用户名: 密码: 验证码:
正电子发射断层的图像重建方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正电子发射断层(positron emission tomography:PET)是现代核科学的代表,它利用放射性核素标记物对组织功能进行显像,也是当今能够无创地以动态、定量的方式观测到活体生理和生化变化的医学成像工具之一。本文主要研究了关于正电子发射断层的若干新的重建方法,即基于可变索引集的SAGE(space alternating generalized expectation maximization)算法以及在高斯PET观测模型中的应用,尝试研究了基于小波变换的多尺度迭代MAP(maximum a posteriori)重建,探讨了序列化递推WLS(weighted least squares)重建和状态空间Kalman滤波重建法,最后研究了基于正交矩(moment)的有限角度投影数据解析重建算法。
     统计迭代重建方法,尤其是具有快速收敛特征的迭代算法,是PET重建的研究重点之一。本文研究了其中一类基于近似高斯观测模型的ML(maximum likelihood)估计问题,提出了新的基于SAGE的优化估计算法。为了减少运算耗时,本文给出了基于可变索引集的SAGE算法。实验验证了算法的可行性和优越性。
     针对ML估计的非稳定性,本文进一步研究了MAP估计方法。将小波变换的多分辨率特性与SAGE算法灵活选取的隐含数据空间相结合,本文首次提出了一种新的小波系数多尺度快速迭代MAP重建方法。在实验中,该方法与其它MAP方法进行了比较。结果表明了基于小波变换的重建方法在保留图像细节以及提高重建图像质量上具有一定的优势。
     序列化WLS估计结合了观测数据的时变性,给出了核素动态跟踪的基本解决思路。实验表明该方法具备很快的收敛速度。另一方面,从所获得的均匀一致估计方差上说明了该估计方法具有一定的稳健性。基于状态空间模型的Kalman滤波重建方法是序列化WLS估计的推广,它统一了核素动态估计的模型,有着较好的应用前景。然而运算复杂度较高是该方法的一个主要缺陷。为了缓解该问题,本文试探性地设计了一种次优Kalman滤波。尽管该次优滤波方法比Kalman滤波性能略差,然而其在计算上有着明显的优势。
     解析法是研究断层重建的根本出发点。本文借助经典的Radon变换,给出了投影正交矩与图像正交矩之间的一般描述,推导了投影与图像Legendre矩之间的解析关系。根据这一关系,本文首次提出了基于Legendre矩的有限角度投影数据重建方法。该方法利用已知投影数据的矩信息恢复出未知投影的矩,然后由估计的矩重构出未知投影,从而补偿缺少投影信息,提高重建质量。
Positron emission tomography (PET) acts as one of representative techniques of modern nuclear science playing an important role in clinical diagnosis. It provides tissue functional imaging with the aid of radioisotope, which currently makes it one of noninvasion medical imaging tools observing dynamically and quantitatively the physiological and biochemical changes in vivo.
     The main purpose of this dissertation aims at the methodology of PET image reconstruction which serves as a critical preprocessing step that approaches the unknown image or distribution of radioactivity by using the observed photon counts generated during the progress of scanning. In this dissertation, several novel PET reconstruction methods are introduced: the new space alternating generalized expectation maximization (SAGE) algorithm using variable index set and its application to the nonstationary Gaussian observation model for PET imaging; the multiscale wavelet-based iterative MAP reconstruction algorithm; the reconstruction methods using the sequential WLS (weighted least squares) and the state-spaced based Kalman filtering technique; and finally, the orthogonal moment-based image reconstruction for the limited-angle tomography.
     Statistical iterative reconstruction methods, particularly those with fast convergent rate, are increasingly important in PET image reconstruction. In this dissertation, the maximum likelihood (ML) estimate for one kind of nonstationary Gaussian observation model is first studied. The model optimization is conducted by the using of the SAGE algorithm. For the reduction of computational time cost, the variable index set technique is further suggested, which also makes full use of the a priori underlying physiological information of PET images. The feasibility and efficiency of the proposed method are verified experimentally in comparison with other commonly used ML estimate methods.
     Due to the stabilization of the ML estimate, the MAP estimate is introduced accordingly. Conventional MAP algorithm controls the noise behavior by introducing the so-called image a priori information. Such priori plays the role as a smoothness constraint that penalizes the roughness of image estimate and then removes the noisy degradations. Instead of seeking a MAP estimate in image domain, this dissertation considers an efficient alternative within the domain of wavelet. The presented method utilizes a two-step algorithm as follows: 1) the determination of image wavelet coefficients from the observed projection data, and 2) image reconstruction via the wavelet inversion. Moreover, a novel SAGE based optimization
引文
[1] 王世真. PET 绝妙的活体生化显像[EB/OL]. http://www.bioon.com/article/clinical/clinic73/200501/88408.html, 2005-01-18.
    [2] J. C. Willmott. Atomic Physics[M]. London: Wiley-Interscience, 1975.
    [3] Z. H. Cho. Foundations of Medical Imaging[M]. New York: John Wiley & Sons, 1993.
    [4] A. Brownell. A history of positron imaging[EB/OL]. http://neurosurgery.mgh.harvard.edu/docs/PEThistory.pdf, 2005-5-11.
    [5] G. T. Herman. Image Reconstruction from Projections: The Fundamentals of Computerized Tomography[M]. San Francisco: Academic Press, 1980.
    [6] A. K. Kak, M. Slaney. Principles of Computerized Tomographic Imaging[M], New York: IEEE Press, 1988.
    [7] T. G. Turkington. Introduction to PET instrumentation[J]. J. Nucl. Med. Technol. 2001, 29: 1-8.
    [8] G. Tarantola, F. Zito, P. Gerundini. PET instrumentation and reconstruction algorithms in whole-body applications[J]. J. Nuc. Med. 2003, 44(5): 756-769.
    [9] J. M. Ollinger, J. A. Fessler. Positron emission tomography[J]. IEEE Signal Processing Magazine, 1997, 14(1): 43-55.
    [10] R. Leahy, J. Qi. Statistical approaches in quantitative positron emission tomography[J]. Statistics and Computing, 2000, 10: 147-165.
