用户名: 密码: 验证码:
大型钢制储液罐在地震激励下的强度与稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型钢制储液罐是我国国家战略石油储备的核心设施,而我国有多达9个石油储备基地的抗震设防烈度达到或超过7度,储液罐的抗震安全性正成为我国国家能源供给与经济安全的保障。在1964年的Alaska地震以后,储液罐的抗震设计开始以反应谱理论为基础,并以许用压应力为基准进行稳定验算,但储液罐的震害事故仍时有发生。储液罐的设计地震力由设防地震下的弹性地震力采用折减系数确定,各国设计规范对该系数的取值存在一定争议,而储液罐设计规范现所采用的静力稳定校核方式,也不足以全面反映地震动的不确定性与复杂频谱特性。上述问题至今仍未得到很好解决,因此,确定合理的地震力折减系数以及探索高效的动力稳定性分析手段,具有重要理论意义与工程实用价值。
     本文将分别提出动力推覆方法、Floquet乘子法、Lyapunov指数法三类分析方法,就钢制储液罐的地震力折减系数、动力不稳定域以及动力失稳概率进行深入研究:
     考虑多维地震影响并采用Rayleigh阻尼假定,从“位移-压力”格式的流固耦合方程出发,推导出压力凝聚模型的动力平衡方程,并就流固耦合系统模态特性在压力凝聚前后的一致性进行了证明。以Clough模型罐为例,分别从模态特性与时程分析结果验证了压力凝聚模型的有效性。分析了10万方浮顶储液罐与5万方拱顶储液罐的主模态特性,重点考察了抗风圈、拱顶网壳等附属件的影响。
     考虑重力影响并合并同频模态,由压力凝聚模型导出性能曲线的投影方程,通过控制谐波参数,实现流固耦合系统的单向动力推覆。以10万方浮顶储液罐为例,通过对比广义本构模型与流固耦合模型的时程分析结果,验证了动力推覆方法的有效性。基于动力推覆分析归纳了11种浮顶储液罐的幂次失效模型,以此构建等向强化的单自由度恢复力模型,选择40条最不利地震波,在特定延性下迭代求解储液罐的地震力折减系数,就规范GB50341、SH/T3026中地震力折减系数取值的合理性进行了讨论。
     从“位移-压力”格式的流固耦合方程出发,以周期变化的几何刚度矩阵考虑壳体应力变化,基于压力凝聚模型,建立储液罐在简谐地面加速度下的周期系数扰动方程,通过计算Floquet乘子,递归搜寻动力不稳定域边界。以Chiba模型罐为例,基于模型试验结果与B-R准则法分析结果共同验证了Floquet乘子法的有效性。选择三类典型大型钢制储液罐作为分析对象,系统研究了静液压、储液密度、储液深度、抗风圈、网壳连接模式、隔震参数等因素对钢制储液罐动力不稳定域的影响。
     从“位移-压力”格式的流固耦合方程出发,以时变几何刚度矩阵考虑壳体应力变化,基于压力凝聚模型,建立储液罐在地震激励下的等效动力扰动方程,通过实时调整扰动向量模长步进求解动态Lyapunov指数,据此确定储液罐的临界地震动峰值加速度以及动力失稳概率。以10万方浮顶储液罐为例,在简谐激励与地震激励下进行动力稳定性分析,分别采用Floquet乘子法与B-R准则法验证了Lyapunov指数法的有效性。参考储液罐的震害报告,建立多维地震动数据库,选择10万方与5万方钢制储液罐作为分析对象,重点研究了地震动多维特性、附属件设置、储液深度等因素对钢制储液罐动力失稳概率的影响。
Large steel liquid storage tanks are the core facilities of our National Strategic Petroleum Reserve, and China has as many as nine oil reserve bases whose seismic fortification intensity meets or exceeds7degree, thus the seismic safety of liquid storage tanks is becoming the guarantee of our national energy supply and economic safety. After the1964Alaskan earthquake, the seismic design of liquid storage tanks has began to be implemented based on the theory of response spectrum, and the allowable compressive stress is applied on checking calculation of stability. However, the liquid storage tank accidents caused by the earthquake still occur frequently. The design seismic force of liquid storage tank is determined by the elastic seismic force multiplied by the reduction factor under moderate earthquake, and there is some controversy on the value of above reduction factor between design specifications of different countries. Meanwhile, the static stability checking method currently adopted by the design specifications for liquid storage tanks is not sufficient to fully reflect the uncertainty and the complex spectral characteristics of ground motion. The above-mentioned issues have not been successfully solved, and so it is of great theoretical significance and practical engineering value to determine an appropriate seismic force reduction factor and to explore an efficient method of dynamic stability analysis.
