835.
    18. Latz E, et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nature Immunol.2004 5,190-198.
    19. Matsuzawa A et al. Essential cytoplasmic translocation of a cytokine receptor assembled signaling complex. Sicence,2008,321:663-668.
    20. Sato S, Sanjo H, Takeda K, et al. Essential function for the kinase TAK1 in innate and adaptive immune response. Nat Immunol 2006; 7:962-970.
    21. Jin MS, et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 2007; 130:906-917.
    22. Kim HM, et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist eritoran. Cell 2007; 130:906-917.
    23. Liu L et al. structure basis of Toll like receptor 3 signaling with double stranded RNA. Science 2008; 320:379-381.
    24. Kagan J, Medzhitov R. Phosphoinositide mediated adaptor recruitment controls Toll like receptor signaling. Cell 2006; 125:943-955.
    25. Kawai T, et al. Interferon alpha induction through toll like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nature Immunol.2004,5:1061-1068.
    26. Kagan J, et al. TRAM couples endocytosis of Toll like receptor 4 to the induction of interferon beta. Nature Immuol 2008; 9:361-368.
    27. Yamamoto M, Okamoto T, Takeda K et al. Key function for the Ubcl3 E2 ubiquitin conjugating enzyme in immune receptor signaling. Nat Immunol 2006; 7:962-970.
    28. Oshiumi H et al, TIR containing adaptor molecule (TICAM)-2, a bridging adaptor recruiting to Toll like receptor 4 TICAM-1 that induces interferon beta. J Biol Chem.2003; 278:49751-49763.
    29. Hoshino K, Takeuchi O, Kawai T, et al. Toll like receptor 4 (TLR4) deficient mice are hyporesponsive to lipopolysaccharide:evidence for TLR4 as the Lps hene product. J Immunol. 1999,162:749.
    30. Byrd-Leifer CA, Block EF, Takeda K, et al. The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. Eur J Immunol.2001; 31:2448.
    31. Jurk M, Heil F, Vollmer J, et al. Human TLR7 or TLR8 independently confers responsiveness to the antiviral compound R-848. Nat Immunol.2002; 3:499.
    32. Lund JM, Alexopoulou L, Sato A et al. Recognition of single-stranded RNA viruses by Toll like receptor 7. Proc Natl Acad Sci USA 2004; 101:5598.
    33. Boule MW, Broughton C, Mackay F, et al. Toll like receptor 9 dependent and independent dendritic cell activation by chromatin immunoglobulin G complexes. J Exp Med.2004,199:1631.
    34. Hacker H, et al. CpG DNA specific activation of antigen presenting cells requires stress kinase activity and is preceded by non specific endocytosis and endosomal maturation. EMBO J,1998; 17: 6230.
    35. Yamamoto M, et al. Role of adaptor TRIF in the MyD88 independent Toll like receptor signaling pathway. Sicence 2003; 301:640.
    36. Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 1999; 11:443.
    37. Doyle SE, et al. Toll like receptors induce a phagocytic gene program through p38. J Exp Med 2004; 199:81.
    38. Pasare C, Medzhitov R. Toll pathway dependent blockade of CD4+CD25+ T cell mediated suppression by dendritic cells. Science 2003; 299:1033-1036.
    39. Leadbetter EA, Rifkin IR, Hohlbaum AM, et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll like receptors. Nature 2002; 416:603-607.
    40. Akira S, Takeda K. Toll like receptor signaling. Nat Rev Immunol 2004; 4:499.
    41. Schnare M, Barton GM, Holt AC, et al. Toll like receptors control activation of adaptive immune responses. Nat Immunol 2001; 2:947-950.
    42. Takeuchi O, Takeda K, Hoshino K, et al. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascade. Int Immunol.2000,12:113.
    43. Hoshino K, Kaisho T, Iwabe T, et al. Differential involvement of IFN-beta in Toll like receptor stimulated dendritic cell activation. Int Immunol 2002; 14:1225-1231.
    44. Hemmi H, Kaisho T, Takeda K, et al. The roles of Toll like receptor 9, MyD88, and two distinct CpG DNAs on dendritic cell subsets. J Immunol 2003; 170:3059-3064.
    45. Meylan E, Tschopp J. Toll like receptors and RNA helicase:two parallel ways to trigger antiviral response. Mol Cell Immunol 2006; 22:561-569.
    46. Hacker H, Redecke V, Blagoev B, et al. Specificity in Toll like receptor signaling through distinct effector functions of TRAF3 and TRAF6. Nature 2006; 439:204-207.
    47. Wang Y, Tang Y, Teng L, et al. Association of beta arrestin and TRAF6 negatively regulates Toll like receptor-interleukin 1 receptor signaling. Nat Immunol 2006; 7:139-147.
