用户名: 密码: 验证码:
微塑性成形机理及精密微塑性体积成形装置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机电系统和微系统技术的迅速发展,对微型零件的制造技术提出了更高要求,这给精密微塑性成形技术的发展带来契机。该成形技术是以塑性变形方式制造微型零件的工艺方法,非常适合于微型零件的低成本批量制造,但由于成形件尺寸或特征尺寸为亚毫米级或微米量级,出现了明显的尺寸效应,与传统的塑性加工工艺不同,其成形机理和材料变形流动规律发生了改变,微塑性成形技术是一个崭新的研究领域。
     本文建立了基于晶体塑性学理论的多晶体模型,揭示了材料微塑性成形机理,使用压电陶瓷微驱动器研制了精密微塑性体积成形专用设备,开展了微塑性成形尺寸效应的实验研究,并以微型齿轮作为典型零件系统地研究了微型零件的微塑性成形工艺,解决了制约微塑性成形工艺的关键技术。
     从材料的多晶体结构角度,基于晶体塑性变形理论建立了多晶体模型。根据位错塞积程度和晶粒变形受约束程度的差异将变形体分作两部分:位于自由表面的单晶体区和变形体内部的多晶体区。位于变形体自由表面的晶粒变形采用晶体塑性学理论来分析,而内部材料采用宏观塑性变形理论分析。使用建立的多晶体模型对微型圆柱试样的镦粗变形过程进行了数值分析,研究了试样尺寸、晶粒初始取向分布等对试样流动应力和表面形貌的影响规律。结果表明,试样的流动应力随试样尺寸的减小而减小,出现了明显的尺寸效应现象;试样的变形不均匀性是由试样晶粒的各向异性引起的,导致了变形试样表面凹凸不平。
     采用压电陶瓷作为微驱动器,研制了串联式结构的精密微塑性体积成形装置。设计了位置调节机构用于压电陶瓷位置调节,同时还可以满足某些成形工艺中对较大位移量的需要。使用基于PID控制的压电陶瓷电源,针对微塑性成形设计了成形工艺控制器。对研制的精密微塑性体积成形装置进行了测试和分析,结果表明该装置能够满足微塑性体积成形研究的需要。
     使用微镦粗实验方法进行实验研究,分析试样尺寸、晶粒尺寸、变形程度和变形温度等参数对材料流动应力的影响规律,并从材料的多晶体结构角度对流动应力尺寸效应产生的机理进行了分析。采用金相方法,分析晶粒尺寸和变形程度对塑性变形不均匀性的影响规律,并从晶粒的各向异性角度研究其产生的机理。
     模具型腔的尺度也会对微成形工艺带来尺寸效应。本文采用模压成形工艺,研究了模具型腔尺寸(b)、晶粒尺寸(L)以及它们的比值L/b对充填性能的影响规律。结果表明,比值L/b是影响材料微充填性能的主要因素。
     在以上研究的基础上,开展了微型齿轮的微塑性成形工艺研究。使用研制的浮动式模具装置,研究了微型齿轮的微塑性成形过程,分析了冲头速度、载荷和温度等工艺参数对微塑性成形工艺的影响规律,并从坯料的受力状态以及材料的多晶体结构角度对坯料的充填规律进行了分析。研究了微型齿轮纵截面和横截面的流线分布规律,并对齿轮的表面粗糙度和横截面上的纳米硬度进行测量。结果表明,成形的微型齿轮有良好的表面质量和综合性能。
With the rapid development of micro-electro-mechanical systems and micro-system technology, a high requirement is taken out for the micropart manufacture technology, which gives a chance of development for the microforming technology. The technology is a process to manufacture micropart by plastic deformation, and it is very suitable for the low-cost and mass production of micropart. Since part dimension or typical dimension reaches the same order of magnitude as sub-millimeter or micron, and the size effect occurs obviously, microforming process is different from the traditional plastic deformation. And the forming mechanism and deformation law change, then micrforming process becomes a new research area.
     This dissertation founds a polycrystal model based on crystal plasticity, and the microforming mechanism is disclosed. Using the developed special precision microforming apparatus that is drove by a PZT, the experimental investigation of size effect in microforming process is carried out, and the forming process of micropart is studied by using the typical microgear as the forming object. The key technology that constrains microforming process is settled.