     This dissertation will respectively propose three types of analysis method including the dynamic pushover method, the Floquet multiplier method and the Lyapunov exponent method, and deep research on the seismic force reduction factor, the dynamic instability region and the dynamic instability probability of steel liquid storage tanks is then conducted:
     Taking account of the impact of multidimensional earthquake and adopting Rayleigh damping assumption, the dynamic equilibrium equations of pressure condensation model were derived from fluid-solid coupling equations with "displacement-pressure" form, and then the consistency of modal characteristics of fluid-solid coupled system before and after pressure condensation was proved. With the example of Clough model tank, the validity of the pressure condensation model was separately verified in terms of modal characteristics and time history analysis results. The fundamental modal characteristics of100,000m3floating roof storage tank and50,000m3dome roof storage tank were analyzed, with emphasis on the investigation of the influences of subsidiary components such as wind girder and lattice dome shell.
     Taking account of the impact of gravity and merging the vibration modes with the same frequency, the projection equation for capacity curve was derived based on pressure condensation model, and unidirectional dynamic pushover of fluid-solid coupled system was realized by controlling the harmonic parameters. Taking the100,000m3floating roof storage tank for example, the validity of the dynamic pushover method was then verified by comparing the time history results between the generalized constitutive model and fluid-solid coupled model. The power failure model of11types of floating roof storage tanks was summed up based on the dynamic pushover analysis, based on which a restoring force model with single degree of freedom and isotropic hardening was established, and then40severest ground motions were selected, and under which the seismic force reduction factors were then iteratively solved under specific ductility values, by comparing with which the reasonableness of the value of the seismic force reduction factor in GB50341and SH/T3026was discussed.
     Starting from fluid-solid coupling equations with "displacement-pressure" form, the perturbation equations with periodic coefficients of liquid storage tanks under harmonic ground acceleration were established based on pressure condensation model, in which the shell stress change was considered with period-varying geometric stiffening matrix, and the dynamic instability boundaries were then iteratively obtained by the calculation of Floquet multipliers. Taking Chiba model tank for example, the validity of the Floquet multiplier method was separately verified by the model test results and analysis results of B-R criterion method. Taking3typical large steel liquid storage tanks as analysis objects, the influences of hydrostatic pressure, liquid density, liquid depth, wind girder, lattice shell connection type, isolation parameter on the dynamic instability regions of steel liquid storage tanks were systemically studied.
     Starting from fluid-solid coupling equations with "displacement-pressure" form, the equivalent dynamic perturbation equations of liquid storage tanks under earthquake excitation were established based on pressure condensation model, in which the shell stress change was considered with time-varying geometric stiffening matrix, and the dynamic Lyapunov exponents were then calculated with time-stepping techniques by adjusting perturbation vector length in real-time, based on which the critical peak ground accelerations and the dynamic instability probabilities of liquid storage tanks were determined. Taking the100,000m3floating roof storage tank for example, the dynamic stability analysis under harmonic excitations and earthquake excitations were executed, by which the validity of the Lyapunov exponents method was separately verified based on the Floquet multiplier method and the B-R criterion method. According to the earthquake damage reports of liquid storage tanks, a multidimensional ground motion database was established, and taking the two steel liquid storage tanks with the volume of100,000m3and50,000m3as analysis objects, the influences of multidimensional characteristic of earthquake, installation pattern of subsidiary components, liquid depth on the dynamic instability probabilities of steel liquid storage tanks were primarily studied.
引文
[1]徐英.球罐和大型储罐[M].北京:化学工业出版社,2005:123-127.
    [2]王礼茂.论中国石油储备体系[J].资源科学,2003,25(1):42-47.
    [3]王新新.我国石油储备发展的审视与对策分析[J].技术经济与管理研究,2013(2):102-106.
    [4]王辉.10x104 m3大型浮顶油罐的设计[J].石油化工设计,2012,29(2):9-12.
    [5]李杰训.关于国家石油战略储备设施建设的思考[J].油气储运,2012,31(008):561-563.
    [6]潘家华.圆柱形金属油罐设计[M].北京:石油工业出版社,1984:45-101.
    [7]Jaiswal O R, Rai D C, Jain S K. Review of seismic codes on liquid-containing tanks[J]. Earthquake Spectra, 2007,23(1):239-260.