    [11] R. M. Lewitt, S. Matej. Overview of methods for image reconstruction from projections in emission computed tomogrphy[J]. Proceedings of the IEEE, 2003, 91: 1588-1611.
    [12] J. G. Colsher. Fully three-dimensional positron emission tomography[J]. Physics in Medicine and Biology. 1980, 25(1): 103-115.
    [13] S. R. Cherry, M. Dahlbom, E. J. Hoffman. Evaluation of a 3D reconstruction algorithm for multi-slice PET scanners[J]. Physics in Medicine and Biology, 1992, 37(3): 779-790.
    [14] P. E. Kinahan, J. G. Rogers. Analytic 3D image reconstruction using all detected events[J]. IEEE Trans. Nucl. Sci., 1989, 36(1): 964-968.
    [15] M. Defrise, P. E. Kinahan, D. W. Townsend, et al. Exact and approximate rebinning algorithms for 3-D PET data[J]. IEEE Trans. Med. Imag., 1997, 16: 145-158.
    [16] X. Liu, M. Defrise, C. Michel, et al. Exact rebinning methods for three-dimensional PET[J]. IEEE Med. Imag., 1999, 18(8): 657-664.
    [17] C. Axelsson, M. Defrise, P. E. Danielsson, et al. 3D-reconstruction using cone-beam backprojection, the Radon transform and linogram techniques[C]. in Proceedings of the 1995 IEEE Nucl. Sci. Symposium and Med. Imag. Conference (NSSMIC), San Francisco: NSSMIC, 1995, 1321-1325.
    [18] D. Brasse, P. E. Kinahan, R. Clackdoyle, et al. Fast fully 3-D image reconstruction in PET using planograms[J]. IEEEMed. Imag., 2004, 23(4): 413-425.
    [19] C. Axelsson, P. E. Danielsson. Direction Fourier methods for 3D tomography reconstruction[C]. in Proceedings of the 1992 IEEE Nucl. Sci. Symposium and Med. Imag. Conference (NSSMIC), Orlando: NSSMIC, 1992, 3: 1126-1128.
    [20] R. M. Lewitt. Reconstruction algorithms: Transform methods[J]. Proc. IEEE, 1983, 71(3): 390-408.
    [21] H. Schomberg, J. Timmer. The gridding method for image reconstruction by Fourier transformation[J]. IEEE Trans. Med. Imag., 1995, 14(3): 596-607.
    [22] S. Matej, R. M. Lewitt, 3D-FRP: direct Fourier reconstruction with Fourier reprojection for fully 3-D PET[J]. IEEE Trans. Nucl. Sci., 2001, 48(4): 1378-1385.
    [23] S. Matej, J. A. Fessler, I. G. Kazantsev. Iterative tomographic image reconstruction using Fourier-based forward and backprojectors[J]. IEEE Trans. Med. Imag., 2004, 23(4): 401-412.
    [24] J. A. Fessler, B. P. Sutton. Nonuniform fast Fourier transforms using min-max interpolation[J]. IEEE Trans. Signal Processing, 2003, 51(2): 560-574.
    [25] P. M. Milanfar, W. C. Karl, A. S. Willsky, A moment-based variational approach to tomographic reconstruction[J], IEEE Trans. Imag. Proc. 1996, 5: 459-470.
    [26] T. J. Wang, T. W. Sze. The image moment method for the limited range CT image reconstruction and pattern recognition[J]. Pattern Recognition, 2001, 34: 2145-2154.
    [27] D. Donoho. Nonlinear solution of linear inverse problems by wavelet-vaguelette decompositions[J]. J. Appl. Comput. Harmonic Anal., 1995, 2(2): 101-126.
    [28] A. Delaney and Y. Bresler. Multiresolution tomographic reconstruction using wavelets[J]. IEEE Trans. Imag. Proc., 1995, 4: 799-813.
    [29] M. Bhatia, W. C. Karl, A. S. Willsky. A wavelet-based method for multiscale tomographic reconstruction[J]. IEEE Trans. Med. Imag. 1996, 15(1): 92-101.
    [30] A. Aldroubi, M. Unser. Wavelets in Medicine and Biology[M]. Boca Raton: CRC Press, 1996.
    [31] Y. Choi, J. Y. Koo, N. Y. Lee. Image reconstruction using the wavelet transform for positron emission tomography[J]. IEEE Trans. Med. Imag., 2001, 20(11): 1188-1193.
    [32] N. Y. Lee, B. J. Lucier. Wavelet methods for inverting the Radon transform with noisy data[J]. IEEE Trans. Imag. Proc., 2001, 10(1): 79-94.
    [33] J. Kalifa, A. Laine, P. D. Esser. Regularization in tomographic reconstruction using thresholding estimators[J]. IEEE Trans. Med. Imag., 2003, 22(3): 351-359.
    [34] G. T. Herman, A. Lent, S. W. Rowland. ART: Mathematics and applications. A report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques[J]. J. Theor. Biol., 1973, 42: 1-32.
    [35] G. T. Herman. A relaxation method for reconstructing objects from noisy x-rays[J]. Math. Programm. 1975, 8: 1-19.
    [36] G. T. Herman. Image reconstruction from projections: The fundamentals of computational tomography[M]. New York: Academic Press. 1980.
    [37] C. L. Byrne. Strong underrelaxation in the multiplicative algebraic reconstruction technique (MART) for inconsistent systems[C]. In Proceedings of the 1993 IEEE Nucl. Sci. Symp. Med Imag. Conf. (NSSMIC). San Diego: NSSMIC. 1993, 1637-1641.
    [38] A. H. Andersen. A. C. Kak. Simultaneous algebraic reconstruction technique (SART): A superior implementation of theART algorithm[J]. Ultrasonic Imaging, 1984, 6: 81-94.
    [39] C. L. Byrne. Block-iterative methods for image reconstruction from projections[J], IEEE Trans. Imag. Proc., 1996, 5: 792-794.
    [40] J. Ming, G. Wang. Development of iterative algorithms for image reconstruction[J]. Journal of X-ray Science and Technology, 2002, 10(1): 77-86.
    [41] C. L. Byrne. Iterative image reconstruction algorithms based on cross-entropy minimization[J]. IEEE Trans. Imag. Proc., 1993, 2(1): 96-103.