    48. Negishi H, Ohba Y, Yanai H, et al. Negative regulation of Toll like receptor signaling by IRF-4. Proc Natl Acad Sci USA 2005; 102:15989-15994.
    49. Miyake K, Shimazu R, Kondo J, et al. Mouse MD-1, a molecule that is physically associated with RP105 and positively regulates its expression. J Immunol 1998; 161:1348-1353.
    50. Rowe DC, McGettrick AF, Latz E, et al. The myristorylation of TRIF related adaptor molecule is essential for Toll like receptor 4 signal transduction. Proc Natl Acad Sci USA 2006; 103: 6299-62304.
    51. Thoma-Uszynski S, Stenger S, Takeeuchi O, et al. Induction f direct antimicrobial activity through mammalian toll like receptors. Science 2001; 291:1544-1547.
    1. Takeda K, Kaisho T, Akira S, Toll like receptors. Annu Rev Immunol,2003; 21:335-376.
    2. Whitham S, Dinesh-Kumar SP, Choi D, et al. the product of the tobacco mosaic resistance gene N: similarity to Toll and the interleukin-1 receptor. Cell 1994; 78:1101-1115.
    3. Rock FL, Hardiman G, Timans JC, et al. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 1998; 95:588-593.
    4. Akira S, Uematsu S, Takeuchi 0. Pathogen recognition and innate immunity. Cell 2006; 124: 783-801.
    5. Sutmuller R, et al.Toll like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 2006; 116:485-494.
    6. LaRosa DE, et al.T cell expression of MyD88 is required for resistance to Toxoplasma gondii. Proc Natl Acad Sci USA 2008; 105:3855-3860.
    7. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, et al. The kinase TAK1 can activate the NIK-I k B as well as the MAP kinase cascade in the IL-1 signaling pathway. Nature 1999; 398:252-256.
    8. Kawai T, Akira S et al, TLR signaling. Cell Death Differ 2006; 13:816-820.
    9. Butler MP, Hanly JA, Maynagh PN. Kinase active IRAKs promote polyubiquination and degradation of the pellino family:direct evidence for pellino proteins being E3 ubiquitin ligases. J Biol Chem 2007; 282:29729-29737.
    10. Matsuzawa A et al. Essential cytoplasmic translocation of a cytokine receptor assembled signaling complex. Sicence,2008,321:663-668.
    11. Jin MS, et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 2007; 130:906-917.
    12. Kim HM, et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist eritoran. Cell 2007; 130:906-917.
    13. Liu L et al. structure basis of Toll like receptor 3 signaling with double stranded RNA. Science 2008; 320:379-381.
    14. Kawai T, et al. Interferon alpha induction through toll like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nature Immunol.2004,5:1061-1068.
    15. Kagan J, et al. TRAM couples endocytosis of Toll like receptor 4 to the induction of interferon beta. Nature Immuol 2008; 9:361-368.
    16. Yamamoto M, Okamoto T, Takeda K et al. Key function for the Ubc13 E2 ubiquitin conjugating enzyme in immune receptor signaling. Nat Immunol 2006; 7:962-970.
    17. Oshiumi H et al, TIR containing adaptor molecule (TICAM)-2, a bridging adaptor recruiting to Toll like receptor 4 TIC AM-1 that induces interferon beta. J Biol Chem.2003; 278:49751-49763.
    18. Byrd-Leifer CA, Block EF, Takeda K, et al. The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. Eur J Immunol.2001; 31:2448.
    19. Lund JM, Alexopoulou L, Sato A et al. Recognition of single-stranded RNA viruses by Toll like receptor 7. Proc Natl Acad Sci USA 2004; 101:5598.
    20. Boule MW, Broughton C, Mackay F, et al. Toll like receptor 9 dependent and independent dendritic cell activation by chromatin immunoglobulin G complexes. J Exp Med.2004,199:1631.
    21. Hacker H, et al. CpG DNA specific activation of antigen presenting cells requires stress kinase activity and is preceded by non specific endocytosis and endosomal maturation. EMBO J,1998; 17: 6230.
    22. Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 1999; 11:443.
    23. Doyle SE, et al. Toll like receptors induce a phagocytic gene program through p38. J Exp Med 2004; 199:81.
    24. Akira S, Takeda K. Toll like receptor signaling. Nat Rev Immunol 2004; 4:499.
    25. Hoshino K, Kaisho T, Iwabe T, et al. Differential involvement of IFN-beta in Toll like receptor stimulated dendritic cell activation. Int Immunol 2002; 14:1225-1231.
    26. Hemmi H, Kaisho T, Takeda K, et al. The roles of Toll like receptor 9, MyD88, and two distinct CpG DNAs on dendritic cell subsets. J Immunol 2003; 170:3059-3064.