    [8]Chen Z P, Sun B, Yu C L, et al. Comparison of the strength design and prevention method of elephant foot buckling among countries' standards of oil tanks[C]//Proceedings of the ASME 2009 Pressure Vessels and Piping Conference. Prague: ASME, 2009:461-466.
    [9]Cooper T W. A study of the performance of petroleum storage tanks during earthquakes,1933-1995 [R]. Gaithersburg, MD: US National Institute of Standards and Technology, 1997.
    [10]Chang J I, Lin C C. A study of storage tank accidents[J]. Journal of Loss Prevention in the Process Industries,2006,19(1):51-59.
    [11]Hatayama K. Lessons from the 2003 Tokachi-oki, Japan, earthquake for prediction of long-period strong ground motions and sloshing damage to oil storage tanks[J]. Journal of Seismology, 2008,12(2): 255-263.
    [12]FEMA E-74. Reducing the risks of nonstructural earthquake damage[S]. Redwood City, CA: Applied Technology Council,2011.
    [13]Zama S, Nishi H, Hatayama K. On damage of oil storage tanks due to the 2011 off the Pacific Coast of Tohoku earthquake[C]//The 15th World Conference on Earthquake Engineering. Lisbon, Portugal: Portuguese Society for Earthquake Engineering, 2012.
    [14]Buratti N, Tavano M. Dynamic buckling and seismic fragility of anchored steel tanks by the added mass method[J]. Earthquake Engineering & Structural Dynamics, 2014,43(1):1-21.
    [15]Malhotra P K, Wenk T, Wieland M. Simple procedure for seismic analysis of liquid-storage tanks[J]. Structural Engineering International,2000,10(3):197-201.
    [16]Berahman F, Behnamfar F. Seismic fragility curves for un-anchored on-grade steel storage tanks: Bayesian approach[J]. Journal of Earthquake Engineering,2007,11(2):166-192.
    [17]O'Rourke M J, So P. Seismic fragility curves for on-grade steel tanks[J]. Earthquake Spectra,2000, 16(4):801-815.
    [18]Eidinger J M, Avila E A, Ballantyne D B, et al. Seismic fragility formulations for water systems: guideline[R]. Washington D.C.:American Lifelines Alliance,2001.
    [19]Eidinger J M, Avila E A, Ballantyne D B, et al. Seismic fragility formulations for water systems: appendices[R]. Washington D.C.:American Lifelines Alliance,2001.
    [20]Hamdan F H. Seismic behaviour of cylindrical steel liquid storage tanks[J]. Journal of Constructional Steel Research,2000,53(3):307-333.
    [21]Ito T, Morita H, Hamada K, et al. Investigation on buckling behavior of cylindrical liquid storage tanks under seismic excitation, 1st report: investigation on elephant foot bulge[C]//Proceedings of the ASME 2003 Pressure Vessels and Piping Conference. Cleveland: ASME, 2003:193-201.
    [22]EN 1998-4. Design of structures for earthquake resistance: silos, tanks and pipelines[S]. Brussels: European Committee for Standardization, 2006.
    [23]Tazuke H, Yamaguchi S, Ishida K, et al. Seismic proving test of equipment and structures in thermal conventional power plant [J]. Journal of Pressure Vessel Technology, 2002,124(2):133-143.
    [24]温德超,郑兆昌,孙焕纯.储液罐抗震研究的发展[J].力学进展,1 995(1):60-76.
    [25]方舟.非锚固圆柱形储液罐地震模拟及提离响应实验研究[D].杭州:浙江大学,2013:1-10.
    [26]Sanchez H S, Salas C C, Dominguez A M. Structural behaviour of liquid filled storage tanks of large capacity placed in seismic zones of high risk in Mexico[C]//Proceedings of the 13th World Conference on Earthquake Engineering.Vancouver, Canada:[s. n.],2004.
    [27]Berahman F, Behnamfar F. Probabilistic seismic demand model and fragility estimates for critical failure modes of un-anchored steel storage tanks in petroleum complexes [J]. Probabilistic Engineering Mechanics,2009,24(4):527-536.
    [28]张兆龙.水平地震下储液罐的简化分析及基底隔震研究[D].杭州:浙江大学,2012:1-10.
    [29]项忠权,孙家孔,周建明.立式储油罐的地震作用及抗震分析[G]//项忠权,李清林.立式储罐抗震.北京:地震出版社,1990:1-21.
