用户名: 密码: 验证码:
图像及视频序列的超分辨率重建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像及视频序列的超分辨率重建,是近年来图像处理领域的一个研究热点,不仅在理论上具有重要意义,在实用中也有迫切需求。本论文的主要工作围绕图像及视频序列的超分辨率重建展开,具体内容包括:
     (1)不完全数据重建的病态性及其正则化处理。首先给出了不完全数据超分辨率重建的数学描述,分析了最小二乘估计及其病态性;其次针对不完全数据重建的病态性,分别采用两种不同观点对正则化处理进行了深刻阐述:一是从分析的观点出发,通过对原问题能量泛函的修改,添加正则项,提出了基于变分原理和偏微分方程演化的不完全数据超分辨率重建框架;二是从概率统计的观点出发,利用贝叶斯框架和马尔可夫随机场理论,通过添加先验概率对原问题进行正则化;然后深入讨论了两种正则化观点的相似性和等价性,并详细研究了边缘自适应处理和各向异性演化问题;最后针对正则化参数的选取,提出了一种自适应动态确定正则化参数的方法。
     (2)单帧图像的超分辨率重建。主要分为三部分:第一部分讨论基于Hopfield神经网络框架的超分辨率重建算法,针对Paik-Hopfield网络的缺点,提出了基于状态连续变化的Paik-Hopfield网络和基于多精度层离散状态的Paik-Hopfield网络两种改进方法;第二部分研究了变分原理和偏微分方程演化在图像超分辨率重建中的应用,主要包括基于变分和基于各向异性演化的超分辨率重建;第三部分详细分析了图像的小波统计特性,联合空间域和小波域提出了基于小波域隐马尔可夫模型的超分辨率重建算法。L~p(1≤p≤2)
     (3)多帧图像或单视频序列的超分辨率重建。主要围绕运动估计和重建算法这两个超分辨率重建的关键问题进行展开:在运动估计部分,首先针对帧间模型为单映变换的视频序列提出了基于带指导的RANSAC特征匹配方法,其次针对普通视频序列提出了一种自适应的光流估计方法;在重建算法部分,首先讨论了基于批处理的静态重建,然后在深入研究帧间运动补偿矩阵和权值矩阵的基础上,发展出一种基于自适应滤波的视频序列超分辨率动态重建算法。
     (4)多视频序列的超分辨率重建。主要包括两部分:第一部分为视频序列的时间空间配准,提出了一种基于时空梯度和遗传演化策略相结合的混合等级估计方法;第二部分为视频序列的超分辨率重建,首先提出了一种时空流形模型,可以包括单帧灰度图像、单帧彩色图像、灰度视频和彩色视频,然后将此模型应用到多视频序列的超分辨率重建正则化处理中,得到了一种新型多视频序列的超分辨率重建算法。I
For decades, super-resolution reconstruction is an active topic in image and video processing which is theoretically important as well as practically urgent in many fields. This dissertation focuses on the super-resolution of image and video sequence. And the study is carried out in the following aspects:
     (1) The incompleted data reconstruction and its regularization. Because the incompleted data reconstruction is an inverse problem, its least square estimation is ill-posed. To overcome this difficulty, two regularization methods are adopted in the dissertation and their similarity and equality are illustrated vigorously. The one is variation and partial differential equation method, the regularization of ill-posed problem is processed by modifying the original energy functional. The other is the random probability method, using Bayesian and Markov random field theory, the original problem is regularized by adding prior probability item under the MAP frame. Finally, the anisotropic diffusion is introduced to preserve the detail of reconstructed signal, and an adaptive dynamic method is proposed for the choice of regularization parameters.
     (2) The super-resolution of single image. This part mainly consists of three irrelevant contents. At first, according to shortcomings of the classic Paik-Hopfield neural network, two modified algorithm are suggested, of which the node state and updating rule are changed continuously and discrete hierarchically, respectively. Secondly, using the variation and partial differential equation method, two super-resolution reconstruction algorithms based on L~p(1≤p≤2) norm and anisotropic diffusion are presented to apply in image super-resolution reconstruction. Lastly, after carefully study on image wavelet domain statistical property, a super resolution reconstruction algorithm is put forward based on wavelet-domain hidden Markov model.