    [42] H. M. Hudson, R. S. Larkin. Accelerated image reconstruction using ordered subsets of projection data[J]. IEEE Tran. Med. Imag., 1994, 13: 601-609.
    [43] J. Brown, A. R. De Pierro. A row-action alternative to the EM algorithm for maximizing likelihoods in emission tomography[J]. IEEE Trans. Med. Imag., 1996, 15: 687-699.
    [44] M. E. Daube-Whitherspoon, S. Matej, J. S. Karp, et al. Application of the 3D row action maximum likelihood algorithm to clinical PET imaging[J]. IEEE Trans. Nucl. Sci., 2001, 48: 24-30.
    [45] A. P. Sage, J. L. Melsa. Estimation Theory with Applications to Communications and Control[M]. New York: McGraw-Hill Book Com. 1971.
    [46] L. A. Shepp, Y. Vardi. Maximum likelihood restoration for emission tomography[J]. IEEE Trans. Med. Imaging, 1982, 1:113-122.
    [47] K. Huang. Introduction to Statistical Physics[M]. London: Taylor & Francis. 2001.
    [48] L. Kaufman. Maximum likelihood, least squares, and penalized least squares for PET[J]. IEEE Trans. Med. Imag., 1993, 12: 200-214.
    [49] N. H. Clinthorne. Constrained least-squares vs. maximum likelihood reconstructions for positron data[C]. in Proceedings of the 1992 IEEE Nucl. Sci. Symposium and Med. Imag. Conf. (NSSMIC). San Francisco: NSSMIC. 1992, 1237-1239.
    [50] K. Sauer, C. Bouman. A local update strategy for iterative reconstruction from projections[J]. IEEE Trans. Sig. Proc., 1993, 41(2): 534-548.
    [51] C. Bouman, K. Sauer. A unified approach to statistical tomography using coordinate descent optimization[J]. IEEE Trans. Image Processing, 1996, 5(3): 480 – 492.
    [52] J. A. Fessler. Penalized weighted least-squares image reconstruction for positron emission tomography[J]. IEEE Trans. Med. Imag., 1994, 13: 290-300.
    [53] J. Qi, R. M. Leahy. Resolution and noise properties of MAP reconstruction for fully 3-D PET[J]. IEEE Trans. Med. Imag., 2000, 19(5): 493-506.
    [54] Q. Li, E. Asma, J. Qi, J. R. Bading, et al. Accurate estimation of the fisher information matrix for the PET image reconstruction problem[J]. IEEE Trans. Med. Imaging, 2004, 23(9): 1057-1064.
    [55] J. Anderson, B. A. Mair, Murali Rao, et al. Weighted least-squares reconstruction methods for positron emission tomography[J]. IEEE Trans. Med. Imag., 1997, 16: 159-165.
    [56] J. A. Fessler, N. H. Clinthorne, Leslie Rogers. On complete data spaces for PET reconstruction algorithms[J]. IEEE Trans. Nucl. Sci., 1993. 40(4): 1055-1061.
    [57] J. A. Fessler, A. O. Hero. New complete-data spaces and faster algorithms for penalized-likelihood emission tomography[C]. in Proceedings of the 1994 IEEE Nucl. Sci. Symp. Med. Imag. Conference (NSSMIC), Norfolk:NSSMIC. 1994, 1897-1901.
    [58] J. A. Fessler, A. O. Hero, Space-alternating generalized expectation-maximization algorithm[J]. IEEE Trans., Signal Proc., 1994, 42(10): 2664-2677.
    [59] J. A. Fessler, A. O. Hero. Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms[J]. IEEE Trans. Imag. Proc., 1995, 4(10): 1417-1429.
    [60] J. A. Fessler, E. P. Ficaro, N. H. Clinthorne, et al. Grouped-coordinate ascent algorithms for penalized-likelihood transmission image reconstruction[J], IEEE Trans. Med. Imag., 1997, 16(2): 166-175.
    [61] H. Q. Zhu, J. Zhou, H. Z. Shu, et al. A novel weighted least squares PET image reconstruction method using adaptive variable index sets[J]. Digital Signal Processing. 2006, 16: 106-119.
    [62] A. R. De Pierro. On the relation between the ISRA and the EM algorithm for positron emission tomography[J]. IEEE Trans. Med. Imag. 1993, 12(2): 328-333.
    [63] A. R. De Pierro. A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography[J]. IEEE Trans. Med. Imag., 1995, 14(1): 132-137.
    [64] J. A. Fessler. H. Erdo?an, A paraboloidal surrogates algorithm for convergent penalized-likelihood emission image reconstruction[C], In Proceedings of the 1999 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSSMIC), xxx: NSSMIC. 1999, 1132-1135.
    [65] H. Erdo?an, J. A. Fessler. Monotonic algorithms for transmission tomography[J], IEEE Trans. Med. Imag., 1999, 18(9): 801-814.
    [66] H. Erdo?an, J. A. Fessler, Ordered subsets algorithms for transmission tomography[J]. Phys. Med. Biol. 1999, 44: 2835-2851.
    [67] J. Zheng, S. Saquib, K. Sauer, et al. Parallelizable Bayesian tomography algorithms with rapid, guaranteed convergence[J]. IEEE Trans. Imag. Proc., 2000, 9(10): 1745-1759.
    [68] M. Takahashi, K. Ogawa. Selection of projection set and the order of calculation in ordered subsets expectation maximization method[C]. In Proceedings of the 1997 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSSMIC). New Mexico: NSSMIC. 1997. 1408-1412.
    [69] H. Urabe, K. Ogawa, Improvement of reconstructed images in ordered subset Bayesian reconstruction method[C], In Proceedings of the 1998 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSSMIC), Toronto: NSSMIC. 1998, 1342-1346.
    [70] J. Sheng, D. Liu, An improved maximum likelihood approach to image reconstruction using ordered subsets and data subdivisions[J]. IEEE Trans. Nucl. Sci., 2004, 51(1): 130-135.
    [71] C. Byrne. Choosing parameters in block-iterative or ordered-subset reconstruction algorithms[C]. in Proceedings of the 2004 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSSMIC). Rome: NSSMIC, 2004, 2538-2542.