    [30]API 650. Welded steel tanks for oil storage[S]. Washington D.C.:American Petroleum Institute (API), 2008.
    [31]Wozniak R S, Mitchell W W. Basis of seismic design provisions for welded steel oil storage tanks[C]//Proceedings of Refining Department. Washington D.C.:American Petroleum Institute, 1978: 485-501.
    [32]GB 50341-2003.立式圆筒形钢制焊接油罐设计规范[S].北京:中国计划出版社,2003.
    [33]SH/T 3026-2005.钢制常压立式筒形储罐抗震鉴定标准[S].北京:中国石化出版社,2005.
    [34]Haroun M A, Housner G W. Earthquake response of deformable liquid storage tanks[J]. Journal of Applied Mechanics, 1981,48(2):411-418.
    [35]Malhotra P. Practical Nonlinear seismic analysis of tanks[J]. Earthquake Spectra, 2000,16(2): 473-492.
    [36]Shrimali M K, Jangid R S. A comparative study of performance of various isolation systems for liquid storage tanks [J]. International Journal of Structural Stability and Dynamics, 2002,2(4):573-591.
    [37]Shrimali M K, Jangid R S. Seismic analysis of base-isolated liquid storage tanks[J]. Journal of Sound and Vibration,2004,275(1):59-75.
    [38]Panchal V R, Jangid R S. Variable friction pendulum system for seismic isolation of liquid storage tanks[J]. Nuclear Engineering and Design, 2008,238(6):1304-1315.
    [39]Abal I E, U C C Kan E. Parametric analysis of liquid storage tanks base isolated by curved surface sliding bearings[J]. Soil Dynamics and Earthquake Engineering, 2010,30(1):21-31.
    [40]孙建刚,王向楠,赵长军.立式储罐基底隔震的基本理论[J].哈尔滨工业大学学报,2010,42(4):639-643.
    [41]Christovasilis I P, Whittaker A S. Seismic analysis of conventional and isolated LNG tanks using mechanical analogs[J]. Earthquake Spectra, 2008,24(3):599-616.
    [42]Goudarzi M A, Sabbagh-Yazdi S R. Numerical investigation on accuracy of mass spring models for cylindrical tanks under seismic excitation[J]. International Journal of Civil Engineering, 2009,7(3): 190-202.
    [43]Barton D C, Parker J V. Finite element analysis of the seismic response of anchored and unanchored liquid storage tanks[J]. Earthquake Engineering & Structural Dynamics, 1987,15(3):299-322.
    [44]Liu H, Schubert D H. Effects of nonlinear geometric and material properties on the seismic response of fluid/tank systems[C]//2002 ANSYS 10th International Conference and Exhibition. Pittsburgh, PA: [s.n.], 2002:22-24.
    [45]Moslemi M, Kianoush M R, Pogorzelski W. Seismic response of liquid-filled elevated tanks[J]. Engineering Structures, 2011,33(6):2074-2084.
    [46]Virella J C, Godoy L A, Suarez L E. Fundamental modes of tank-liquid systems under horizontal motions[J]. Engineering Structures, 2006,28(10):1450-1461.
    [47]Ghaemmaghami A R, Kianoush M R. Effect of wall flexibility on dynamic response of concrete rectangular liquid storage tanks under horizontal and vertical ground motions[J]. Journal of Structural Engineering,2009,136(4):441-451.
    [48]Kianoush M R, Ghaemmaghami A R. The effect of earthquake frequency content on the seismic behavior of concrete rectangular liquid tanks using the finite element method incorporating soil-structure interaction[J]. Engineering Structures,2011,33(7):2186-2200.
    [49]Moslemi M, Kianoush M R. Parametric study on dynamic behavior of cylindrical ground-supported tanks[J]. Engineering Structures, 2012,42(1):214-230.
    [50]Zhuang Z, Liu H Z, Li Q, et al. Development of a new added mass model and dynamic analysis for cylindrical tank[C]//Proceedings of the ASME 2006 Pressure Vessels and Piping Conference. Vancoucer: ASME,2006:239-248.
    [51]Virella J C, Su Rez L E, Godoy L A. Effect of pre-stress states on the impulsive modes of vibration of cylindrical tank-liquid systems under horizontal motions[J]. Journal of Vibration and Control,2005, 11(9):1195-1220.
    [52]王勖成,有限单元法[M].北京:清华大学出版社,2003:523-544.
