用户名: 密码: 验证码:
多路阀综合试验系统设计及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多路阀是一种能够控制多个液压执行机构,集换向阀、单向阀、安全阀、分流阀等于一体的多功能集成阀。由于其具有结构紧凑、管路连接简单等优点,在工程机械中得到了广泛应用。作为工程机械液压系统核心元件之一,其性能的好坏,直接决定着整机的技术水平。要进一步提高多路阀的质量和性能,在其装机前对其进行全面而准确的测试至关重要,而目前国内已有的多路阀试验系统主要用于出厂检验,功能不是很齐全;既能对多路阀通用性能进行检测,又能对现代多路阀中的一些特殊功能如合流、优先、负流量控制等功能进行装机前验证的综合试验系统更少。此外,目前国内在高性能尤其是高压、大流量多路阀方面设计水平相对国外知名液压元件厂家还有较大的差距,对多路阀的相关特性研究也不够深入。因此,设计一套能反映多路阀典型特性的综合试验装置,将为提高国内多路阀整体性能、缩短国内外设计差距起到重要作用。
     本课题以多路阀试验相关标准为依据,结合现代多路阀中常见的功能特性,设计了一套多路阀综合试验系统,并以具体某多路阀的试验研究为切入点,试验和仿真研究该多路阀的动静态特性,为该典型多路阀的开发设计提供理论指导。本文主要研究点是:分析多路阀测试对试验系统相关要求,对比试验系统中各功能单元的方案优缺点,确定试验系统整体方案原理;进行液压及测控系统集成优化设计,设计多路阀型式试验整体软、硬件系统,并规划多路阀测试流程;进行典型多路阀的试验测试,以测试结果验证所建立的多路阀仿真模型,仿真研究多路阀合流、再生、负流量控制等功能特性的动态过程,揭示阀结构参数与动态性能之间的关系,指导多路阀的设计。本文各章节具体内容如下:
     第一章,介绍了各种多路阀的原理及特点,总结了多路阀的发展趋势;对目前多路阀测试的研究现状进行分析,并提出本课题的研究意义及主要研究内容。
     第二章,分析多路阀相关试验标准,结合各试验项目及其实现方法,并综合考虑现代多路阀的常见功能特性,设计综合试验系统的整体方案,并对各功能单元方案进行了详细的对比分析,归纳总结了该试验系统的特点。
     第三章,在满足试验系统测试功能的前提下,基于系统紧凑化和操作便捷化的设计理念,对试验用液压系统各功能模块进行集成化设计,并对关键元件进行选型计算。按照多路阀测试要求,并充分利用PLc和数据采集设备的特点进行软硬件配置,进行测控系统的优化设计,实现测试系统的控制、试验数据采集处理及实时显示。根据测试标准,对多路阀测试流程进行合理规划。
     第四章,以综合试验系统为基础,对某多路阀展开试验研究。主要是详细分析各试验项目及其具体实现方法,并进行相关性能测试,结合该多路阀的功能原理和结构特点,对试验结果进行分析,从而为进一步研究阀的动作机理提供实验支撑。
     第五章,建立多路阀的仿真模型,并通过实验验证模型准确性,进一步开展多路阀合流、优先、再生以及负流量控制特性的研究,通过变参分析获得影响多路阀动态性能的结构参数。
     第六章,对全文的工作进行总结并作下一步展望。
Multi-way valve used to control several hydraulic actuators is a kind of multi-function integrated valve, which integrates directional valve, check valve, relief valve, shunt valve and so on. It was widely used in construction machinery, because of its compact structure and simple pipeline connection. As one of core components in the hydraulic system of construction machine, the performance of multi-way valve decides the level of the whole machine. In order to improve the quality and performance of the multi-way valve, it is quite important to test the characteristic of the multi-way valve fully and accurately before installing it in the mobile machine. But the functions of existing test systems for multi-way valves are not very versatile; systems that can test the universal performance as well as some special functions of multi-way valves like confluence, priority, negative control and so on are rare in China. Besides, there is still a gap between the domestic and some famous hydraulic foreign manufacturers in multi-way valves with high performance, especially in high-pressure and flow ones, and the study on characteristics of multi-way valves is not in deep. Therefore, it can play an important role in improving the whole performance and shortening the gap of designing between domestic and foreign products to design a comprehensive test system, which can reflect typical characteristics of multi-way valves.
     In this thesis, a comprehensive test system is developed for multi-way valves according to the industry standards. Dynamic and static features are studied by experiment and simulation based on a certain multi-way valve to provide theoretical guidance for the development and design of it. The whole scheme is proposed according to the requirements for multi-way valves testing and comparison for the scheme for each functional unit of the test system. The integrated and optimize design of hydraulic and testing system is carried out, the whole hardware and software of the comprehensive test system are designed, and the test process of testing for multi-way valves is well planned. The experiment on a typical multi-way valve is conducted, and the simulation model is verified by the testing results. The dynamics of functions like confluence, priority, flow regeneration, and negative control are studied by simulation, and the relation between structural parameters and dynamic performance is revealed, which can the design of this typical valve. Each chapter of this paper is introduced as follows:
     In chapter 1, the scheme and characteristics of each kind of multi-way valves are introduced, and the trend of development is also summarized; the current situation of research on multi-way valves testing systems is analyzed. Finally, the significance and main research subjects of this paper are presented.
     In chapter 2, the related standards for multi-way valves testing are analyzed. The whole scheme of the comprehensive test system is proposed by combining the test items and methods, also considering some important functional characteristics, and then the scheme for each functional unit are compared and analyzed. The main characteristics of the test system in this paper are inducted.