     (3) The super-resolution of multi-image or single video sequence. Obviously, there are two key problems to be solved in the super-resolution of multi-image or single video sequence. On the
引文
[1] Borman S, Stevenson R. Spatial resolution enhancement of low-resolution image sequences a comprehensive review with directions for future research [DB/OL]. http://citeseer.ist.psu.edu/borman98spatial.html, 1998.
    [2] Park S C, Park M K, Kang M G. Super-resolution image reconstruction: a technical overview [J]. IEEE Signal Processing Magazine, 2003: 21-36.
    [3] Farsiu S, Robinson D, Elad M, et al. Advances and challenges in super-resolution [J]. International Journal of Imaging Systems and Technology. 2004, 14(2): 47-57.
    [4] Harris J L. Diffraction and resolving power [J]. Journal of the Optical Society of America, 1964, 54(7): 931-936.
    [5] Slepian D, Pollak H. Prolate spheroidal wave functions, Fourier analysis and uncertainty-I [J], Bell System Technical Journal, 1961, 40(1): 43-63.
    [6] Gerchberg R W. Super-resolution through error energy reduction. Optical Acta, 1974, 21(9): 709-720.
    [7] Papoulis A. A new algorithm in spectral analysis and band-limited extrapolation [J]. IEEE Transactions on Circuits and Systems, 1975, 22(9): 735-742.
    [8] Tsai R Y, Huang T S. Multiframe image restoration and registration [C], In: Advances in Computer Vision and Image Processing: Image Reconstruction from Incomplete Observations. Elsevier Science Ltd, 1984: 317-339.
    [9] Kim S P, Bose N K, Valenzuela H M. Recursive reconstruction of high resolution image from noisy undersampled multiframes [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(6): 1013-1027.
    [10] Bose N K, Kim H C, Valenzuela H M. Recursive implementation of total least squares algorithm for image reconstruction from noisy, undersampled multiframes [C]. In: Proceedings of IEEE Conference on Acoustics, Speech and Signal Processing. 1993, 5: 269-272.
    [11] Rhee S H, Kang M G. Discrete cosine transform based regularized high-resolution image reconstruction algorithm [J]. Optical Engineering, 1999, 38(8): 1348-1356.
    [12] Spitzer F. Markov random fileds and Gibbs ensembles [J]. The American Mathematical Monthly, 1971, 78: 142-154.
    [13] Besag J. Spatial interaction and the statistical analysis of lattice systems [J]. Journal of the Royal Statistical Society: Series B, 1974, 36(2): 192-236.
    [14] Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images [J]. IEEE Transactions on Patten Analysis and Machine Intelligence, 1984, 6: 721-741.
    [15] Schultz R R, Stevenson R L. Extraction of high-resolution frames from video sequences [J], IEEE Transactions on Image Processing, 1996, 5(6): 996-1011.
    [16] Hardie R C, Barnard K J, Armstrong E E. Joint MAP registration and high-resolution image estimation using a sequence of undersampled images [J]. IEEE Transactions on Image Processing, 1997, 6: 1621-1633.
    [17] Shekarforoush H, Berthod M, Zerubia J. 3D super-resolution using generalized sampling expansion [C]. In: Proceedings of the IEEE International Conference on Image Processing. 1995, 2: 300-303.
    [18] Cheeseman P, Kanefsky B, Kraft R, et al. Super-resolved surface reconstruction from multiple images [DB/OL]. http://hanson.gmu.edu/image.pdf, 1994.
    [19] Sementilli P J, Nadar M S, Hunt B R. Poisson MAP super-resolution estimator with smoothness constraint [C]. In: Proceedings of the SPIE, Neural and stochastic methods in image and signal processing II. 1993: 2-13.
    [20] Hunt B R. Super-resolution of images: algorithms, principles, performance [J]. International Journal of Imaging Systems and Technology, 1995, 6(4): 297-308.
    [21] Tom B C, Katsaggelos A K. Reconstruction of a high-resolution image by simultaneous registration, restoration and interpolation of low-resolution images [C]. In: Proceedings of the IEEE International Conference on Image Processing. 1995, 2: 539-542.
    [22] Elad M, Feuer A. Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images [J]. IEEE Transactions on Image Processing, 1997, 6(12): 1646-1658.