    [72] J. Llacer, E. Veklerov, Stopping rule for the MLE algorithm based on statistical hypothesis testing[J]. IEEE Trans. Med Imag., 1987, 6(4): 313-319.
    [73] D. L. Snyder, M. I. Miller. The use of sieves to stabilize images produced with the EM algorithm for emission tomography[J]. IEEE Trans. Nucl. Sci. 1985, 32: 3864-3872.
    [74] D. W. Wilson, B. M. W. Tsui. Noise properties of filtered-backprojection and ML-EM reconstructed emission tomographic images[J]. IEEE Trans. Nucl. Sci. 1993, 40(4): 1198-1203.
    [75] E. J. Soares, C. L. Byrne, S. J. Glick. Noise characterization of block-iterative reconstruction algorithms. I. Theory[J]. IEEE Trans. Medical Imaging, 2000, 19(4): 261-270.
    [76] F. J. Beekman, E. Slijpen, W. J. Niessen. Selection of task-dependent diffusion filters for the post-processing of SPECT images[J]. Phy. Med. Biol., 1998, 43: 1713-1730.
    [77] J. Nuyts, J. A. Fessler. A penalized-likelihood image reconstruction method for emission tomography compared to postesmoothed maximum-likelihood with matched spatial resolution[J]. IEEE Trans. Med. Imag., 2003, 22(9): 1042-1052.
    [78] A. N. Tikhonov, V. Y. Arsenin. Solutions of Ill-posed Problems[M]. Washington: Winston & Sons. 1977.
    [79] E. Levitan, G. T. Herman. A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography[J]. IEEE Trans. Med. Imag., 1987, 6: 185-192.
    [80] D. F. Yu, J. A. Fessler. Edge-preserving tomographic reconstruction with nonlocal regularization[J]. IEEE Trans. Med. Imag., 2002, 21(2): 159-173.
    [81] D. Mumford, J. Shah. Optimal approximation by piecewise smooth functions and associated variational problems[J]. Commu. on Pure Appl. Mathe., 1989, 42(1): 577-685.
    [82] V. Elangovan, R. T. Whitaker. From sinograms to surfaces: A direct approach to the segmentation of tomographic data[C]. In Proceedings of the 2001 International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI). Utrecht: MICCAI, 2001, 2208: 213-223.
    [83] J. P. Bruandet, F. Peyrin, J. M. Dinten, et al. Binary objects tomographic reconstruction from few noisy X-ray radiographs using a region based curve evolution method[C]. In Proceedings of the 2001 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSSMIC). San Diego: NSSMIC, 2001, 3: 1717-1719.
    [84] J. C. Ye, Y. Bresler, P. Moulin. A self-referencing level-set method for image reconstruction from sparse Fourier samples[J]. International Journal of Computer Vision, 2002, 50(3): 253-270.
    [85] C. V. Alvino, A. J. Yezzi Jr. Tomographic reconstruction of piecewise smooth images[C]. in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (ICCVPR). Washington: ICCVPR. 2004, 576-581.
    [86] H. Q. Zhu, J. Zhou, H. Z. Shu, et al. An edge-preserving minimum cross-entropy algorithm for PET image reconstruction using multiphase levelset method[C]. in Proceedings of the 2005 IEEE Intl. Conf. Acoustics, Speech, and Signal Processing (ICASSP). Philadelphia: ICASSP, 2005, 2: 469-472.
    [87] S. Osher, J. A. Sethian. Front propagating with curvature-dependent speed[J]. Journal of Computational Physics, 1988, 79: 12-49.
    [88] G. Gindi, M. Lee, A. Rangarajan, et al. Bayesian reconstruction of functional images using anatomical information as priors[J], IEEE Trans. Med. Imag., 1993, 13: 670-680.
    [89] B. A. Ardekani, M. Braun, B. F. Hutton, et al. Minimum cross-entropy reconstruction of PET images using prior anatomical information[J]. Phys. Med. Biol. 1996, 41: 2497-2517.
    [90] A. O. Hero, R. Piramuthu, J. A. Fessler, et al. Minimax emission computed tomography using high-resolution anatomical side information and B-spline models[J]. IEEE Info. Theory, 1999, 45(3): 920-938.
    [91] K. Baete, J. Nuyts, W. Van Paesschen, et al. Anatomical based FDG-PET reconstruction for the detection of hypo-metabolic regions in epilepsy[J]. IEEE Trans Med Imaging, 2004, 23(4): 510-519.
    [92] E. Mumcuo?lu, R. Leahy, S. R. Cherry, et al. Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images[J]. IEEE Trans. Med. Imag., 1994, 13(4): 687-701.
    [93] T. Hebert, R. Leahy. A generalized EM algorithm for 3D ayesian reconstruction from Poisson data using Gibbs priors[J]. IEEE Trans. Med. Imag., 1989, 8: 194-202.
    [94] P. J. Green. Bayesian reconstructions from emission tomography data using a modified EM algorithm[J]. IEEE Trans. Med. Imag., 1990, 9(1): 84-93.
    [95] A. R. De Pierro, M. E. Yamagashi. Fast EM-like methods for maximum "a posteriori" estimates in emission tomography[J], IEEE Trans. Med. Imag., 2001, 20(4): 280-288.
    [96] Y. Pawitan, F. O'Sullivan. Data-dependent bandwidth selection for emission computed tomography Reconstruction[J]. IEEE Trans. Med. Imag., 1993, 12: 167-172.
    [97] N. P. Galatsanos, A. K. Katsaggelos, Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation[J]. IEEE Trans. Imag. Proc., 1992, 1: 322-336.
    [98] M. G. Kang, A. K. Katsaggelos, General choice of the regularization functional in regularized image restoration[J]. 1995, 4(5): 594-602.
    [99] W. Chen, M. Chen, J. Zhou. Adaptive regularized constrained total least-squares image restoration[J]. IEEE Trans. Imag. Proc., 2000, 9(4): 588-596.
    [100] M. Mohammad-Djafari. On the estimation of byperparameters in Bayesian approach of solving inverse problems[C]. in Proceedings of the 1993 IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP). Minneapolis: ICASSP. 1993, 495-498.