    27. Meylan E, Tschopp J. Toll like receptors and RNA helicase:two parallel ways to trigger antiviral response. Mol Cell Immunol 2006; 22:561-569.
    28. Kariko K, Ni H, Capodici J, et al. mRNA is an endogenous ligand for Toll like receptor 3. J Biol. Chem 2004; 279:12542-12550.
    29. Lehnardt S, Schott E, Trimbuch T, et al. A vicious cycle involving release of heat shock 60 from injured cells and activation of Toll like receptor 4 mediateds neurodegeneration in the CNS. J Neurosci 2008; 28:2320-2331.
    30. Barrat FJ, Meeker T, Gregorio J, et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll like receptors and may promote systemic lupus erythematosus. J Exp. Med 2005; 202:1131-1139.
    31. Janko C, Schorn C, Grossmayer GE, et al. Inflammatory clearance of apoptotic remnants in systemic lupus erythematosus. Autoimmun Rev 2008,8:9-12.
    32. Park D, Tosello-Trampont AC, Elliot MR, et al. BAIlis an engulfment receptor for apoptosis cells upstream of the ELMO/Dock180/Rac module. Nature 2007,450:430-434.
    33. Park SY, Jung MY, Kim HJ, et al. Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death Differ 2008,15:192-201.
    34. Laube K, Blumenthal SG, Waibel M, et al. Clearance of apoptotic cells:getting rid of the corpse. Mol Cell 2004,14:277-287.
    35. Kariko K, Ni H, Capodici J, et al. m RNA is an endogenous ligand for Toll like receptor 3. J Bio Chem 2004; 279:12542-12550.
    36. Jozsef L, Khreiss T, Filep JG, et al. CpG motifs in bacterial DNA delay apoptosis of neutrophil granulocytes. FASEB J 2004; 18:1776-1778.
    37. El, MR, El GM, Seed MC, et al. Endogenous signals released from necrotic cells augment inflammatory response to bacterial endotoxin.2007 Immunol. Lett.111:36-44.
    38. Kazama H, Ricci JE, Heron JM, et al. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29:21-32; 2008.
    39. Lehnardt S, Lehmann S, Kaul D, et al. Toll like receptor 2 mediates CNS injury in focal cerebral ischemia. J Neuroimmunol 2007,190:28-33.
    40. Cao CX, Yang QW, Lv FL, et al. Reduced cerebral ischemia reperfusion injury in Toll like receptor 4 deficient mice. Biochem Biophys Res Commun 2007; 353:509-514.
    41. Chem LW, Chang WJ, Chen PH, et al. TLR ligand decreases mesenteric ischemia and reperfusion injury-induced gut damage through TNF alpha signaling. Shock 2008; 30:563-570.
    42. De GR, Kloppenburg G, Kitslaar PJ, et al. Human heat shock protein 60 stimulates vascular smooth muscle cell proliferation through Toll like receptor 2 and 4. Microbes Infect 2006,8:1859-1865.
    43. Tian, J, Avalos AM, Mao SY, et al. Toll like receptor 9-dependent activation by DNA containing immune complex is mediated by HMGB1 and RAGE. Nat Immunol.2007,8:487-496.
    44. Takeshita F, Ishii KJ, Kobiyama Y, et al. TRAF4 acts as a silencer in TLR mediated signaling through the association with TRAF6 and TRIF. Eur J Immunol.2005; 35:2477-2485.
    45. Wang H. Endogenous TLR ligands and autoimmunity. Adv Immunol 2006; 91:179-73.
    46. Jego G, Bataille R, Geffroy-Luseau A, et al. Pathogen associated molecular patterns are growth and survival factors for human myeloma cells through Toll like receptors. Leukemia 2006.
    47. Hollingsworth JW, Cook DN, Brass DM, et al. The role of Toll like receptor 4 in environmental airway injury in mice. Am J Respir Crit Care Med 2004; 170:126-132.
    48. Kleeberger SR, Reddy SP, Zhang LY, et al. Toll like receptor 4 mediates ozone induced murine lung hyperpermeability via inducible nitric oxide synthase. Am J Physiol Lung Cell Mol Physio 2001; 280:326-333.
    49. Maung AA, Fujimi S, Miller ML, et al. Enhanced TLR4 reactivity following injury is mediated by increased p38 activation. J Leukoc Bio 2005; 78:565-573.
    50. Chao K, Pham TN, Crivello SD, et al. Involvement of CD14 and Toll like receptor 4 in the acute phase response of serum amyloid A proteins and serum amyloid P component in the liver after burn injury. Shock 2004; 21:144-150.
    51. Barrat FJ, Meeker T, Gregorio J, et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll like receptors and may promote systemic lupus erythematosus. J Exp Med 2005; 202:1131-1139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700