    [53]Ozdemir Z, Souli M, Fahjan Y M. Application of nonlinear fluid-structure interaction methods to seismic analysis of anchored and unanchored tanks[J]. Engineering Structures,2010,32(2):409-423.
    [54]Ozdemir Z, Souli M, Fahjan Y M. Numerical evaluation of nonlinear response of broad cylindrical steel tanks under multidimensional earthquake motion[J]. Earthquake Spectra, 2012,28(1):217-238.
    [55]Kruntcheva M R. Free vibrations of cylindrical storage tanks:finite-element analysis and experiments[J]. Journal of Engineering Mechanics, 2007,133(6):728-733.
    [56]Nachtigall I, Gebbeken N, Urrutia-Galicia J L. On the analysis of vertical circular cylindrical tanks under earthquake excitation at its base[J]. Engineering Structures, 2003,25(2):201-213.
    [57]Virella J C, Godoy L A, Su Rez L E. Influence of the roof on the natural periods of empty steel tanks[J]. Engineering Structures, 2003,25(7):877-887.
    [58]陈厚群,王森元,胡晓等.外浮顶储液罐模型抗震实验研究[G]//项忠权,李清林.立式储罐抗震.北京:地震出版社,1990:22-66.
    [59]Maekawa A, Shimizu Y, Suzuki M, et al. Vibration test of 1/10 scale model of cylindrical water storage tank[C]//Proceedings of the ASME 2004 Pressure Vessels and Piping Conference. San Diego:ASME, 2004:107-117.
    [60]Maekawa A, Shimizu Y, Suzuki M, et al. Experimental study of coupling vibration characteristics between a thin cylindrical water storage tank and its contained liquid[C]//Proceedings of the ASME 2005 Pressure Vessels and Piping Conference. Denver. ASME,2005:113-120.
    [61]Maekawa A, Shimizu Y, Suzuki M, et al. Study of correlation between beam vibration and oval vibration on cylindrical water storage tank[C]//Proceedings of the ASME 2005 Pressure Vessels and Piping Conference. Denver. ASME,2005:121-129.
    [62]Maekawa A, Suzuki M, Fujita K. Nonlinear vibration response of a cylindrical water storage tank caused by coupling effect between beam-type vibration and oval-type vibration: vibration experiment [C]//Proceedings of the ASME 2006 Pressure Vessels and Piping Conference. Vancoucer: ASME, 2006: 329-338.
    [63]Maekawa A, Fujita K. Occurrence of nonlinear oval-type vibration under large sinusoidal excitation: experiment[C]//Proceedings of the ASME 2007 Pressure Vessels and Piping Conference. San Antonio: ASME,2007:295-302.
    [64]Maekawa A, Fujita K, Suzuki M. Seismic response reduction caused by coupling between beam-type and oval-type vibrations of a cylindrical water storage tank under large excitation[C]//Proceedings of the ASME 2007 Pressure Vessels and Piping Conference. San Antonio:ASME,2007:303-310.
    [65]Housner G W. Dynamic pressures on accelerated fluid containers [J]. Bulletion of the Seismological Society America,1957,47 (1); 15-35.
    [66]Fukuyama M, Nakagawa M, Ishihama K, et al. Dynamic buckling experiments of fluid-structure-coupled co-axial thin cylinder[J]. Nuclear Engineering and Design, 1999,188(1):13-26.
    [67]Morita H, Ito T, Hamada K, et al. Investigation on buckling behavior of cylindrical liquid storage tanks under seismic excitation, 2nd report: investigation on the nonlinear ovaling vibration at the upper wall[C]//Proceedings of the ASME 2003 Pressure Vessels and Piping Conference. Cleveland: ASME, 2003:227-234.
    [68]Virella J C, Godoy L A, Su Rez L E. Dynamic buckling of anchored steel tanks subjected to horizontal earthquake excitation[J]. Journal of Constructional Steel Research,2006, 62(6):521-531.
    [69]Natsiavas S, Babcock C D. Buckling at the top of a fluid-filled tank during base excitation[J]. Journal of Pressure Vessel Technology, 1987,109(4):374-380.
    [70]陈冠卿.垂直地震荷载在液体储罐设计中的重要性—关于“象腿”的成因[J].油气储运,1982(4):24-29.
    [71]Niwa A, Clough R W. Buckling of cylindrical liquid-storage tanks under earthquake loading[J]. Earthquake Engineering & Structural Dynamics, 1982,10(1):107-122.