    [101] G. Winkler. Image analysis, random fields and dynamic Monte Carlo methods: A mathematical introduction[M]. New York: Springer-Verlag. 1995.
    [102] Z. Zhou, R. Leahy, J. Qi. Approximate maximum likelihood hyperparameter estimation for Gibbs priors[J]. IEEE Trans. Imag. Proc., 1997, 6: 844-861.
    [103] S. Saquib, C. A. Bouman, K. Sauer. ML Parameter estimation for Markov random fields with applications to Bayesian tomography[J]. IEEE Trans. Imag. Proc., 1998, 7(7): 1029-1044.
    [104] C. Riddell, H. Benali, I. Buvat. Diffusion regularization for iterative reconstruction in emission tomography[J]. IEEE Trans. Nucl. Sci., 2004, 51(3): 712-718.
    [105] J. A. Fessler, W. L. Rogers. Spatial resolution properties of penalized-likelihood image reconstruction methods: Space-invariant tomographs[J]. IEEE Trans. Imag. Proc., 1996, 5: 1346-1358.
    [106] J. Qi, R. Leahy. A theoretical study of the contrast recovery and variance of MAP reconstructions from PET data[J]. IEEE Trans. Med. Imags., 1999, 18(4): 293-305.
    [107] J. Qi, R. Leahy. Resolution and noise properties MAP reconstruction for fully 3D PET[J]. IEEE Trans. Med. Imag., 2000, 19: 493-506.
    [108] J. W. Stayman, J. A. Fessler, Regularization for uniform spatial resolution properties in penalized-likelihood image reconstruction[J]. IEEE Trans. Med. Imag., 2000, 19: 601-615.
    [109] J. A. Fessler. Analytical approach to regularization design for isotropic spatial resolution[C]. In Proceedings of the 2003 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSSMIC). Portland: NSSMIC. 2003, 2022-2026.
    [110] J. W. Stayman, J. A. Fessler, Compensation for nonuniform resolution using penalized-likelihood reconstruction in space-variant imaging systems[J]. IEEE Trans. Med. Imag., 2004, 23(3): 269-284.
    [111] H. Liu, Y. Tian, P. Shi. PET image reconstruction: a robust state space approach[C]. In Proceedings of the 2005 Int. Conf. Information Processing in Medical Imaging (IPMI). Glenwood: IPMI. 2005, 197-209.
    [1] J. A. Fessler, W. L. Rogers. Spatial resolution properties of penalized-likelihood image reconstruction: Space-invariant tomographs[J]. IEEE Trans. Imag. Proc., 1996, 5(9): 1346-1358.
    [2] J. Qi, R. M. Leahy. Resolution and noise properties of MAP reconstruction for fully 3-D PET[J]. IEEE Trans. Med. Imag., 2000, 19(5): 493-506.
    [3] V. Selivanov, Y. Picard, J. Cadorette, et al. Detector response models for statistical iterative image reconstruction in high resolution PET[J]. IEEE Trans. Nucl. Sci., 2000: 1168-1175.
    [4] M. Rafecas, G. B?ning, B. J. Pichler, et al. Effect of noise in the probability matrix used for statistical reconstruction of PET data[J]. IEEE Trans. Nucl. Sci., 2004, 35: 603-607.
    [5] J. M. Ollinger, J. A. Fessler. Positron emission tomography[J]. IEEE Trans. Sig. Proc. Magazine, 1997, 14: 43-55.
    [6] R. Leahy, J. Qi. Statistical approaches in quantitative positron emission tomography[J]. Statistics and Computing, 2000, 10: 147-165.
    [7] Y. Vardi, L. A. Shepp, L. Kaufman. A statistical model for positron emission tomography[J]. J. Am. Stat. Assoc. 1985, 80: 8-37.
    [8] L. Kaufman. Implementing and accelerating the EM algorithm for positron emission tomography[J]. IEEE Trans. Med. Imag., 1987, MI-6(1): 37-51.
    [9] E. Veklerov, J. Llacer. MLE reconstruction of a brain phantom using a Monte Carlo transition matrix and a statistical stopping rule[J]. IEEE Trans. Nucl. Sci., 1988, 35(1): 603-607.
    [10] G. B?ning, B. J. Pichler, M. Rafecas, et al. Implementation of Monte Carlo coincident aperture functions in image generation of a high resolution animal positron tomograph[J]. IEEE Trans. Nucl. Sci., 2001, 48(3): 805-810.
    [11] M. Rafecas, B. Mosler, M. Dietz, et al. Use of a Monte-Carlo based probability matrix for 3D iterative reconstruction of MADPET-II data[C]. In Proceedings of the 2003 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSSMIC). Portland: NSSMIC, 2003, 3: 1775-1779.
    [12] L. A. Shepp, Y. Vardi. Maximum likelihood restoration for emission tomography[J]. IEEE Trans. Med. Imaging, 1982, 1:113-122.
    [13] 华似韵. 随机过程[M]. 南京: 东南大学出版社. 1988.
    [14] 钱敏平. 随机过程引论[M]. 北京: 北京大学出版社. 1990.
    [15] 陈明. 信息与通信工程中的随机过程[M]. 北京: 科学出版社. 2005.
    [16] K. Lange, R. Carson. EM reconstruction algorithms for emission transmission tomography[J]. J. Comput. Assisted Tomogr. 1984, 8: 302-316.
    [17] R. Fletcher. Practical Methods of Optimization[M]. Chichester: Wiley. 1987.
    [18] A. P. Dempster, N. M. Laird, D. B. Rubin. Maximum likelihood for incomplete data via the algorithm[J]. Journal of the Royal Statistical Society B, 1977, 39: 1-38.
    [19] 龚光鲁. 钱敏平. 应用随机过程教程及在算法和智能计算中的随机模型[M]. 北京: 清华大学出版社. 2004.
    [20] C. F. J. Wu. On the convergence properties of the EM algorithm[J]. Ann. Statisti., 1983, 11: 95-103.
    [21] J. A. Fessler, A. O. Hero, Space-alternating generalized expectation-maximization algorithm[J]. IEEE Trans., Signal Proc., 1994, 42(10): 2664-2677.