     From the viewpoint of multi-grain structure of material, a polycrystal model is founded based on the crystal plasticity theory. A deformable body is divided into two parts based on the difference of the dislocation pile-up degree and deformation restriction of grain, and they are single crystal area on the free surface and polycrystal area in the internal portion of deformable body. The areas are analyzed by the crystal plasticity and traditional plastic deformaton theory respectively. The upsetting deformation of micro cylindrical specimen is simulated by the founded model, and the effect of specimen size and grain original direction on the flow stress and surface topography is investigated. The result shows that the flow stress decreases with the decreasing of the specimen size, the size effect occurs obviously. And the deformation ununiformity is caused by the anisotropy of the grain, which leads to irregularity surface of deformed specimen.
     To carry out experimental investigation of microforming process, a precision micro bulk forming apparatus is developed with a series-wound structure using a PZT as the punch driver. A position adjustment device is designed to adjust the position of the PZT, and it can also meet the requirement of the large displacement in some processes. A PZT driver based on a PID control method is selected, and a process controller is designed for the microforming process. The test and analysis of the micro bulk forming apparatus show that it is suitable for the experimental research of the microforming process.
     The experimental investigation is carried out by the upsetting test. The effect of specimen size, grain size, deformation degree and temperature on the flow stress is studied, and the mechanism of size effects is analyzed from the viewpoint of polycrystal structure. Using the metallography, the effect of grain size and strain on deformation ununiformity are investigated, and the mechanism is analyzed from the viewpoint of the anisotropy of grain.
     The cavity dimension also leads to size effect in microforming process. A coining process is used in the dissertation, and the effect of the die cavity dimension (b), grain size (L) and their ratio L/b on the filling ability are investigated. The result shows that ratio L/b is the main effect factor.
     Based on the above research, the investigation of microforming process of typical microgear is carried out. Using the developed floating die device, the forming procedure of micogear is studied. Effect of punch speed, load and forming temperature on the microforming process is studied, and the filling law is analyzed from the viewpoint of stress station and polycrystal structure of the specimen. The distribution of flow lines in the longitudinal section and the cross section is analyzed, and the measurement of surface roughness and nano-hardness in cross section of the microgear is implemented. The results show that the formed microgear owns fine surface quality and compositive capability.
引文
1 M. Geiger, M. Kleiner, R. Eckstein. Microforming. Annals of the CIRP. 2001,50(2): 445-462
    2 M. Geiger, U. Engel. Microforming-a Challenge to the Plasticity Research Community-addressed to the 40th Anniversary of the JSTP. Journal of the JSTP. 2002, 494(43): 171-172
    3 M. Geiger, R. Eckstein. Microforming. Proc. of 7th ICTP. 2002: 327-338
    4 U. Engel, R. Eckstein. Microforming- from Basic Research to Its Realization. Journal of Materials Processing Technology. 2002, 125-126: 35-44
    5 F. Vollertsen, Z. Hu, H. Schulze Niehoff, C. Theiler. State of the Art in Micro Forming and Investigations into Micro Deep Drawing. Journal of Materials Processing Technology. 2004, 151: 70-79
    6 王仲仁, 苑世剑. 塑性加工领域的新进展. 金属成形工艺. 2003, 21(5): 1-4
    7 申昱, 于沪平, 阮雪榆. 金属微成形技术. 塑性工程学报. 2003, 10(6): 5-6
    8 张凯锋, 雷鹍. 面向微细制造的微成形技术. 中国机械工程. 2004, 15(12): 1121-1127
    9 董涛, 章维一, 侯丽雅. 微系统制造中的 3 维微成形技术. 南京理工大学学报. 2001,25(3): 318-322
    10 章维一, 侯丽雅. 微系统领域的关键技术. 中国机械工程. 2000, 11(11): 1305-1312
    11 田昭武, 林华水, 孙建军. 微系统科技的发展及电化学的新应用. 电化学. 2001, 7(1): 1-8
    12 R. Ruprecht et al. Various Replication Techniques for Manufacturing Three- Dimensional Metal Microstructures. Microsystem Technologies. 1997, 4: 28-33
    13 http://www.micromo.com(2005.5.13)
    14 J. D?ppr, M. Clmens, W. Ehrfeld, S. Jung, K-P K?mper and H. Lehr. Micro Gear Pumps for Dosing of Viscous Fluids. J. Micromech. Microeng.. 1997,7: 230-232.
