用户名: 密码: 验证码:
力信号调控的大鼠成骨细胞力生长因子表达及其对成骨细胞生理行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用了生物力学、细胞生物学、生物化学及分子生物学等方法,研究机械拉伸对成骨细胞力生长因子表达的影响和力生长因子对成骨细胞增殖和分化以及相关基因的影响。
     主要内容和结果如下:
     改进了周期性基底膜拉伸应变装置。改进后该装置接种细胞量大,避免了以往实验中多次收集细胞的麻烦。该装置组装简便,应变大小可由注入储液囊的流体体积决定,频率由控制系统的开关频率调节,操作方便。
     运用组织块法培养了满足实验需求的大鼠颅骨成骨细胞,并利用差时贴壁法对其进行了纯化。通过形态观察、Von Kossa染色和碱性磷酸酶(ALP)染色等方法进行了鉴定。结果表明所培养细胞具有成骨细胞的典型生物学行为,可以用于后续实验。第二代至第六代的细胞用于后续实验。
     对细胞施加应变量为15%周期性拉伸刺激,作用6h、12h、24h、36h后,分别收集细胞,提取蛋白质,利用western blot法检测是否有力生长因子(MGF)表达。结果显示,在6h、24h时有少量MGF表达,12h时较多,对照组和36h未观察到。
     以成骨细胞株MC3T3为对象,研究了力生长因子对细胞增殖和分化的影响。将力生长因子配成一定浓度的溶液,分别加入到接种细胞的96孔板中,用MTT法检测其对细胞增殖的影响。利用碱性磷酸酶检测试剂盒检测ALP活性,分析其对细胞分化的影响。结果显示,10ng/ml MGF明显促进成骨细胞的增殖,抑制ALP分泌。
     利用RT-PCR方法分析了加入MGF后细胞中BMP-2、Cbfα-1、Col I、OCN mRNA表达的变化。结果显示,10 ng/ml MGF促进BMP-2、Cbfα-1、Col I mRNA的表达,抑制OCN mRNA的表达。
The effects of mechanical stretching on the expression of mechano growth factor and the effects of mechano growth factor on proliferation and differentiation of osteoblasts were studied through biomechanical, cell biological and molecular biology methods. The main work and conclusions were as follows:
     Cyclic mechanical strain unit was improved. The improved unit can seed more cells, avoiding the trouble of gathering cells repeatedly during experiment. The assembly and disassembly of the flow chamber is very easy. The peak value and frequency could be changed according to experimental requirements. Expansion of the membrane was controlled by frequency of the electromagnetic valve and speed of the constant-flow pump.
     The primary Wistar rats osteoblasts were cultured from the calvaria of new-born rats by the tissue piece culture method. The osteoblasts were purified by the difference of the adhibition time with other type of cells. It was identified by the morphology, alkaline phosphatase (ALP) staining and Von Kossa staining, and the results showed that the culture osteoblasts had typical characteristics of osteoblasts. Cells from the second to sixth passages were used for the mechanical experiments.
     Cells were stretched using the cyclic-strain unit and static-strain unit at 15% and gathered 12h、24h、36h and 48h later, then the protein was isolated and analyzed by western blot to make sure whether the mechano growth factor(MGF) was expressed. The results showed that MGF was expressed at 12h and 24h.
     In order to study the effect of mechano growth factor on the proliferation and differentiation of osteoblasts, the MGF was confected solution and used to cell plate seeded cells. The proliferation was measured by MTT essay and the alkaline phosphatase (ALP) activity measured by ALP kit. The results showed that 10 ng/ml MGF increased cell proliferation and inhibited differentiation.
     The changes of BMP-2、cbfα-1、Col I、OCN mRNA were detected by RT-PCR. The results demonstrated that10 ng/ml MGF increased the expression of BMP-2、cbfα-1、Col I mRNA and inhibited OCN mRNA.
引文
[1] Yang S, Alnaqeeb M, Simpson H, et al. Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch [J]. Muscle Res Cell Motil, 1996, 17(4): 487-495.
    [2] Ehrlich PJ, Lanyon LE. Mechanical strain and bone cell function: a review [J]. Osteoporosis Int, 2002, 13(9): 688-700.
    [3] Goldspink G. Gene expression in muscle in response to exercise [J]. Muscle Res Cell Motil, 2003, 24(2-3): 121-126.
    [4] Goldspink G. Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload [J]. Amat, 1999, 194: 323-334.