    [22] J. A. Fessler, A. O. Hero. Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms[J]. IEEE Trans. Imag. Proc., 1995, 4(10): 1417-1429.
    [23] J. A. Fessler, A. O. Hero. New complete-data spaces and faster algorithms for penalized-likelihood emission tomography[C]. in Proceedings of the 1994 IEEE Nucl. Sci. Symp. Med. Imag. Conference (NSSMIC), Norfolk: NSSMIC. 1994, 1897-1901.
    [24] S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory[M]. New York: Prentice Hall, Inc. 1993.
    [25] L. Kaufman. Maximum likelihood, least squares, and penalized least squares for PET[J]. IEEE Trans. Med. Imag., 1993, 12: 200-214.
    [26] C. Bouman, K. Sauer. A unified approach to statistical tomography using coordinate descent optimization[J]. IEEE Trans. Image Processing, 1996, 5(3): 480-492.
    [27] J. A. Fessler. Penalized weighted least-squares image reconstruction for positron emission tomography[J]. IEEE Trans. Med. Imag., 1994, 13: 290-300.
    [28] N. H. Clinthorne. Constrained least-squares vs. maximum likelihood reconstructions for positron data[C]. in Proceedings of the 1992 IEEE Nucl. Sci. Symposium and Med. Imag. Conf. (NSSMIC). San Francisco: NSSMIC. 1992, 1237-1239.
    [29] J. Anderson, B. A. Mair, Murali Rao, et al. Weighted least-squares reconstruction methods for positron emission tomography[J]. IEEE Trans. Med. Imag., 1997, 16: 159-165.
    [30] Q. Li, E. Asma, J. Qi, J. R. Bading, et al. Accurate estimation of the fisher information matrix for the PET image reconstruction problem[J]. IEEE Trans. Med. Imaging, 2004, 23(9): 1057-1064.
    [31] Z. H. Cho. Foundations of Medical Imaging[M]. New York: John Wiley & Sons, 1993.
    [32] G. Tarantola, F. Zito, P. Gerundini. PET instrumentation and reconstruction algorithms in whole-body applications[J]. J. Nuc. Med. 2003, 44(5): 756-769.
    [33] G. A. F. Seber. Multivariate Observations[M]. Hoboken: Wiley-Interscience. 2004.
    [1] A. N. Tikhonov, V. Y. Arsenin. Solutions of Ill-posed Problems[M]. Washington: Winston &Sons. 1977.
    [2] J. M. Ollinger, J. A. Fessler. Positron emission tomography[J]. IEEE Signal Processing Magazine, 1997, 14(1): 43-55.
    [3] A. P. Sage, J. L. Melsa. Estimation Theory with Applications to Communications and Control[M]. New York: McGraw-Hill Book Com. 1971.
    [4] S. M. Kay. Foundamentals of Statistical Signal Processing. Volumn I: Estimation Theory[M]. New York: Prentice Hall, Inc. 1993.
    [5] S. Z. Li. Markov Random Field Modeling in Image Analysis[M]. Tokyo: Springer. 2001.
    [6] 龚光鲁. 钱敏平. 应用随机过程教程及在算法和智能计算中的随机模型[M]. 北京: 清华大学出版社. 2004.
    [7] C. Bouman, K. Sauer. A generalized Gaussian image model for edge-preserving MAP estimation[J]. IEEE Trans. Imag. Proc., 1993, 2(3): 296-310.
    [8] C. Bouman, K. Sauer. A unified approach to statistical tomography using coordinate descent optimization[J]. IEEE Trans. Image Processing, 1996, 5(3): 480-492.
    [9] P. J. Green. Bayesian reconstructions from emission tomography data using a modified EM algorithm[J]. IEEE Trans. Med. Imag., 1990, 9(1): 84-93.
    [10] J. A. Fessler, A. O. Hero. Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms[J]. IEEE Trans. Imag. Proc., 1995, 4(10): 1417-1429.
    [11] A. B. Hamza, H. Krim, G. B. Unal. Unifying probabilistic and variational estimation[J]. IEEE Signal Processing Magazine. 2002, 37-47.
    [12] J. Besag. Toward Bayesian image analysis[J]. J. Appl. Stat., 1989, 16: 395-407.
    [13] E. Jonsson, S. Huang, T. Chan. Total variation regularization in positron emission tomography[J]. UCLA CAM Report 1998, 98-48.
    [14] V. Y. Panin, G. L. Zeng, G. T. Gullberg. Total variation regulated EM algorithm [SPECT reconstruction][J]. IEEE Trans. Nucl. Sci., 1999, 46(6): 2202-2210.
    [15] A. Blake, A. Zisserman. Visual Reconstruction[M]. Cambridge: MIT Press. 1987.
    [16] S. Geman, D. McClure. Statistical methods for tomographic image reconstruction[J]. Bull. Int. Stat. Inst., 1987, 4: 5-21.
    [17] D. Geman, G. Reynolds. Constrained parameters and the recovery of discontinuities[J]. IEEE Trans. Pattern Anal. Machine Intell., 1992, 14: 367-383.
    [18] T. Hebert, R. Leahy. A generalized EM algorithm for 3-d Bayesian reconstruction from Poisson data using Gibbs priors[J]. IEEE Trans. Med. Imag., 1989, 8: 194-202.
    [19] D. S. Lalush, B. M. W. Tsui. A generalized Gibbs prior for maximum a posteriori reconstruction in SPECT[J]. Phy. Med. Biol., 1993, 38: 729-741.
    [20] G. Aubert, P. Kornprobst. Mathematical problems in image processing: partial differential equations and the calculus of variations[M]. New York: Springer. 2001.
    [21] R. Fletcher. Practical Methods of Optimization[M]. Chichester: Wiley. 1987.
    [22] J. A. Fessler, A. O. Hero. Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms[J]. IEEE Trans. Imag. Proc., 1995, 4(10): 1417-1429.
    [23] J. Besag. On the statistical analysis of dirty pictures[J]. J. Roy. Statist. Soc. Series B, 1986, 48(3): 259-302. 参考文献
    [24] M. Pawlak. On the reconstruction aspect of moment descriptors[J]. IEEE Trans. Inform. Theory, 1992, 38: 1698-1708.