    15 刘刚, 田扬超, 洪义麟等. LIGA 技术制造活动微结构的研究. 中国科学技术大学学报. 2000, 30(增刊): 136-139
    16 张晔, 陈迪, 潘欣欣等. UV-LIGA 双层微齿轮加工工艺研究. 微细加工技术. 2005, 12(4): 69-75
    17 陈迪, 张大成, 丁桂甫等. DEM 技术研究. 微细加工技术. 1998, (4): 1-6
    18 陈迪, 雷蔚, 李昌敏等. DEM 技术中微复制工艺研究. 微细加工技术. 2000, (1): 61-65
    19 李文卓. 微细电火花加工系统及相关技术的研究. 哈尔滨工业大学博士学位论文. 2002: 64-72
    20 唐勇军, 胡富强, 王振龙等. 微细点火花加工技术的最新进展. 电加工与模具. 2005, 增刊: 36-39
    21 T. Masuzawa. State of the Art of Micromachining. Annals of the CIRP. 2000, 49(2): 473-488
    22 S. C. Di, R. N. Huang, W. S. Zhao. A Micro Die Fabrication Method by Using MWEDM. Z. R. Wang, T. A. Dean. Proceeding of the 1st ICNFT. Harbin, China. 2004: 159-164
    23 王波, 梁迎春, 孙雅洲等. 带三维结构的惯性 MEMS 器件的微细铣削加工. 传感技术学报. 2006, 19(5): 1473-1476
    24 Y. Yan, T. Sun, etal. Novel Micromachining Method Based on AFM and High-Accuracy Stage. Proceeding of SPIE. 2003, 4979: 364-371
    25 苑伟政, 马炳和. 微机械与微细加工技术. 西北工业大学出版社, 2000: 33-83
    26 T. A. Kals, R. Eckstein. Miniaturization in Sheet Metal Working. Journal of Materials Processing Technology. 2000, 103: 95-101
    27 A. Kocanda, T. Prejs. The Effect of Miniaturization on the Final Geometry of the Bent Products. M. Pietrzyk, et al. Proceeding of the 8th International Conference on Metal Forming. Krakow, Poland. 2000: 375-378
    28 L. V. Raulea, L. E. Govaert, F. P. T. Baaijens. Grain and Specimen Size Effects in Processing Metal Sheets. M. Geiger. Proceeding of the 6th ICTP. Nuremberg, Bavaria, Germany. 1999: 939-944
    29 L. V. Raulea, A. M. Goijaerts, L. E.Govaert, F. P. T. Baaijens. Size Effects in the Processing of Thin Metal Sheet. Journal of Materials Processing Technology. 2001, 115: 44-48
    30 P. Picard, J. F. Michel. Characterization of the Constitutive Behavior for verySmall Components in Sheet Metal Forming. Proceeding of the 2nd ESAFORM conference on material forming. 1999: 169-170
    31 M. Geiger, U. Engel, F. Vollersten, R. Kals, A. Messner. Metal forming of Microparts for Electronics. Production Engineering. 1994, 2(1): 15-18
    32 M. Geiger, A. Messner, U. Engel. Production of Microparts – Size Effects in Bulk Metal Forming, Similarity Theory. Production Engineering. 1997, 4(1): 55-58
    33 M. Geiger, A. Messner, U. Engel, R. Kals, F. Vollertsen. Design of Micro-Forming Processes Fundamentals, Material Dada and Friction Behavior. Proceeding of the 9th International cold forging conference. 1995: 155-164
    34 U. Engel, E. Egerer. Basic Research on Cold and Warm Forging of Microparts. Key Engineering Materials. 2003, 233-236: 449-456
    35 P. Picard, J. F. Michel. Effects of Size and Texture on the Constitutive Behavior for very Small Components in Sheet Metal Forming. M. Geiger. Proceeding of the 6th ICTP. Nuremberg, Bavaria, Germany. 1999: 895-900
    36 A. Messner, U. Engel, R. Kals, F. Vollertsen. Size Effects in the FE-Simulation of Microforming Processes. Journal of Materials Processing Technology. 1994, 45: 371-376