    [23] Elad M, Feuer A. Superresolution restoration of an image sequence: adaptive filtering approach [J]. IEEE Transactions on Image Processing, 1999, 8(3): 387-395.
    [24] Elad M, Feuer A. Super-resolution reconstruction of image sequences [J]. IEEE Transactions on Patten Analysis and Machine Intelligence, 1999, 21(9): 817-834.
    [25] Ozkan M K, Tekalp A M, Sezan M I. POCS-based restoration of space-varying blurred images [J]. IEEE Transactions on Image Processing, 1994, 3: 450-454.
    [26] Stark H, Oskoui P. High-resolution image recovery from image-plane arrays, using convex projections [J]. Journal of the Optical Society of America A, 1989, 6(11): 1715-1726.
    [27] Tekalp A M, Ozkan M K, Sezan M I. High-resolution image reconstruction from lower-resolution image sequences and space varying image restoration [C]. In: Proceedings IEEE International Conference on Acoustics, Speech and Signal Processing. 1992, 3: 169-172.
    [28] Patti A J, Sezan M I, Tekalp A M. Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time [J]. IEEE Transactions on Image Processing,1997, 6(8): 1064-1076.
    [29] Eren P E, Sezan M I, Tekalp A M. Robust, object-based high-resolution image reconstruction from low-resolution video [J]. IEEE Transactions on Image Processing, 1997, 6(10): 1446-1451.
    [30] Patti A J, Altunbasak Y. Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolants [J]. IEEE Transactions on Image Processing, 2001, 10(1): 179-186.
    [31] Tom B C, Katsaggelos A K. An iterative algorithm for improving the resolution of video sequences [C]. In: Proceedings of SPIE Conference Visual Communications and Image Processing. 1996: 1430-1438.
    [32] Hong M C, Kang M G, Katsaggelos A K. An iterative weighted regularized algorithm for improving the resolution of video sequences [C]. In: Proceedings of the IEEE International Conference on Image Processing. 1997, 2: 474-477.
    [33] Kang M G. Generalized multichannel image deconvolution approach and its applications [J]. Optical Engineering, 1998, 37(11): 2953-2964.
    [34] Hardie R C, Barnard K J, Bognar J G, et al. High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system [J]. Optical Engineering, 1998, 37(1): 247-260.
    [35] Bose N K, Lertrattanapanich S, Koo J. Advances in superresolution using L-curve [C]. In: Proceedings of International Symposium Circuits and Systems. 2001, 2: 433-436.
    [36] Keren D, Peleg S, Brada R. Image sequence enhancement using subpixel displacements [C]. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1988: 742-746.
    [37] Ur H, Gross D. Improved resolution from sub-pixel shifted pictures [J]. CVGIP: Graphical Models and Image Processing, 1992, 54: 181-186.
    [38] Alam M S, Bognar J G, Hardie R C, et al. Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames [J]. IEEE Transactions on Instrumentation and Measurement, 2000, 49: 915-923.
    [39] Shah N R, Zakhor A. Resolution enhancement of color video sequences [J]. IEEE Transactions on Image Processing, 1999, 8: 879-885.
    [40] Irani M, Peleg S. Improving resolution by image registration [J]. CVGIP: Graphical Models and Image Processing, 1991, 53: 231-239.
    [41] Irani M, Peleg S. Motion analysis for image enhancement resolution, occlusion, and transparency [J]. Journal of Visual Communication and Image Representation, 1993, 4: 324-335.
    [42] Mann S, Picard R W. Virtual bellows: Constructing high quality stills from video [C]. In: Proceedings of the IEEE International Conference on Image Processing. 1994: 13-16.
    [43] Farsiu S, Robinson D, Elad M, et al. Fast and robust multi-frame super-resolution [J]. IEEE Transactions on Image Processing, 2004, 13(10): 1327-1344.
    [44] Elad M. On the origin of the bilateral filter and ways to improve it [J]. IEEE Transactions on Image Processing, 2002, 11(10): 1141-1151.
    [45] Barash D. Bilateral filtering and anisotropic diffusion: towards a unified viewpoint [DB/OL]. http://citeseer.ist.psu.edu/655320.html, 2000.