    [25] D. Shen, H. H. S. Ip. Discriminative wavelet shape descriptors for recognition of 2-D patterns[J]. 1999, 32: 151-166.
    [26] P. Mathieu, M. Antonini, M. Barlaud, et al. Image coding using wavelet transform[J]. IEEE Trans. Pattern Anal. Machine Intell., 1989, 11: 674-693.
    [27] D. T. Vuza, U. Amato. Besov regularization, thresholding and wavelets for smoothing data[J]. Numer. Funct. Anal. Optim., 1997, 18(5): 461-493.
    [28] M. Belge, M. E. Kilmer, E. L. Miller. Wavelet domain image restoration with adaptive edge-preserving regularization[J]. IEEE Trans. Imag. Proc., 2000, 9(4): 597-608.
    [29] W. H?rdle, G. Kerkyacharian, D. Picard, et al. Wavelets, Application and Statistical Applications[EB/OL]. Seminar Berlin-Paris.
    [30] S. Mallat. A theory for multiresolution signal decomposition: The wavelet representation[J]. IEEE Trans. Pattern Anal. Machine Intell., 1989, 11: 674-693.
    [31] D. S. Bernstein. Matrix Mathematics: Theory, Facts, and Formulas with Application to Linear Systems Theory[M]. Princeton: Princeton University Press. 2005.
    [32] D. Donoho. Nonlinear solution of linear inverse problems by wavelet-vaguelette decompositions[J]. J. Appl. Comput. Harmonic Anal., 1995, 2(2): 101-126.
    [33] A. Delaney and Y. Bresler. Multiresolution tomographic reconstruction using wavelets[J]. IEEE Trans. Imag. Proc., 1995, 4: 799-813.
    [34] Y. Choi, J. Y. Koo, N. Y. Lee. Image reconstruction using the wavelet transform for positron emission tomography[J]. IEEE Trans. Med. Imag., 2001, 20(11): 1188-1193.
    [35] J. Kalifa, A. Laine, P. D. Esser. Regularization in tomographic reconstruction using thresholding estimators[J]. IEEE Trans. Med. Imag., 2003, 22(3): 351-359.
    [36] N. Y. Lee, B. J. Lucier. Wavelet methods for inverting the Radon transform with noisy data[J]. IEEE Trans. Imag. Proc., 2001, 10(1): 79-94.
    [37] M. A. T. Figueiredo, R. D. Nowak. An EM algorithm for wavelet-based image restoration[J]. IEEE Trans. Imag. Proc., 2003, 12(8): 906-916.
    [38] M. Rantala, S. V?nsk?, S. J?rvenp??, et al. Wavelet-based reconstruction for limited-angle X-ray tomography[J]. IEEE Trans. Med. Imag., 2006, 25(2): 210-217.
    [39] M. R. Banham, A. K. Katsaggelos. Spatially adaptive wavelet-based multiscale image restoration[J]. IEEE Trans. Imag. Proc., 1996, 5: 619-633.
    [40] M. Bhatia, W. C. Karl, A. S. Willsky. A wavelet-based method for multiscale tomographic reconstruction[J]. IEEE Trans. Med. Imag. 1996, 15(1): 92-101.
    [41] T. Frese, C. A. Bouman, K. Sauer. Adaptive wavelet graph model for Bayesian tomographic reconstruction[J]. IEEE Trans. Imag. Proc., 2002, 11(7): 756-770.
    [42] R. Neelamani, H. Choi, R. Baraniuk. ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems[J]. IEEE Trans. Sig. Proc., 2004, 52(2): 418-433.
    [43] L. Zhang, P. Bao, X. Wu. Multiscale LMMSE-based image denoising with optimal wavelet selection[J]. IEEE Trans. Circ. Sys. Video. Tech. 2005, 15(4): 469-481.
    [44] J. A. Fessler. Penalized weighted least-squares image reconstruction for positron emission tomography[J]. IEEE Trans. Med. Imag., 1994, 13: 290-300.
    [45] E. P. Simoncelli, E. Adelson. Noise removal via Bayesian wavelet coring[C]. In Proceedings of the 1996 IEEE Int. Conf. Image Processing (ICIP). Lausanne: ICIP. 1996, 379-382.
    [46] R. A. DeVore, B. Jawerth, B. J. Lucier. Image compression through wavelet transform coding[J]. IEEE Trans. Inform. Theory. 1992, 38: 719-747.
    [47] D. Donoho. Denoising by soft-thresholding[J]. IEEE Trans. Info. Theory, 1995, 41: 613-627.
    [48] I. Daubechies. Ten Lectures on Wavelets[M]. SIAM. 1992.
    [49] D. Geman, C. Yang. Nonlinear image recovery with half-quadratic regularization[J]. IEEE Trans. Imag. Proc., 1995, 4(7): 932-946.
    [1] J. M. Ollinger, J. A. Fessler. Positron emission tomography[J]. IEEE Signal Processing Magazine, 1997, 14(1): 43-55.
    [2] L. Kaufman. Maximum likelihood, least squares, and penalized least squares for PET. IEEE Trans. Med. Imag., 1993, 12: 200-214.
    [3] J. A. Fessler. Penalized weighted least-squares image reconstruction for positron emission tomography[J]. IEEE Trans. Med. Imag., 1994, 13: 290-300.
    [4] H. Lanteri, M. Roche, O. Cuevas, et al. A general method to devise maximum-likelihood signal restoration multiplicative algorithms with non-negativity constraints. Signal Processing. 2001, 81: 945-974.
    [5] S. M. Kay. Fundamentals of Statistical Signal Processing. Volume I: Estimation Theory[M]. New York: Prentice Hall, Inc. 1993.
    [6] S. Haykin. Introduction to Adaptive Filters[M]. New York: Macmillan. 1984.
    [7] F. L. Lewis. Optimal Estimation: With An Introduction to Stochastic Control Theory[M]. New York: Wiley. 1986.
    [8] B. D. O. Anderson, J. B. Moore. Optimal Filtering[M]. Englewood Cliffs: Prentice-Hall. 1979.
    [9] M. S. Grewal, A. P. Andrews. Kalman Filtering: Theory and Practice Using MATLAB. Second Edition. New York: John Wiley & Sons, Inc. 2001.