    37 Y. Shen, H. P. Yu, X. Y. Ruan, X. F. Yin. The Test Study of Micro Copper Cylinder Upsetting. Z. R. Wang, T. A. Dean. Proceeding of the 1st ICNFT. Harbin, China. 2004: 165-170
    38 申昱, 于沪平, 阮雪榆. 微小尺度镦挤复合成形工艺研究. 塑性工程学报. 2006, 13(1): 58-61
    39 U. Engel, A. Messner, M. Geiger. Advanced Concept for the FE-Simulation of Metal Forming Processer for the Production of Microparts. T. Altan. Proceeding of the 5th ICTP. Columbus, USA. 1996: 895-900
    40 A. B. Richelsen. Size Effects in Sheet Drawing. Proceeding of the 9th International Conference on Sheet Metal. 2001, 2-4: 263-270
    41 Tae-Wan Ku, Sang-Moon Hwang, Beom-Soo Kang. Milli-Component Forming or Rectangular Cup Drawing. Journal of Materials Processing Technology. 2001, 113: 749-753
    42 R. Eckstein, M. Geiger, U. Engel. Specific Characteristics of Micro Sheet Metal Working. Proceeding of SheMet. 1999, 27-28: 529-536
    43 R. Neugebauer, A. Schubert, J. Kadner, T. Burhardt. High Precision Embossing of Microparts. M. Geiger. Proceeding of the 6th ICTP. Nuremberg, Bavaria, Germany. 1999: 921-926
    44 H. Ike, S. Kuriyama, A. Kohno. Micro/nanoscopic Replication of Designed Surface Asperities by Metal Forming Process. M. Kiuchi, H. Nishimura. Proceeding of the 7th ICTP. Yokohama, Japan. 2002: 385-390
    45 H. Ike, M. Plancak. Coining Processing as a Mean of Controlling Surface Microgeometry. Journal of Material Processing Technology. 1998, 80-81:101-107
    46 J. P. Wulfsberg, M. Terzi. Investigation and Application of Size Effects in the Laser Assisted Forging of Microparts with Transparent Tool. P. F. Bariani. Proceeding of the 8th ICTP. Verona, Italy. 2005
    47 H. Ike, M. Plancak, Controlling Metal Flow of Surface Microgoemetry in Coining Process. M. Geiger. Proceeding of the 6th ICTP. Nuremberg, Bavaria, Germany. 1999: 907-912
    48 H. Ike. Fabrication of 3-D Controlled Surface Microgeometry by the Technology of Plasticity. Z. R. Wang. Proceeding of the 4th ICTP. Beijing China. 1993: 55-60
    49 Y. Saotome, A. Itoh, S. Amada. Superplastic Micro Forming of Double Gear for Milli-Machines. Z. R. Wang. Proceeding of the 4th ICTP. Beijing, China. 1993: 2000-2005
    50 N. Tiesler, U. Engel, M. Geiger. Forging of Microparts –Effects of Miniaturization on Friction. M. Geiger. Proceeding of the 6th ICTP. Nuremberg, Bavaria, Germany. 1999: 889-894
    51 N. Tiesler, U. Engel. Microforming- Effects of Miniaturization. Metal Forming 2000. 2000: 355-360
    52 雷丽萍, 曾攀, 方刚. 塑性微成形技术及其工艺特点分析. 第五界全国塑性加工年会论文集. 2003: 75-78
    53 K. Yoshida, M. Fukazawa, I. Kubold. FEM analysis and experimental on multistage forging for wrist watch parts. M. Geiger. Proceeding of the 6th ICTP. Nuremberg, Bavaria, Germany. 1999: 901-906
    54 R. Eckstein, U. Engel. Behavior of the Grain Structure in Micro Sheet Metal Working. M. Pietrzyk, et al. Proceeding of the 8th International Conferenceon Metal Forming. Krakow, Poland. 2000: 453-459