    [5] Hameed M, Orrell RW, Cobbold M, et al. Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise [J]. Physiol, 2003, 547: 247-254.
    [6] Kim SW, Lajara R, Rotwein P. Structure and function of a human insulin-like growth factor-I gene promoter [J]. Mol Endocrinol, 1991, 5(12): 1964-1972.
    [7] Tobin G, Yee D, Brünner N, et al. A novel human insulin-like growth factor I messenger RNA is expressed in normal and tumor cells [J]. Mol Endocrinol, 1990, 4(12): 1914~1920.
    [8] Jansen E, Steenbergh PH, LeRoith D, et al. Identification of multiple transcription start sites in the human insulin-like growth factor-I gene [J]. Mol Cell Endocrinol, 1991, 78 (1-2): 115-125.
    [9] Hill M, Goldspink G. Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage [J]. Physiol, 2003, 549(2): 409-418.
    [10] Umber C, Robert B, Vivek M, et al. Mechanical Signals and IGF-I Gene Splicing In Vitro in Relation to Development of Skeletal Muscle [J]. Journal of Cellular Physiology, 2005, 202: 67-75.
    [11] McKoy G, Ashley W, Mander J, et al. Expression of insulin growth factor-1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation [J]. J Physiol, 1999, 516(Pt 2): 583-592.
    [12] Hameed M, Lange KH, Andersen JL, et al. The effect of recombinant human growth hormone and resistance training on IGF-I mRNA expression in the muscles of elderly men [J]. J Physiol, 2004, 555(Pt 1): 231-40.
    [13] Keiji Iida, Emina Itoh, Dong-Sun Kim, et al. Muscle mechano growth factor is preferentially induced by growth hormone in growth hormone-deficient lit/lit mice [J]. J Physiol 2004, 560(2): 341-349.
    [14] Adams GR, Caiozzo VJ, Haddad F, et al. Cellular and molecular responses to increased skeletal muscle loading after irradiation [J].Am J Physiol-Cell Ph, 2002, 283(4): C1182~C1195.
    [15] Goldspink G, Harridge SDR. Growth factors and muscle ageing [J]. Exp Gerontol, 2004, 39(10): 1433-1438.
    [16] Kenan At, Yang SY, Richard W, et al. The IGF-I splice variant MGF increases progenitor cells in ALS, dystrophic, and normal muscle [J]. FEBS Letters, 2007, 581: 2727-2732.
    [17] Yang SY, Geoffrey G. Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation [J]. FEBS Lett, 2002, 522(1-3): 156-160.
    [18] Goldspink G. Skeletal muscle as an artificial endocrine tissue [J]. Best Pract Res Cl En, 2003, 17(2): 211-222.
    [19] Hill M, Wernig A, Goldspink G. Muscle satellite (stem) cell activation during local tissue injury and repair [J]. J Anat, 2003, 203(1): 89-99.
    [20] Mills, P, Lafreniere, JF, Benabdallah, BF, et al. A new pro-migratory activity on human myogenic precursor cells for a synthetic peptide within the E domain of the mechano growth factor [J]. Exp Cell Res, 2007, 313: 527-537.
    [21] Owino V, Yang SY, Goldspink G. Age-related loss of skeletal muscle function and the inability to express the autocrine form of insulin-like growth factor-1(MGF) in response to mechanical overload [J]. FEBS Lett, 2001, 505(2): 259-263.
    [22] Goldspink G. Age-related loss of skeletal muscle function: impairment of gene expression [J]. Musculoskeletal Neuronal Interact, 2004, 4(2): 143-147.
    [23] Aperghis M, Johnson IP, Cannon J, et al. Different levels of neuroprotection by two insulin- like growth factor-I splice variants [J]. Brain Resh, 2004, 1009(1-2): 213-218.
    [24] Skarli M, Yang S Y, Bouloux P, et al. Upregulation and alternative splicing of the IGF-1 gene in the rabbit heart following a brief pressure / volume overload [J]. J Physiol, 1998, 509:192P.
    [25] Goldspink G, Goldspink P. Use of the insulin-like-growth factor 1 splice variant MGF for the prevention of myocardial damage [P]. USA, 0048028A1, 2005.3.3: 1-14.
    [26] Geoffrey G. Impairment of IGF-I gene splicing and MGF expression associated with muscle wasting [J]. The International Journal of Biochemistry & Cell Biology, 2005, 37: 2012-2022.