    [46] Capel D P. Image mosaicing and super-resolution [D]: [博士学位论文]. London: University of Oxford, 2001.
    [47] Gilboa G, Sochen N, Zeevi Y Y. Forward-and-backward diffusion processes for adaptive image enhancement and denoising [J]. IEEE Transactions on Image Processing, 2002, 11(7): 689-703.
    [48] Altunbasak Y, Patti A J, Mersereau R M. Super-resolution still and video reconstruction from MPEG-coded video [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(4): 217-226.
    [49] Segall C A, Katsaggelos A K, Molina R, et al. Bayesian resolution enhancement of compressed video [J]. IEEE Transactions on Image Processing, 2004, 13(7): 898-911.
    [50] Segall C A, Molina R, Katsaggelos A K, et al. Reconstruction of high-resolution image frames from a sequence of low-resolution and compressed observations [C]. In: Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing. 2002, 2: 1701-1704.
    [51] Gunturk B K, Altunbasak Y, Mersereau R M. Super-resolution reconstruction of compressed video using transform-domain statistics [J]. IEEE Transactions on Image Processing, 2004, 13(1): 33-43.
    [52] Shechtman E, Caspi Y, Irani M. Space-time super-resolution [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(4): 531-545.
    [53] Zomet A, Peleg S. Multi-sensor super-resolution [C]. In: Proceedings of the IEEE Workshop on Applications of Computer Vision. 2001: 27-31.
    [54] Nguyen N, Milanfar P, Golub G. A computationally efficient superresolution image reconstruction algorithm [J]. IEEE Transactions on Image Processing, 2001, 10: 573-583.
    [55] Wirawan, Duhamel P, Maitre H. Multi-channel high resolution blind image restoration [C]. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. 1989: 3229-3232.
    [56] Baker S, Kanade T. Limits on super-resolution and how to break them [C]. In: Proceedingsof IEEE Conference Computer Vision and Pattern Recognition. 2000: 372-379.
    [57] Lin Z C, Shum H Y. Fundamental limits of reconstruction-based superresolution algorithms under local translation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 83-97.
    [58] 苏秉华, 金伟其, 牛丽红, 等. 基于Markov约束的泊松最大后验概率超分辨率图象复原法 [J]. 光子学报, 2002, 31(4): 492-496.
    [59] 张新明, 沈兰荪. 基于多尺度边缘保持正则化的超分辨率复原 [J]. 软件学报, 2003, 14(6): 1075-1081.
    [60] Jiang Z D, Wong T T, Bao H J. Practical super-resolution from dynamic video sequences [C]. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2003, 2: 549-554.
    [61] 潘逢治, 张立明. 用神经网络恢复残差的图像超分辨率算法 [J]. 电子学报, 2004(1): 161-165.
    [62] 汪雪林, 文伟, 彭思龙. 基于小波域局部高斯模型的图像超分辨率 [J]. 中国图象图形学报, 2004(8): 941-946.
    [63] Castleman K R. Digital image processing [M]. New Jersey: Prentice Hall, 1996.
    [64] Tikhonov A N. Regularization of incorrectly posed problems [J]. Soviet Mathematical Doklady, 1963, 4: 1624-1627.
    [65] Tikhonov A N, Arsenin V Y. Solutions of Ill-Posed Problems [M]. Washington: Winston/Wiley, 1977.
    [66] Golub G H, Van Loan C F. Matrix Computations [M]. Johns Hopkins University Press, 1996.
    [67] 邹谋炎. 反卷积和信号复原 [M]. 北京: 国防工业出版社, 2001.
    [68] Li S Z. Markov random field modeling in image analysis [M]. Tokyo: Springer, 2001.
    [69] Teboul S, Feraud L B, Aubert G, et al. Variational approach for edge-preserving regularization using coupled PDE's [J]. IEEE Transactions on Image Processing, 1998, 7: 387-397.
    [70] Aubert G, Kornprobst P. Mathematical problems in image processing: partial differential equations and the calculus of variations [M]. New York: Springer, 2001.
    [71] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D, 1992, 60: 259-268.
    [72] Rudin L, Osher S. Total variation based image restoration with free local constraints [C]. In: Proceedings of the IEEE International Conference on Image Processing. 1994, 1: 31-35.