    55 N. Tiesler, U. Engel, M. Geiger. Basic Research on Cold Forging or Microparts. M. Kiuchi, H. Nishimura. Proceeding of the 7th ICTP. Yokohama, Japan. 2002: 379-384
    56 Y. Saotome, H. Iwazaki. Superplastic Extrusion of Microgear Shaft of 10μm in Module. Journal of Microsystem Technologies. 2000, 4(6): 126-129
    57 K. Yoshida, M. Fukazawa, I. Kubold. FEM Analysis and Experimental on Multistage Forging for Wrist Watch Parts. M. Geiger. Proceeding of the 6th ICTP. Nuremberg, Bavaria, Germany. 1999: 901-906
    58 K. Yoshida, M. Maejima. Optimum Drawing Conditions for Shaped Microwire of 100-400μm Size. P. F. Bariani. Proceeding of the 8th ICTP. Verona, Italy. 2005
    59 Y. Saotome, K. Yasuda, H. Kaga. Microdeep Drawability of very Thin Sheet Steels. Journal of Material Processing Technology. 2001, 113: 641-647
    60 Z. Hu, F. Vollertsen. Fabrication Test for Deep Drawing with Respect to Size Effects. Z. R. Wang. Proceeding of the 1st ICNFT. Harbin, China. 2004: 153-158
    61 H. Justinger, G. Hirt, N. Witulski. Analysis of Cup Geometry and Temperature Conditions in the Miniaturized Deep Drawing Process. P. F. Bariani. Proceeding of the 8th ICTP. Verona, Italy. 2005
    62 Y. Saotome, T. Okamoto. An In-situ Incremental Microforming System for the Three-Dimensional Shell Structures. Journal of Materials Processing Technology. 2001, 113: 636-640
    63 S. Tanaka, T. Nakamura, K. Hayakawa. Miniature Incremental Forming of Millimeter-Sized Thin Shell Structures. M. Kiuchi, H. Nishimura. Proceeding of the 7th ICTP. Yokohama, Japan. 2002: 403-408
    64 S. Kurimoto, K.Hirota, Y. Nakano, T. Mori. Improvement of Ultra-Fine Piercing by Means of Vacuum System. M. Kiuchi, H. Nishimura. Proceeding of the 7th ICTP. Yokohama, Japan. 2002: 391-396
    65 T. Takemas, S. Yamasaki, H. Miura, T. Ozaki. Development of New Piercing System for Micro Holes by Continuous Striking of Punch Using Ultrasonic Vibration. P. F. Bariani. Proceeding of the 8th ICTP. Verona, Italy. 2005
    66 M. Yang, S. Nakano, K. Manve, et al. Fabrication of MEMS Using MicroMetal Forming Process. Z. R. Wang. Proceeding of 1st ICNFT. Harbin, China. 2004: 135-140
    67 M. Otsu, Y. Katayama. Micro Bending of Magnesium Alloy Foil by Spark Forming. P. F. Bariani. P. F. Bariani. Proceeding of the 8th ICTP. Verona, Italy. 2005
    68 曾攀, 赵迎红, 雷丽萍. Bi 系高温超导带材中的塑性微成形技术. 塑性工程学报. 2005, 12: 25-30
    69 Hee-Won Jeong, Seiichi Hata. Microforming of Three Dimensional Microstructures from Thin Film Metallic Glass. Journal of Microelectromechanical Systems. 2003, 12(1): 42-52
    70 Y. Saotome, Miwa Seiji, T. Zhang, A. Inoue. The Microformability of Zr-based Amorphous Alloy in Supercooled Liquid Stated and Their Application to Micro-dies. Journal of Materials Processing Technology. 2001, 113: 64-69
    71 Y. Saotome, T. Hatori, T. Zhang, A. Inoue. Superplastic Micro/nano-Formability of La60Al20Ni10Co5Cu5 Amorphous Alloy in Supercooled Liquid State. Materials Science and Engineering. 2001, 204-306: 716-720