    [27] Geoffrey G. Impairment of IGF-I gene splicing and MGF expression associated with muscle wasting [J]. The International Journal of Biochemistry & Cell Biology, 2006, (38): 481-489.
    [28] Nomura S, Takano-Yamamoto T. Molecular events caused by mechanical stress in bone [J]. Matrix Biol, 2000, 19(2): 91-96.
    [29] Goldspink G. Method of treating muscular disorders [P]. USA, 6221842B1, 2001.4.24: 1-10.
    [30] Goldspink G, Goldspink P. Use of the insulin-like growth factor-I splice variant MGF for the prevention of myocardial damage [P]. USA, 0048028A1, 2005.3.3: 1-14.
    [31] Goldspink G, Terenghi G. Repair of nerve damage [P]. USA, 0083477A1, 2002.6.27: 1-10.
    [32] Cosimo De Bari, Frank Luten, Francesco Dell’Accio. Compositions comprising muscle progenitor cells and uses thereof [P]. USA, 0281788A1, 2005.12.22: 1-17.
    [33] Geoffrey Goldspink. Mechano growth factor peptides and their use [P]. WO, 097682A1, 2006.9.21: 1-66.
    [34] Geoffrey Goldspink, Shi Yu Yang, Goldspink Chicago. Peptides [P]. USA, 0211606A1, 2006.9.21: 1-18.
    [35] Ian Johnson, Geoffrey Goldspink. Use of insulin-like-growth factor I isoform MGF for the treatment of neurological disorders [P]. USA, 0058239A1, 2005.3.16: 1-10.
    [36] Tang L L, Wang Y L, Sun C X. The stress reaction and its molecular events: splicing variants [J]. Biochem Bioph Res Co, 2004, 320 (2): 287-291.
    [37] Tang L L, Xian CY, Wang Y L. The MGF expression of osteoblasts in response to mechanical overload [J]. Arch Oral Biol, 2006, 51(12): 1080-1085.
    [38] Xian C Y, Wang Y L, Zhang B B. Alternative splicing and expression of the insulin-like growth factor (IGF-1) gene in osteoblasts under mechanical stretch [J]. Chinese Science Bulletin 2006, 51(22): 2731-2736.
    [39]鲜成玉.机械拉伸对大鼠成骨细胞生理活性及IGF-?、力生长因子表达的影响[D].重庆:重庆大学生物工程学院, 2005. 32-50.
    [40]陈晔.力生长因子基因的克隆、表达及产物的纯化[D].重庆:重庆大学生物工程学院, 2005. 9~51.
    [41] Frost H M, Jee W S S. Perspective: Applications of a biomechanical model of the endochondral ossification mechanism [J]. Anat Rec, 1994, 240: 447-445.
    [42] Lean J M., Jagger C J, Chambers T J, et al. Increased insulin-like growth factor I mRNA expression in rat osteocytes in response to mechanical stress [J]. Am J Physiol, 1995, 268(2 pt 1): E318-327.
    [43] Tokimasa C, Kawata T, Fujita T, et al. Effects of insulin-like growth factor-I on the expression of osteoclasts and osteoblasts in the nasopremaxillary suture under different masticatory loading conditions in growing mice [J]. Arch Oral Biol, 2003, 48(1): 31-38.
    [44]姜红梅,陈丽梅.组织工程的进展[J ].国外医学生物医学工程分册, 1996, 19 (1) : 1-9.
    [45]樊学军.细胞生物力学[J ].力学进展, 1995, 25: 197-207.
    [46]张西正,匡震邦,蔡绍皙,徐世荣.细胞力学实验技术研究[J].实验力学. 2001, 16(1):66-76.
    [47]司徒镇强,吴军正.细胞培养[M].西安:世界图书出版西安公司. 1996, 72-90.
    [48]马正立,施玉华.填精助阳药对“肾阳虚”动物模型肾脏AKP、SDH活性的作用[EB/01]. http://jpkc.shutcm.edu.cn/syzyx/syzd/syzy/05.htm, 2000-11-01.
    [49]王洪复.骨细胞图谱与骨细胞体外培养技术[M].上海:上海科学技术出版社, 2001.60-64.
    [50]裴国献,魏宽海,金丹.组织工程学实验技术.人民军医出版社, 2006, 55-67.