    [73] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [J]. IEEE Transactions on Patten Analysis and Machine Intelligence, 1990, 12(7): 629-639.
    [74] Geman S, McClure D E. Bayesian image analysis: an application to single photon emissiontomography [C]. In: Proceedings of the Statistical Computing Section, American Statistical Association. 1985: 12-18.
    [75] Hebert T, Leahy R. Statistic-based MAP image restoration from Poisson data using Gibbs priors [J]. IEEE Transactions on Signal Processing, 1992, 40(9): 2290-2303.
    [76] Green P J. Bayesian reconstruction from emission tomography data using a modified EM algorithm [J]. IEEE Transactions on Medical Imaging, 1990, 9: 84-93.
    [77] Charbonnier P, Feraud L B, Aubert G, et al. Deterministic edge-preserving regularization in computer imagining [J]. IEEE Transactions on Image Processing, 1997, 6: 298-311.
    [78] Katsaggelos A K. Iterative image restoration algorithms [J]. Optical Engineering, 1989, 28 (7): 735-748.
    [79] Katsaggelos A, Biemond J, Schafer R, et al. A regularized iterative image restoration algorithm [J]. IEEE Transactions on Signal Processing, 1991, 39(4): 914-929.
    [80] Golub G H, Heath M, Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter [J]. Technometrics, 1979, 21: 215-223.
    [81] Hanson P C. The L-curve and its use in the numerical treatment of inverse problem [DB/OL]. http://www.imm.dtu.dk/documents/ftp/tr99/tr15_99.pdf, 1998.
    [82] Kang M G, Katsaggelos A K. General choice of the regularization functional in regularized image restoration [J]. IEEE Transactions on Image Processing, 1995, 4(5): 594-602.
    [83] Eichmann G, Stojancic M. Superresolving signal and image restoration using a linear associative memory [J]. Applied Optics, 1987, 26: 1911-1918.
    [84] Abbiss J B, Brames B J, Fiddy M A. Superresolution algorithms for a modified Hopfield neural network [J]. IEEE Transactions on Signal Processing, 1991, 39(7): 1516-1523.
    [85] Zhou Y T, Chellappa R, Jenkins B K. Image restoration using a neural network [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(7): 1141-1151.
    [86] Paik J K, Katsaggelos A K. Image restoration using a modified Hopfield network [J]. IEEE Transactions on Image Processing, 1992, 1(1): 49-63.
    [87] Nguyen N, Milanfar P. An efficient wavelet-based algorithm for image superresolution [C]. In: Proceedings of the IEEE International Conference on Image Processing. 2000, 2: 351-354.
    [88] Zhao S, Han H, Peng S. Wavelet-domain HMT-based image super-resolution [C]. In: Proceedings of the IEEE International Conference on Image Processing. 2003, 2: 953-956.
    [89] Hopfield J J. Neural networks and physical system with emergent collective computational abilities [C]. In: Proceedings of the National Academy of Sciences USA. 1982, 79: 2554-2558.
    [90] Bruck J, Goodman J W. A generalized convergence theorem for neural networks [J]. IEEETransactions on Information Theory, 1988, 34: 1089-1092.
    [91] 王磊, 戚飞虎, 莫玉龙. 精确复原退化图像的连续 Hopfield 网络研究 [J]. 上海交通大学学报, 1997, 31(12): 43-46.
    [92] Vogel C R, Oman M E. Iterative methods for total variation denoising [J]. SIAM Journal on Scientific Computing, 1996, 17: 227-238.
    [93] Blomgren P V. Total variation methods for restoration of vector valued images [D]: [博士学位论文]. California: University of California, 1998.
    [94] Chan T F, Golub G H, Mulet P. A nonlinear primal-dual method for total variation-based image restoration [J]. SIAM Journal on Scientific Computing, 1999, 20(6): 1964-1977.
    [95] Mallat S. A wavelet tour of signal processing [M]. New York: Academic, 1998.
    [96] Daubechies I. Ten lectures on wavelets [M]. Philadelphia: SIAM, 1992.
    [97] Baum L E, Petrie T. Statistical inference for probabilistic functions of finite state Markov chains [J]. Annals of Mathematical Statistics, 1966, 37: 1554-1563.
    [98] Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition [J]. Proceedings of the IEEE, 1989, 77(2): 257-286.