    72 Y. Saotome, K. Imai, S. Shioda, et al. The Micro-nanoformability of Pt-based Metallic Glass and the Nanoforming of Three-Dimension Structure. Intermetallic. 2002, 10: 1241-1247
    73 Y. Saotome, H. Iwazaki. Superplastic Backward Microextrusion of Microparts for Micro-electro-element-systems. Journal of Materials Processing Technology. 2001, 119: 307-311
    74 M. Geiger, F. Vollertsen. R. Kals. Fundamentals on Manufacturing of sheet metal microparts. Annals of the CIRP. 1996, 45(1): 277-282
    75 雷鹍, 张凯锋. 金属微成形中尺度效应的探讨. 塑性工程学报. 2005, 12(增刊): 31-35
    76 S. Geissdoerfer, U. Engel, M. Geiger. FE-simulation of Microforming Processes Applying a Mesoscopic Model. International Journal of Machine Tools and Manufacture. 2006, 46(11): 1222-1226
    77 U. Engel, S. Geissdoerfer, M. Geiger. Simulation of Microforming- an Advanced Approach Applying a Mesoscopic Model. P. F. Bariani. Proceeding of the 8th ICTP. Verona, Italy. 2005
    78 D. J. Kim, T. W. Ku, B. S. Kang. Finite Element Analysis of Micro-RollingUsing Grain and grain Boundary Elements. Journal of Materials Processing Technology. 2002, 130-131: 456-461
    79 G. Dehm, T. John Balk, H. Edongue, E. Arzt. Small Scale Plasticity in Thin Cu and Al Films. Microelectronic Engineering. 2003, 70: 412-424
    80 N. Pernin, J. Chembert, P. Picart. Micro-Forming Modeling by Using Gradient Plasticity and Surface Layer Approaches. P. F. Bariani. Proceeding of the 8th ICTP. Verona, Italy. 2005
    81 X. Dong, N. Ma. A Study on Size Effects on Process Design of Micro Deep Drawing. P. F. Bariani. Proceeding of the 8th ICTP. Verona, Italy. 2005
    82 马宁, 董湘怀. 尺寸效应对微拉延工艺影响的探讨. 塑性工程学报. 2005, 12: 106-108
    83 J. Cao, N. Krishnan, Z. Wang, H. Lu et al. Microforming: Experimental Investigation of the Extrusion Process of Micropins and Numerical Simulation Using RKEM. Transaction of ASME. 2004, 126: 642-652
    84 J. F. Michel, P. Picart. Size Effects on Constitutive Behaviour for Brass in Sheet Metal Forming. Journal of Materials Processing Technology. 2003, 141: 439-446
    85 G. I. Taylor, C. F. Elam. The Distortion of an Aluminium Crystal During a Tensile Test. Proc. R. Soc. Lond.. 1925, A102: 643-644
    86 G. I. Taylor. The Mechanics of Plastic Deformation of Crystal. Part I. Theoretical. Proceeding of the Royal Society. 1934, A145: 362-387
    87 G. I. Taylor. Plastic Strain in Metals. J. Inst. Met. 1938, 62:307-324
    88 R. Hill. Generalized Constitutive Relation for Incremental Deformation of Metals and Crystals by Multislip. J. Mech. Phys. Solids. 1966, 14: 95-102
    89 R. Hill, J. R. Rice. Constitutive Analysis of Elastic-Plastic Crystals at Arbitrary Strain. J. Mech. Phys. Solids. 1972, 20: 401-413
    90 Tien-Yue Wu, John L. Bassani, Campbell Laird. Latent Hardening in Single Crystals I. Theory and Experiments. Proceeding of Mathematical and Physical Sciences. 1991, 435(1893): 1-19