    [51] Buckwalter JA, Glimcher MJ, Cooper r.R, et al. Bone biology (Part I): structure, blood supply, cells, matrix, and mineralization [J]. Bone and Joint Surgery, 1995, 77-A (8): 1256-1273.
    [52] Fell HB. The Osteogenic Capacity in Vitro of Periosteum and Endoosteum Isolated from the Limb Skeleton of FowlE mbryos and Young Chicks [J]. J Anat, 1932, 66: 11-18.
    [53] Peck WA, Birge SJ Jr, Fedak SA. Bone cells: biochemical and biological studies after enzymeatic isolateion [J]. Science, 1964, 146: 1476-1477.
    [54] Wong GL, Cohn DV. Target cells in bone for parathormone and calcitonin are different: enrichment for each cell type by sequential digestion ofmouse calvaria and selective adhesion to polymeric surfaces [J]. Proc NatlAcad Sci USA, 1975, 72 (8): 3167-3171.
    [55] Mills BG, Singer FR, et al. Long-term Culture of Cells from Bone Afected by Paget's disease [J]. Calcif Tiss int, 1979, 29: 79-87.
    [56] Wong GL. Bone Cell Culture as an Expermental Model [J]. Arthritis Rheum, 1980, 23(10): 1081-1086.
    [57] Robey PG, Termine JD. Human bone cells in vitro [J]. Calcif Tissue Int, 1985, 37(5): 453-460.
    [58]宋新德,李兰英,等.原代人胎成骨细胞无血清培养模型的建立[J].天津医学院学报,1977, 11(3): 14-16.
    [59]万敬员,张力,叶笃筠.选择性剪接调控机制的研究进展[J].国外医学分子生物学分册, 2003, 25(6): 342-345.
    [60] Goldspink G. Gene expression in skeletal muscle [J]. Biochem Soc Trans, 2002, 30(2): 285—290.
    [61] Kawata A, Mikuni-Takagaki Y. Mechanotransduction in stretched osteocytes-temporal expression of immediate early and other genes [J]. Biochem Biophys Res Commun, 1998, 246(2): 404-408.
    [62]王兵,刘贻运,郑介柏,等.骨延长术中的骨钙素和胰岛素样因子-Ⅰ含量变化[J].中国矫形外科杂志, 2002, 9(3): 267-269.
    [63] Vos P E, Koppeschaar H P, Vries W R, et al. Insulin-like growth factor-I: clinical studies [J]. Drugs Today (Barc), 1998, 34(1): 79-90.
    [64] Goldspink G. Age-related muscle loss and progressive dysfunction in mechanosensitive growth factor signaling [J]. Ann N Y Acad Sci, 2004, 1019: 294-298.
    [65]王远亮,蔡绍皙.生物力学与骨组织工程[J].力学进展, 1999, 29(2): 232-243.
    [66]程宝鸾.动物细胞培养技术[M].广东:华南理工大学, 2003, 131-132.
    [67] Hill PA, Tumber A, Meikle MC. Multiple extracellular signals promote osteoblast survival and apoptosis [J]. Endocrinology, 1997, 138(9): 3849-3858.
    [68] Langdahl BL, Kassem M, Moller MK, et al. The effects of IGF-Ⅰand IGF-Ⅱon proliferation and differentiation of human osteoblasts and interactions with growth hormone [J]. Eur J Clin Invest, 1998, 28(3): 176-183.
    [69] Rydziel S, Delany AM, Canalis E, et al. Insulin-like growth factor I inhibits the transcription of collagenase 3 in osteoblast cultures [J]. J Cell Biochem, 1997, 67(2): 176-183.
    [70] Kudo Y, Iwashita M, Iguchi T, et al. The regulation of L-proline transport by insulin-like growth factor I in human osteoblast-like SaOS-2 cells [J]. Pflugers Aasch, 1996, 432(2): 419-426.
    [71] Leung K, Rajkovic IA, Peters E, et al. Insulin-like growth factor I and insulin downregulate growth hormone (GH) receptors in rat osteoblasts: evidence for a peripheral feedback loop regulating GH action [J]. Endocrinology, 1996, 137 (7): 2694-2702.
    [72] Mathonnet M, Comet I, Lalloue F, et al. Insulin-like growth factor-1 induces survival axotom ixeedol factory neurons in chick [J]. Neurosci Lett, 2001, 308(2): 667.