    [72]Rammerstorfer F G, Scharf K, Fisher F D. Storage tanks under earthquake loading[J]. Applied Mechanics Reviews,1990,43(11):261-282.
    [73]Peek R, El-Bkaily M. Postbuckling behavior of unanchored steel tanks under lateral loads[J]. Journal of Pressure Vessel Technology, 1991,113(3):423-428.
    [74]Chen J F, Rotter J M, Teng J G. A simple remedy for elephant's foot buckling in cylindrical silos and tanks[J]. Advances in Structural Engineering, 2006,9(3):409-420.
    [75]范喜哲,郑天心,王伟等.地震作用下立式储液罐罐壁“象足”变形仿真分析[J].地震工程与工程振动,2007(3):104-109.
    [76]戴鸿哲,王伟,吴灵宇.立式储液罐提离机理及“象足”变形产生原因[J].哈尔滨工业大学学报,2008(8):1189-1193.
    [77]Mathon C, Limam A. Experimental collapse of thin cylindrical shells submitted to internal pressure and pure bending[J]. Thin-Walled Structures, 2006,44(1):39-50.
    [78]Iijima T, Suzuki K, Morita H, et al. The ultimate strength of cylindrical liquid storage tanks under earthquakes:seismic capacity test of tanks used in PWR plants, part 1:evaluation method verification test[C]//Proceedings of the ASME 2008 Pressure Vessels and Piping Conference. Chicago: ASME, 2008:325-331.
    [79]Iijima T, Suzuki K, Okafuji T, et al. The ultimate strength of cylindrical liquid storage tanks under earthquakes: seismic capacity test of tanks used in PWR plants, part 2:static post-buckling strength tests[C]//Proceedings of the ASME 2008 Pressure Vessels and Piping Conference. Chicago:ASME, 2008:333-339.
    [80]Iijima T, Suzuki K, Higuchi T, et al. The ultimate strength of cylindrical liquid storage tanks under earthquakes: seismic capacity test of tanks used in BWR plants[C]//Proceedings of the ASME 2009 Pressure Vessels and Piping Conference. Prague: ASME, 2009:299-307.
    [81]Sugiyama A, Setta K, Kawamoto Y, et al. Investigation on buckling behavior of cylindrical liquid storage tanks under seismic loading, 3rd report: proposed design procedure considering dynamic response reduction[C]//Proceedings of the ASME 2003 Pressure Vessels and Piping Conference. Cleveland: ASME,2003:235-242.
    [82]葛颂,陈志平,沈建民等.立式储液罐象足屈曲的准静态数值模拟[J].压力容器,2006(1):6-9.
    [83]Virella J C, Sua Rez L E, Godoy L A. A static nonlinear procedure for the evaluation of the elastic buckling of anchored steel tanks due to earthquakes[J]. Journal of Earthquake Engineering,2008, 12(6):999-1022.
    [84]Hernandez-Montes E, Kwon O S, Aschheim M A. An energy-based formulation for first-and multiple-mode nonlinear static (pushover) analyses[J]. Journal of Earthquake Engineering, 2004,8(1): 69-88.
    [85]翁智远.圆柱薄壳容器的振动与屈曲[M].上海:上海科学技术出版社,2007:210-240.
    [86]Mikami A, Sato Y, Otani A, et al. The ultimate strength of cylindrical liquid storage tanks under earthquakes: evaluation of dynamic buckling behavior of tanks used in PWR plants [C]//Proceedings of the ASME 2009 Pressure Vessels and Piping Conference. Prague: ASME, 2009:309-317.
    [87]Mikami A, Sato Y, Otani A, et al. The ultimate strength of cylindrical liquid storage tanks under earthquakes: elasto-plastic dynamic analysis with FSI of buckling failure modes[C]//Proceedings of the ASME 2009 Pressure Vessels and Piping Conference. Prague: ASME, 2009:319-324.
    [88]Chiba M, Tani J, Hashimoto H, et al. Dynamic stability of liquid-filled cylindrical shells under horizontal excitation, part Ⅰ: experiment[J]. Journal of Sound and Vibration, 1986,104(2):301-319.
    [89]Chiba M, Tani J, Yamaki N. Dynamic stability of liquid-filled cylindrical shells under vertical excitation, part Ⅰ: experimental results[J]. Earthquake Engineering & Structural Dynamics,1987,15(1): 23-36.
    [90]Tsukimori K, Liu W K, Uras R A. Formulation of dynamic stability of fluid-filled shells[J]. Nuclear Engineering and Design, 1993,142(2-3):267-297.