    [99] Crouse M S, Nowak R D, Baraniuk R G. Wavelet-based statistical signal processing using hidden Markov models [J]. IEEE Transactions on Signal Processing, 1998, 46(4): 886-902.
    [100] Romberg J K, Choi H, Baraniuk R G. Bayesian tree-structured image modeling using wavelet-domain hidden Markov models [J]. IEEE Transactions on Image Processing, 2001, 10(7): 1056-1068.
    [101] Choi H, Baraniuk R G. Multiscale image segmentation using wavelet-domain hidden Markov models [J]. IEEE Transactions on Image Processing, 2001, 10(9): 1309-1321.
    [102] Do M N, Vetterli M. Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models [J]. IEEE Transactions on Multimedia, 2002, 4(4): 517-527.
    [103] Bierling M. Displacement estimation by hierarchical block-matching [C]. In: Proceedings of SPIE Visual Communications and Image Processing. 1988: 941-951.
    [104] Zitova B, Flusser J. Image registration methods: a survey [J]. Image and Vision Computing, 2003, 21: 977-1000.
    [105] Horn B K P, Schunck B G. Determining optical flow [J]. Artificial Intelligence, 1981, 17: 185-203.
    [106] Barron J L, Fleet D J, Beauchemin S S. Performance of optical flow techniques [J]. International Journal of Computer Vision, 1994, 12: 43-77.
    [107] Aubert G, Deriche R, Kornprobst P. Computing optical flow via variational techniques [J]. SIAM Journal of Applied Mathematics, 1999, 60(1):156-182.
    [108] Hartley R, Zisserman A. Multiple View Geometry in Computer Vision [M]. London: Cambridge University Press, 2000.
    [109] Fischler M A, Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography [J]. Communications of the Association for Computing Machinery, 1981, 24(6): 381-395.
    [110] Harris C J, Stephens M. A combined corner and edge detector [C]. In: Proceedings of Alvey Vision Conference. 1988: 147-151.
    [111] Criminisi A. Accurate Visual Metrology from Single and Multiple Uncalibrated Images [M]. University of Oxford: Springer-verlag, 2001.
    [112] Black M J, Anandan P. The robust estimation of multiple motions: parametric and piecewise-smooth flow fields [J]. Computer Vision and Image Understanding, 1996, 63(1): 75-104.
    [113] Black M J, Rangarajan A. On the unification of line processes, outlier rejection, and robust statistics with applications in early vision [J]. International Journal of Computer Vision, 1996, 19: 57-91.
    [114] Deriche R, Kornprobst P, Aubert G. Optical-flow estimation while preserving its discontinuities: a variational approach [C]. In: Proceedings of Asian Conference on Computer Vision. 1995, 2: 290-295.
    [115] Memin E, Perez P. Optical flow estimation and object-based segmentation with robust techniches [J]. IEEE Transactions on Image Processing, 1998, 7(5): 703-719.
    [116] Nesi P. Variational approach to optical flow estimation managing discontinuities [J]. Image and Vision Computing, 1993, 11(7): 419-439.
    [117] Nagel H, Enkelmann W. An investigation of smoothness constraint for the estimation of displacement vector fields from image sequences [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8: 565-593.
    [118] Enkelmann W. Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences [J]. Computer Vision Graphics and Image Processing, 1988, 43: 150-177.
    [119] 黄波, 杨勇, 王桥, 等. 一种自适应的光流估计方法 [J]. 电路与系统学报, 2001(4): 92-96.
    [120] Simoncelli E. Design of multi-dimensional derivative filters [C]. In: Proceedings of the IEEE International Conference on Image Processing. 1994: 790-793.
    [121] Bergen J R, Anadan P, Hanna K, et al. Hierarchical model-based motion estimation [C]. In: European Conference on Computer Vision. 1992: 237-252.
    [122] Irani M, Anandan P. All about direct methods [C]. In: Triggs W, Zisserman A, Szeliski R, eds. International Workshop on Vision Algorithms: Theory and Practice. Springer Verlag, 1999:267-277.
    [123] Ayers G R, Dainty J C. Iterative blind deconvolution method and its applications [J]. Optics Letters, 1988, 13(7): 547-549.