    91 John L. Bassani, Tien-Yue Wu. Latent Hardening in Single Crystals II. Analytical Characterization and Predictions. Proceeding of Mathematical and Physical Sciences. 1991, 435(1893): 21-41
    92 Gang Lin, Kerry S. Havner. A Comparetive Study of Hardening Theories inTorsion Using the Taylor Polycrystal Model. International Journal of Plasticity. 1996, 12(5): 295-718
    93 S. R. Kalidindi, C. A. Bronkhorst, L. Anand. Crystallogrphic Texture Evolution in Bulk Deformation Processing of FCC Metals. J. Mech. Phys. Solids. 1992, 40(3): 537-569
    94 R. J. Asaro. Crystal Plasticity. Journal of Appliced Mechanics.1983, 50: 921-934
    95 R. J. Asaro, A. Needleman. Texture Development and Strain Hardening in Rate Dependent Polycrystals. Acta Metal. 1985, 33(6): 923-953
    96 D. Peirce, R. J. Asaro, A. Needleman. Material Rate Dependence and Localized Deformation in Crystalline Solids. Acta Metal. 1983, 31(12): 1951-1976
    97 L. Anand, S. Balasubramanian. Polycrystal Plastcitiy: Application to Earing in Cup Drawing. Annals of the CIRP. 1996, 45(1): 263-268
    98 梁乃刚, 徐彤, 王自强. 晶体硬化系数表示式及材料常数标定. 中国科学(A 辑). 1995, 2(3): 280-287
    99 陈贻平. 基于晶体塑性理论的板材成形过程的计算机数值模拟. 华中科技大学博士学位论文. 2001:38-66
    100 冯露, 张克实, 张光. Hill 屈服准则与晶体塑性模型对 FCC 单晶材料塑性各向异性描述能力的比较. 计算力学学报. 2003, 20(5): 535-540,573
    101 张光, 张克实, 冯露. 有限变形下的多晶体塑性模型算法及应用. 应用力学学报. 2004, 21(1): 96-100
    102 张克实. 晶体塑性计算及其在细观力学分析的应用. ABAQUS 软件 2003年度用户论文集. 2003
    103 吴艳青. 多晶体材料高温大变形细观力学行为研究. 西北工业大学博士学位论文. 2005: 60-62
    104 黄成江. 有限元法在材料加工工程中的应用. 中国科学院金属研究所博士学位论文. 2003: 11-13, 40-59
    105 李宏伟. 基于材料宏细观本构关系的环件冷碾扩模拟研究. 西北工业大学硕士学位论文. 2005: 32-37
    106 刘海军, 方刚, 曾攀. 基于晶体塑性理论的大变形数值模拟技术. 塑性工程学报. 2006, 13(2): 1-7,28
    107 于庆民. 基于晶体塑性理论的镍基单晶体构件力学性能的有限元分析.西北工业大学硕士学位论文. 2005: 9-12
    108 万建松. 基于有限变形晶体滑移理论的单晶体力学行为及应用研究. 西北工业大学博士学位论文. 2003: 10-21
    109 张少睿. 板成形率无关晶体塑性理论与过程模拟. 上海交通大学博士学位论文. 2004: 45-61
    110 R. Becker. Effects of Strain Localization on Surface Roughening During Sheet Forming. Acta Metallurgica. 1998, 46(4): 1385-1401
    111 C. J. Bayley, W. A. M Brekelmans, M. G. D. Geers. A Material Model Suitable for Micro-Forming. Eindhoven University of Technology.
    112 M. Kuroda, V. Tvergaard, T. Ohashi. Simulation of Micro-Bending of Thin Foils Using a Scale Dependent Crystal Plasticity Model. Modelling and Simulation in Materials Science and Engineering. 2007, 15: 13-22
    113 Lee Hye-Jin, Lee Hyoung-Wook, Lee Nak-Kyu, et al. MEMS Material Mechanical Property Measurement Using Long Elongation Piezo Actuating Measuring System. P. F. Bariani. Proceeding of the 8th ICTP. Verona, Italy. 2005
    114 F. Schepp. Linearmotorgetriebene Pressen für die Stanztechnik, Berichte aus Produktion und Umformtechnik. Shaker Verlag. Aachen. 2002, 54
    115 www.aida-america.com
    116 T. Erhardt, F. Schepp, D. Schmoechel. Micro Forming with Local Part Heating by Laser Irradiation in Transparent tools. Proceeding of the 7th Int. Conf. On Sheet Metal. 1999: 497-504