    [10] R. N. Gunn, S. R. Gunn, F. E. Turkheimer, et al. Tracer Kinetic Modeling via Basis Pursuit[M]. San Diego: Academic Press. 2002.
    [11] G. Blomqvist. On the construction of functional maps in positron emission tomography[J]. J. Cerebral Blood Flow and Metabolism. 1984, 4: 629-632.
    [12] T. Greitz, D. H. Ingvar, L. Widen. The Metabolism of the Human Brain Studied With Positron Emission Tomography[M]. New York: Raven. 1985.
    [13] H. Liu, Y. Tian, P. Shi. PET image reconstruction: a robust state space approach[C]. In Proceedings of the 2005 Int. Conf. Information Processing in Medical Imaging (IPMI). Glenwood: IPMI. 2005, 197-209.
    [14] A. Asif, M. F. Moura. Data assimilation in large time-varying multidimensional fields. IEEE Trans. Imag. Proc., 1999, 8(11): 1593-1607.
    [15] T. M. Chin, W. C. Karl, A. S. Willsky. Probabilistic and sequential computation of optimal flow using temporal coherence. IEEE Trans. Imag. Proc. 1994, 3(6): 773-788.
    [16] C. Bouman, K. Sauer. A unified approach to statistical tomography using coordinate descent optimization. IEEE Trans. Image Processing, 1996, 5(3): 480-492.
    [17] J. Besag. On the statistical analysis of dirty pictures[J]. J. Roy. Statist. Soc. Series B, 1986, 48(3): 259-302.
    [18] R. Fletcher. Practical Methods of Optimization[M]. Chichester: Wiley. 1987.
    [1] G. T. Herman. Image reconstruction from projections: The fundamentals of computational tomography[M]. New York: Academic Press. 1980.
    [2] S. R. Deans. The Radon transform and some of its applications[M]. New York: Wisley & Sons. 1983.
    [3] S. Helgason. The Radon transform. Boston: Birkhuser[M]. 1980.
    [4] R. M. Lewitt. Reconstruction algorithms: Transform methods[J]. Proc. IEEE, 1983, 71(3): 390-408.
    [5] M. Defrise, R. Clack, D. W. Townsend. Image reconstruction from truncated, two-dimensional, parallel projections[J]. Inverse Problem, 1995, 11: 287-313.
    [6] P. Grangeat, P. Sire, R. Guillemaud. Indirect cone-beam three dimensional image reconstruction, in contemporary perspectives in three-dimensional biomedical imaging[M]. C. Roux and J. L. Coatrieux Eds, IOS Press, 1997.
    [7] A. M. Cormack. Representation of a function by its line integrals, with some radiological applications[J]. J. Appl. Phys., 1963, 45: 2722-2730.
    [8] K. M. Hanson, G. W. Wecksung. Local basis-function approach to computed tomography[J]. Applied Optics. 1985, 24: 4028-4039.
    [9] A. B. Goncharev. Methods of integral geometry and recovering a function with compact support from its projections in unknown directions[J]. Acta Appl. Math., 1988, 11: 213-222.
    [10] D. Salzman. A method of general moments for orienting 2D projections of unknown 3D objects[J]. Comput. Vis. Graph. Imag. Proc., 1990, 50: 129-156.
    [11] P. M. Milanfar, W. C. Karl, A. S. Willsky. A moment-based variational approach to tomographic reconstruction[J]. IEEETrans. Imag. Proc., 1996, 5: 459-470.
    [12] S. Basu, Y. Bresler. Uniqueness of tomography with unknown view angles[J]. IEEE Trans. Imag. Proc., 2000, 9: 1094-1106.
    [13] S. Basu, Y. Bresler. Feasibility of tomography with unknown view angles[J]. IEEE Trans. Imag. Proc., 2000, 9: 1107-1122.
    [14] T. J. Wang, T. W. Sze. The image moment method for the limited range CT image reconstruction and pattern recognition[J]. Pattern Recognition. 2001, 34: 2145-2154.
    [15] M. R. Teague. Image analysis via the general theory of moments[J]. J. Opt. Soc. Am., 1980, 70: 920-930.
    [16] D. Shen, H. H. S. Ip. Discriminative wavelet shape descriptors for recognition of 2D pattern[J]. Pattern Recognition. 1999, 32: 151-165.
    [17] M. Abramowitz, C. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[M]. New York: Dover. 1972.
    [18] M. Petkovsek, H. S. Wilf, D. Zeilberger. A = B[M], Pennsylvania: AK Peters, Ltd. 1996.
    [19] R. Rangayyan, A. P. Dhwawan, R. Gordon. Algorithms for limited-view computed tomography: An annotated bibliography and a challenge[J]. Appl. Optics. 1985, 24: 4000-4012.
    [20] J. T. Dobbins III, D. J. Godfrey. Digital x-ray tomosynthesis: Current state of the art and clinical potential[J]. Phys. Med. Biol. 2003, 48: R65-R106.
    [21] R. Freifelder, C. Cardi, I. Grigoras, et al. First results of a dedicated breast PET imager, BPET, using NaI(T1) curve plate detectors[C]. In Proceedings of the 2001 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSSMIC). San Diego: NSSMIC. 2001, 3: 1241-1245.
    [22] I. G. Kazantsev, S. Matej, R. M. Lewitt. Limited angle tomography and ridge functions[C]. In Proceedings of the 2003 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSSMIC). Portland: NSSMIC. 2003, 1706-1710.
    [23] C. H. Teh, R. T. Chin. On image analysis by the methods of moments[J]. IEEE Trans. Pattern Anal. Machine Intell., 1988, 10: 496-513.
    [24] M. Pawlak. On the reconstruction aspect of moment descriptors[J]. IEEE Trans. Inform. Theory, 1992, 38: 1698-1708.
    [25] S. X. Liao, M. Pawlak. On image analysis by moments[J]. IEEE Trans. Pattern Anal. Machine Intell., 1996, 18: 254-266.
    [26] J. Yin, A. R. De Pierro, M. Wei. Analysis for the reconstruction of a noisy signal based on orthogonal moments[J]. Applied Mathmematics and Computation. 2002, 132: 249-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700