    [124] Dekker A J, Bos A. Resolution: a survey [J]. Journal of the Optical Society of America: A. 1997, 14(3): 547-557.
    [125] Stein G. Tracking from multiple view points: self-calibration of space and time [C]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 1999: 521-527.
    [126] Lee L, Romano R, Stein G. Monitoring activities from multiple video streams: Establishing a common coordinate system [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 758-767.
    [127] Caspi Y, Simakov D, Irani, M. Feature-based sequence-to-sequence matching [C]. In: Vision and Modelling of Dynamic Scenes Workshop. 2002.
    [128] Caspi Y, Irani M. A step towards sequence-to-sequence alignment [C]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2000, 2: 682-689.
    [129] Caspi Y, Irani M. Spatio-temporal alignment of sequences [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(11): 1409-1424.
    [130] Caspi Y. Sequence-to-Sequence Alignmen [D]: [博士学位论文]. Israel: The Weizmann Institute of Science, 2002.
    [131] Holland J H. Adaptation in nature and artificial systems [M]. Michigan: University of Michigan Press, 1975.
    [132] Goldberg D E. Genetic algorithms in search, optimization, and machine learning [M]. Boston: Addison Wesley, 1998.
    [133] Koza J R. Genetic programming [M]. Cambridge: MIT Press, MA, 1992.
    [134] Wright A H. Genetic algorithms for real parameter optimization [C]. In: Rawlins J E, eds. Foundations of Genetic Algorithms. Morgan Kaufmann, 1991: 205-218.
    [135] Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs [M]. Springer Verlag, 1992.
    [136] B?ck T, Hoffmeister F, Schwefel H P. A survey of evolution strategies [C]. In: Proceedings of International Conference on Genetic Algorithms. 1991, 4: 2-10.
    [137] Sochen N, Kimmel R, Malladi R. A general framework for low level vision [J]. IEEE Transactions on Image Processing, 1998, 7(3): 310-318.
    [138] Sochen N, Deriche R, Perez L L. The Beltrami Flow over Manifolds [DB/OL]. http://www.inria.fr/rrrt/rr-4897.html, 2003.
    [139] 陈维桓. 微分流形初步 [M]. 北京: 高等教育出版社, 2001.
    [140] 徐仲, 张凯院, 陆全. TOEPLITZ矩阵类的快速算法 [M]. 西安: 西北工业大学出版社, 1999.
    [141] Fedorenko R P. A relaxation method for solving elliptic difference equations [J]. USSR Computational Mathematics and Mathematical Physics, 1961, 1: 1092-1096.
    [142] Fedorenko R P. The speed of convergence of one iterative process [J]. USSR Computational Mathematics and Mathematical Physics, 1964, 4: 227-235.
    [143] Bakhvalov N S. On the convergence of a relaxation method with natural constraints on the elliptic operator [J]. USSR Computational Mathematics and Mathematical Physics, 1966, 6(5): 101-135.
    [144] Brandt A. Multi-level adaptive solutions to boundary value problems [J]. Mathematics of Computation, 1977, 31: 333-390.
    [145] Brandt A. Guide to multigrid development [C]. In: Hackbusch W, Trottenberg U, eds. Multigrid Methods. Springer-Verlag, 1982: 220-312.
    [146] Bank R E, Dupont T F, Yserentant H. The hierarchical basis multigrid method [J]. Numerische Mathematik, 1988, 52: 427-458.
    [147] Hackbusch W. Multi-grid methods and applications [M]. Berlin: Springer-Verlag, 1985.
    [148] Hageman L A, Young D M. Applied iterative methods [M]. New York: Academic Press, 1981.
    [149] 蔡大用, 白峰杉. 现代科学计算 [M]. 北京: 科学出版社.
    [150] Kettler R, Meijerink J A. A multigrid method and a combined multigrid-conjugate gradient method for elliptic problems with strongly discontinuous coefficients in general domains [R]. Technical Report 604, KSELP, Rijswijk, The Netherlands, 1981.
    [151] Braess D. On the combination of the multigrid method and conjugate gradients [C]. In: Hackbusch W, Trottenberg U, eds. Multigrid Methods II. Berlin: Springer-Verlag, 1986: 52-64.