    [73] Buckwalter J A, Glimcher M J, Cooperr R, et al. Bone biology (Part II): formation, form, modeling, remolding and regulation of cell function [J]. Bone and Joint Surgery, 1995, 77-A (8): 1276-1289.
    [74] Carmeliet G, Bouillon R. The effect of microgravity on morphology and gene expression of osteoblats in vitro [J]. FASEB J, 1999, 13(supl): s129-s134.
    [75] Beertsen W, Vanden BosT. Alkaline phosphatase induces the mineralization of sheets of collagen implanted subcutaneously in the rat [J]. Clin Invest, 1992, 89(6): 1974-1980.
    [76] Genge BR, Sauer GR, Wu L N, et al. Correlation between loss of alka1ine phosphatase activity and accumulation of calcium during matrix vesicle mediated mineralization [J]. Biol Chem, 1988, 263(34): 18513-18519.
    [77] Goodyear LJ, Giorgino F, Sherman LA, el al. Insulin receptor phosphorylatlon, insulin receptor substtate-1 phosphorylation, and pgesphatidylinasitol 3-kinase activity are decreased in intactskeletal muscle strips from obese subjects [J]. J Clin Invest, 1995, 95: 2195-2204.
    [78] Bjornholm M, Kawano Y, Lehtihet M, et al. Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation [J]. Diabetes, 1997, 46: 524-527.
    [79] Cusi K, Maeaono K, Osman A, Pendergrass M, et al. Insulin resistance diferentially affects the PD-kinase- and MAP kinase-mediated signaling in human muscle [J]. J Clin Invest, 2000, 105: 311-320.
    [80] Onishi T, Ishidou Y, Nagamine T, et al. Distinct and overlapping patterns of localization of bone morphogenetic protein family members and a BMP typeⅡreceptor during fracture healing in rats [J]. Bone, 1998, 2: 605-612.
    [81] Geesink RG, Hoefnagels NH, Bulstra SK. Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect [J]. J Bone Joint Surg (Br), 1999, 81(4): 710-718.
    [82] Cummings SR, Bauer D. Do statins prevent both cardiovascular disease and fracture [J]. JAMA, 2000, 28, 283(24): 3255-3257.
    [83] McCabe LR, Last TJ, Lian JB, et al. Expression of cell growth and bone phenotypic genes during the cell cycle of normal diploid osteoblasts and osteosarcoma cells [J]. Cell Biochem, 1994, 56: 274.
    [84] Owen TA, A ronow M, Shalhoub V, et al. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix [J]. J Cell Physiol, 1990, 143: 420.
    [85] Zheng MH, Wood DJ, Papadimitrion JM. What’s new in the role of cytokines on osteoblast proliferation and differentiation [J]. Pathol Res Pract, 1992, 188: 1104.
    [86] Jane BJ, Gary SS. Osteoblast biology. In: Robert M, David F, Jennifer K,eds. Osteoporosis. San Diego: Academic Press, 1996: 23-59.
    [87] McCabe LR, Kundu BR, Harrison RJ, et al. Developmental expression and activities of specific fos and jun proteins are functionally related to osteoblast maturation: role of Fra-2 and jun D during differentiation [J]. Endocrinology, 1996, 137: 4398.
    [88] LynchM P, Stein GS, Stein L, et al. Apoptosis during in vitro bone formation [J]. J Bone M iner Res, 1994, 9: S352.
    [89] Geesink RG, Hoefnagels NH, Bulstra SK. Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect [J]. J Bone Joint Surg (Br), 1999, 81(4): 710-718.
    [90] Gerard K. Role of cbfa1 in osteoblast differentiation and function [J]. Cell Develop Biol, 2000, 11: 343-346.
    [91] Ducy P. Cbfa1: a molecular switch in osteoblast biology [J]. Dev Dyn, 2000, 219(4): 461-471.
    [92] Sapiro IM. Discovery: osf2/cbfa1, a master gene of bone formation [J]. Clin Orthod Res, 1999, 2(1): 42-46.
    [93] Reddi AH. Bone morphogenetic proteins, bone marrow stromal cells and mesinchymal stem cells [J].Clin Ortiop, 1995, 313: 115-119.
    [94] Ducy P, Starbuck M, Priemel M, et al. A cbfa1-dependent genetic pathway control bone formation beyond embryonic development [J]. Genes Dev, 1999, 13: 1025-1036.
    [95] Komori T, Yagi H, Nomura A, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblast [J]. Cell, 1997, 89: 755-764.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700