    [91]Tsukimori K, Liu W K, Tsao Y H, et al. Dynamic stability characteristics of fluid-filled shells under multiple excitations[J]. Nuclear Engineering and Design, 1993,142(2-3):299-318.
    [92]Takayanagi M. Parametric resonance of liquid storage axisymmetric shell under horizontal excitation[J]. Journal of Pressure Vessel Technology, 1990,113:511-516.
    [93]Amabili M. Nonlinear vibrations and stability of shells and plates[M]. New York: Cambridge University Press,2008:146-148.
    [94]Takahashi K. An approach to investigate the instability of the multiple-degree-of-freedom parametric dynamic systems[J]. Journal of Sound and Vibration, 1981,78(4):519-529.
    [95]Budiansky B, Both R S. Axisymmetric dynamic buckling of clamped shallow spherical shells[A]. Collected papers on instability of shell structures[C], NASA TND-1510, 1962:597-606.
    [96]王策,沈世钊.单层球面网壳结构动力稳定分析[J].土木工程学报,2000,33(6):17-24.
    [97]王述超,张行,叶志雄,等.超限高层建筑地震作用下的动力稳定性分析[J].振动与冲击,2009,28(4):149-153.
    [98]孙建刚,王振,王丰,等.位移谐波激励下拱顶锚固储罐的动力屈曲研究[J].世界地震工程,2010,26(2):82-87.
    [99]孙颖,崔利富,孙建刚,等.三向地震激励下浮顶储罐动力屈曲[J].大连海事大学学报,2012,38(3):121-125.
    [100]Ellingwood B R. Earthquake risk assessment of building structures[J]. Reliability Engineering & System Safety, 2001,74(3):251-262.
    [101]lervolino I, Fabbrocino G, Manfredi G. Fragility of standard industrial structures by a response surface based method[J]. Journal of Earthquake Engineering, 2004,8(6):927-945.
    [102]孙建刚,张荣花,蒋峰.储罐地震易损性数值仿真分析[J].哈尔滨工业大学学报,2009,41(12):138-142.
    [103]Sherman W C. Controversial issues in seismic design of liquid-containing structures[C]//Proceedings of the 2008 Structures Congress. Vancouver: ASCE,2008:1-11.
    [104]李扬,李自力,张艳.中美欧储罐抗震规范中地震作用的比较研究[J].世界地震工程,2009(1):122-130.
    [105]Zienkiewicz O C, Taylor R L, Zhu J Z. The finite element method: its basis and fundamentals[M]. 6th ed. Oxford: Butterworth Heinemann,2005:631-644.
    [106]戴大农,王勖成,杜庆华.流固耦合系统动力响应的模态分析理论[J].固体力学学报,1990(4):305-312.
    [107]Wang X, Bathe K J. Displacement/pressure based mixed finite element formulations for acoustic fluid-structure interaction problems[J]. International Journal for Numerical Methods in Engineering, 1997,40(11):2001-2017.
    [108]Sigrist J F. Modal analysis of fluid-structure interaction problems with pressure-based fluid finite elements for industrial applications[J]. The International Journal of Multiphysics, 2007,1(1):123-149.
    [109]Wilson E L. Three-dimensional static and dynamic analysis of tructures[M].3rd ed. Berkeley, California: Computers and Structures, 2002:160-180.
    [110]Chopra A K. Dynamics of structures: theory and applications to earthquake engineering [M].3rd ed. New Jersey: Prentice-Hall, 2007:300-535.
    [111]Clough R W, Clough D P, Niwa A. Experimental seismic study of cylindrical tanks[J]. Journal of the Structural Division,1979,105(12):2565-2590.
    [112]郭洪亮.某港口10万m3大型储油罐静动力有限元分析[D].大连:大连理工大学,2006:1-20.
    [113]Hosseinzadeh N, Kazem H, Ghahremannejad M, et al. Comparison of API650-2008 provisions with FEM analyses for seismic assessment of existing steel oil storage tanks[J]. Journal of Loss Prevention in the Process Industries, 2013,26(4):666-675.
    [114]Zhao Y, Cao Q S, Xie X Y. Floating-roof steel tanks under harmonic settlement: FE parametric study and design criterion[J]. Journal of Zhejiang University Science A(Science in Engineering), 2006(3): 398-406.
    [115]Borzi B, Elnashai A S. Refined force reduction factors for seismic design [J]. Engineering Structures, 2000,22(10):1244-1260.