    117 T. Hanemann, W. Pfleging, J. Hausselt, K.-H. Zum Gahr. Laser Micromaching and Light induced Reaction Injection Molding as Suitable Process Sequence for the Rapid Fabrication of Microcomponents. Microsystem technologies. 2002, 7: 209-214
    118 R. A. Lawes, A. S. Holmes, F. N. Goodall. The Formation of Moulds for 3D Mmicrostructures Using Excimer Laser Ablation. Microsystem technologies. 1996, 3: 17-19
    119 Y. Saotome, A. Inoue, T. Zhang. New Amorphous Alloys as Micromaterials and the Processing Technology. Proceeding of IEEE the 13th annual Int. Conf. On Micro Electro Mechanical Systems. 2000: 288-292
    120 Y. Saotome, K. Itoh, T. Zhang. Superplastic Nanoforming of Pd-basedAmorphous Alloy. Scripta materialia. 2001, 44: 1541-1545
    121 J. Bohm, A. Schubert, T. Otto, T. Burkhardt. Micro-metalforming with Silicon Dies. Microsystem technologies. 2001, 7: 191-195
    122 王自强, 段祝平. 塑性细观力学. 科学出版社. 1995: 90-131
    123 苏玉芹. 金属塑性变形原理. 冶金工业出版社. 1995,121-122
    124 杨觉先. 金属塑性变形物理基础. 冶金工业出版社. 1988: 20-22
    125 哈宽富. 金属力学性质的微观理论. 科学出版社. 1983: 7-9, 76-90
    126 汪大年. 金属塑性成形原理. 机械工业出版社. 1986: 171-192
    127 H. Yasin, H. M. Zbib and M. A. Khaleel. Size and Boundary Effects in Discrete Dilocation Dynamics: Coupling with Continuum Finite Element. Materials Science and Engineering. 2001, 309-310: 294-299
    128 H. Margolin. Polycrystalline Yielding-Perspectives on Its Onset. Acta Mater. 1998, 46(17): 6305-6309
    129 J. R. Rice. Inelastic Constitutive Relations for Solids: An Internal-Variable Theory and Its Application to Metal Plasticity. J. Mech. Phys. Solids. 1971, 19: 433-455
    130 J. W. Hutchinson. Bounds Self-Consistent Estimates for Creep of Polycrystalline Materials. Proc. Roy. Soc. Series. 1976, A384: 101
    131 D. Peirce, R. J. Asaro, A. Needleman. An Analysis of Nonuniform and Localized Deformation in Ductile Single Crystals. Acta Metall. 1982, 30: 1087
    132 R. J. Asaro. Micromechanics of Crystals and Polycrystals. Adv. Appl. Mech. 1983, 23: 1
    133 R. J. Asaro. J. R. Rice. Strain Localization in Ductile Single Crystal. J. Mech. Phys. Solids. 1977, 25: 309-338
    134 E. Schmid. Plasticity of Crystal. New York: Oxford University Press. 1935
    135 石亦平, 周玉蓉. ABAQUS 有限元分析实例详解. 机械工业出版社. 2006, 2-5
    136 庄茁, 张帆. ABAQUS 非线性有限元分析与实例. 科学出版社. 2004, 508-511
    137 耿小亮, 张克实, 郭运强, 秦亮. 细观非均质性对多晶体材料塑性行为的影响. 金属学报. 2006, 42(1): 49-53
    138 刘孝敏编著. 工程材料的微细观结构和力学性能. 中国科学技术大学出版社. 2003:119
    139 马淑梅, 陈彬. 超精密加工中的微位移技术. 同济大学学报. 2000, 28(6): 684-687
    140 李圣怡, 黄长征, 王贵林. 微位移机构研究. 航空精密制造技术. 2000, 36(4): 5-9
    141 荣烈润. 微位移机构综述. 机电一体化. 2005, 2: 6-11
    142 叶云岳, 陈永校, 卢琴芬. 直线电机驱动冲压机的研究与应用. 1999, 14(5): 67-70
    143 张涛, 孙立宁, 蔡鹤皋. 压电陶瓷基本特性研究. 光学精密工程. 1998, 6(5): 26-32
    144 孙立宁. 宏/微驱动精密工作台的研究及其在机器人装备中的应用. 哈尔滨工业大学博士论文. 1993: 49-64
    145 曲东升. 纳米级精密定位系统关键技术的研究. 哈尔滨工业大学博士论文. 2003: 27-43
    146 汪守朴. 金相分析基础. 机械工业出版社. 1986: 16-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700