    [152] Tatebe O. The multigrid preconditioned conjugate gradient method [J]. In: Proceedings of Copper Mountain Conference on Multigrid Methods. 1993, 6: 621-634.
    [153] Tatebe O. MGCG method: a robust and highly parallel iterative method [D]: [博士学位论文]. Tokyo: The University of Tokyo, 1996.
    [154] Saad Y, Schultz M. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems [J]. SIAM Journal on Scientific and Statistical Computing. 1986, 7: 856-869.
    [155] Heath M T. Scientific computing: an introductory survey [M]. Second Edition. New York: McGraw-Hill, 2002.
    [156] Arnoldi W. The principle of minimized iterations in the solution of the matrix eigenvalueproblem [J]. Quarterly of Applied Mathematics, 1951, 9: 17-29.
    [157] Oosterlee C W, Washio T. On the use of multigrid as a preconditioner [C]. In: BjΦrstad P E, Espedal M S, Keyes D E, eds. International Conference on Domain Decomposition Methods. 1996, 9: 441-448.
    [158] Wienands R. Fourier analysis of GMRES(m) preconditioned by multigrid [DB/OL]. http://citeseer.ist.psu.edu/80731.html, 1999.
    [159] Kondur D, Hatzinakos D. Blind image deconvolution [J]. IEEE Signal Processing Magazine, 1996, 64: 13-43.
    [160] Robertson M A, Stevenson R I. Temporal resolution enhancement in compressed video sequences [J]. EURASIP Journal on Applied Signal Processing, 2001: 230-238.
    [161] Bose N K, Kim H C, Zhou B. Performance analysis of the TLS algorithm for image reconstruction from a sequence of undersampled noisy and blurred frames [C]. In: Proceedings of the IEEE International Conference on Image Processing. 1994, 3: 571-575.
    [162] Park M, Lee E, Park J, et al. DCT-based high-resolution image reconstruction considering the inaccurate sub-pixel motion information [J]. SPIE Optical Engineering, 2002, 41(2): 370-380.
    [163] Lim W, Park M, Kang M G. Spatially adaptive regularized iterative high resolution image reconstruction algorithm [C]. In: Proceedings of Visual Communications and Image Processing. 2001: 20-26.
    [164] Ng M, Koo J, Bose N. Constrained total least squares computations for high resolution image reconstruction with multisensors [J]. International Journal of Imaging Systems and Technology, 2002, 12: 35-42.
    [165] Lee E S, Kang M G. Regularized adaptive high-resolution image reconstruction considering inaccurate subpixel registration [J]. IEEE Transactions on Image Processing, 2003, 12(7): 826-837.
    [166] Rao R L. Multiresolution techniques in image processing [D]: [博士学位论文]. Louisiana state university and agricultural and mechanical college, 1995.
    [167] Tanaka A, Imai H, Miyakoshi M, et al. Enlargement of digital images with multiresolution analysis [J]. Transactions of the Institute of Electronics, Information and Communication Engineers, 1996, J79D-II(5): 819-825.
    [168] Kuijper A, Florack Luc M J. The hierarchical structure of images [J]. IEEE Transactions on Image Processing, 2003, 12(9): 1067-1079.
    [169] Terzopoulos D. Image analysis using multigrid relaxation methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8: 129-139.
    [170] Unser M. Multigrid adaptive image processing [C]. In: Proceedings of the IEEE InternationalConference on Image Processing. 1995, 1: 49-52.
    [171] Acton S. Multigrid anisotropic diffusion [J]. IEEE Transactions on Image Processing, 1998, 7(3): 280-291.
    [172] Vogel C R. A multigrid method for total variation-based image denoising [C]. In: Bowers K, Lund J, eds. Computation and Control IV. 1995.
    [173] Chan T F, Mathew T P. Domain decomposition algorithms [J]. Acta Numerica, 1994, 3: 61-143.
    [174] Kohlberger T, Schnorr C, Bruhn A, et al. Parallel variational motion estimation by domain decomposition and cluster computing [C]. In: Pajdla T, Matas J, eds. European Conference on Computer Vision. Berlin: Springer, 2004: 205-216.
    [175] Hall D L, Llinas J. An introduction to multisensor data fusion [J]. Proceedings of the IEEE, 1997, 85(1): 6-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700