    [116]GB50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [117]Chopra A K, Goel R K. A modal pushover analysis procedure for estimating seismic demands for buildings[J]. Earthquake Engineering & Structural Dynamics, 2002,31(3):561-582.
    [118]王善忠.十万立方米原油储罐的设计[D].天津:天津大学,2006:1-1O.
    [119]徐志钧,许朝铨,沈珠江.大型储罐基础设计与地基处理[M].北京:中国石化出版社,1999:7-10.
    [120]翟长海,谢礼立.抗震结构最不利设计地震动研究[J].土木工程学报,2005,38(12):51-58.
    [121]CEC160:2004.建筑工程抗震性态设计通则[S].北京:中国计划出版社,2004.
    [122]Whittaker D, Jury D. Seismic design loads for storage tanks[C]//12th World Conference on Earthquake Engineering. New Zealand: [s. n.], 2000.
    [123]Bolotin V V. The dynamic stability of elastic systems[M]. San Francisco: Holdenday, 1964:1-7.
    [124]Xie W C. Dynamic stability of structures[M]. Cambridge: Cambridge University Press, 2006:1-20.
    [125]Seyranian A P, Mailybaev A A. Multiparameter stability theory with mechanical applications[M]. Singapore: World Scientific Publishing, 2003:1-50.
    [126]Lyapunov A M. The general problem of the stability of motion[J]. International Journal of Control, 1992,55(3):531-534.
    [127]廖晓听.漫谈Lyapunov稳定性的理论、方法和应用[J].南京信息工程大学学报(自然科学版),2009,1(1):1-15.
    [128]Charney F A. Unintended consequences of modeling damping in structures[J]. Journal of Structural Engineering, 2008,134(4):581-592.
    [129]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004:153-187.
    [130]Petyt M. Introduction to finite element vibration analysis [M]. Cambridge:Cambridge University Press,1990:475-500.
    [131]Ward I M, Sweeney J. An introduction to the mechanical properties of solid polymers[M]. Chichester: John Wiley&Sons, 2004:31-55.
    [132]Teng J G, Rotter J M. Buckling of thin metal shells[M]. London: Spon Press, 2004:48-52.
    [133]刘巨保,许蕴博.基于GB 50341标准设计的立式拱顶储罐弱顶结构分析与评价[J].化工机械,2011,38(4):423-427.
    [134]Kim N S, Lee D G. Pseudodynamic test for evaluation of seismic performance of base-isolated liquid storage tanks[J]. Engineering Structures, 1995,17(3):198-208.
    [135]De Angelis M, Giannini R, Paolacci F. Experimental investigation on the seismic response of a steel liquid storage tank equipped with floating roof by shaking table tests[J]. Earthquake Engineering & Structural Dynamics, 2010,39(4):377-396.
    [136]Cho J R, Lee J K, Song J M, et al. Free vibration analysis of aboveground LNG-storage tanks[J]. Journal of Mechanical Science and Technology, 2000,14(6):633-644.
    [137]黄淑女,王作乾.我国第一座16万m3全容LNG储罐[J].石油工程建设,2009,35(4):15-18.
    [138]Syahruddin N. LNG loading lines surge analysis for ESD system application[C]//Proceedings of the International MultiConference of Engineers and Computer Scientists 2011. HongKong: IMECS, 2011: 1231-1236.
    [139]Marti Rodriguez J, Crespo M, Martinez F. Seismic isolation of liquefied natural gas tanks: a compartive assessment[J]. Journal of Seismic Isolation and Protective Systems, 2010,1(1):125-140.
    [140]Skinner R I, Robinson W H, Mcverry G H.工程隔震概论[M].谢礼立等译.北京:地震出版社,1996:17-40.
    [141]GB/T 26978-2011.现场组装立式圆筒平底钢制液化天然气储罐的设计与建造[S].北京:中国标准出版社,2011.
    [142]李健胡.美日中LNG接收站建设综述[J].天然气技术,2010,4(2):67-71.
    [143]Skokos C. The Lyapunov characteristic exponents and their computation[J]. Lecture Notes in Physics, 2010,790:63-135.
    [144} Zareian F, Krawinkler H. Assessment of probability of collapse and design for collapse safety[J]. Earthquake Engineering & Structural Dynamics, 2007,36(13):1901-1914.
    [145]FEMA P695. Quantification of building seismic performance factors[S]. Redwood City, CA:Applied Technology Council, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700