     In chapter 3, each functional unit of hydraulic system is designed based upon compact design and convenient operation, under the context that the test functions are fulfilled. Optimization of the test and control system is carried out according to the requirements of multi-way valve testing; the software and hardware are configured taking advantage of programmed logic controller and data acquisition device, which can realize the control of test system, the display and processing of test data. The process of multi-way valve testing is planned properly under the testing standard.
     In chapter 4, the experimental research on a certain multi-way valve is carried out on the basis of the comprehensive test system. The test items as well as their realization are analyzed in details, and related tests of characteristics of the valve are conducted. The test results are analyzed combining the functional principle and structural characteristics that can provide experimental support for the further research on the action mechanism of the tested multi-way valve.
     In chapter 5, the simulation model of multi-way valve is built, and verified by experiment, then the characteristics like confluence, priority, flow regeneration, and negative control of the valve is studied. Structural parameters that affect the dynamics of thevalve are obtained by variable parametric analysis.
     In chapter 6, conclusions in this thesis are summarized and future research proposals are suggested.
引文
[1]吴根茂,邱敏秀,王庆丰等.新编实用电液比例技术[M].杭州:浙江大学出版社,2006
    [2]路甬祥主编.液压气动技术手册[M].北京:机械工业出版社,2002.1
    [3]雷天觉主编.新编液压工程手册[M].北京:北京理工大学出版社,1998.12
    [4]路甬祥.流体传动技术与控制的历史进展与展望,2001.37(10):1-8.
    [5]黄传火.工程机械中液压技术发展的新动向[J].采矿技术,2006.6(2):71-73
    [6]杨华勇,曹剑,徐兵等.多路换向阀的发展历程与研究展望[J].机械工程学报,2005(10):1-5
    [7]JB/T 8729.1-1998 液压多路换向阀 技术条件
    [8]JB/T 8729.2-1998 液压多路换向阀 试验方法
    [9]JG/T 5116-1999 液压挖掘机用整体多路阀 技术条件
    [10]陈宏优,严继东.挖掘机液压元件试验台研制[J].流体传动及控制,2007.11
    [11]闫一民,李东唐.叉车用多路阀试验台设计[J].工程机械,1997.10
    [12]王福山,陈建长,万箭波,田治芬.液压多路换向阀试验台研制[J].工程机械,2006(12):42-47
    [13]于清海,吕景忠.整体式多路阀试验台工作装置的研制[J].吉林工业大学学报,1992.2
    [14]孙伟,周华,张增猛,邵玉强.负载敏感液控多路阀性能测试[J].机床与液压,2007.35(8).107-109
    [15]赵若采,刘雅生.多路阀计算机检测装置.实用新型专利,专利号:ZL200620025799.0
    [16]陈世教,樊万锁.川崎KMX15R挖掘机多路阀的功能与结构[J].建筑机械,1996(6):50-53
    [17]冀宏,傅新,杨华勇.几种典型液压阀口过流面积分析及计算[J].机床与液压,2003(5):14-16
    [18]高峰.液压挖掘机节能控制技术的研究[D].浙江大学博士学位论文,2001
    [19]张大庆.液压挖掘机工作装置运动控制研究[D].中南大学博士学位论文,2006
    [20]李竞,关景泰.液压挖掘机多路阀技术沿革及发展趋势[J].矿山机械,2004(11):30-32
    [21]俞浙青,吴根茂,路甬祥,郑庆良.多路阀的应用分析与发展展望[J].工程机械,1995(9):21-24
    [22]赵凡.电液比例多路阀的开发和研究[M].浙江大学硕士学位论文,1991
    [23]俞浙青,吴根茂,路甬祥,郑庆良.多路阀的控制形式和控制性能[J].工程机械,1995(8):18-21
    [24]高峰,潘双夏.负流量控制模型与试验研究[J].机械工程学报,2005(41):107-111
    [25]杨伟红.负载敏感技术在多路换向阀上的应用[J].液压气动与密封,1994,2:8-11
    [26]顾临怡.大惯性负载进出口独立调节数字控制及多执行器复合控制研究[D].浙江大学博士学位论文,1998
    [27]龚进,冀谦,郭勇,张德胜.AMESim仿真技术在小型液压挖掘机液压系统中的应用[J].机电工 程技术,2007(10):111-114
    [28]王庆丰,魏建华,吴根茂,张彦廷.工程机械液压控制技术的研究进展与展望[J].机械工程学报,2003(12):51-55
    [29]W.霍夫曼等.液压元件及系统的动态仿真[M].杭州:浙江大学出版社,1988
    [30]陈欠根,纪云锋,吴万荣.负载独立流量分配(LUDV)控制系统[J].液压与气动,2003(10):10-12
    [31]董光源.负荷传感控制液压系统[J].工程机械,1995(1):20-24
    [32]黄宗益,叶伟,李兴华.液压挖掘机液压系统概述[J].建筑机械化,2003(9):12-16
    [33]黄宗益,李兴华,陈明.挖掘机开中心和闭中心液压系统[J].建筑机械化,2004(6):53-55
    [34]武宏伟.挖掘机负载敏感系统的联合仿真及能耗分析[M].太原理工大学硕士学位论文
    [35]黄宗益,叶伟,李兴华.液压挖掘机液压系统概述[J].建筑机械化,2003(9):12-16
    [36]吕超,朱成建.WY21A液压挖掘机新型液压系统[J].建筑机械化,2004(1):58-60
    [37]秦家升.挖掘机液压系统研究[M].吉林大学硕士学位论文,2005
    [38]李永旭.液压挖掘机工作装置和液压系统设计的研究[D].同济大学博士学位论文
    [39]倪文波,唐中一,曾德昭等.比例多路阀的开发和研究[J].工程机械,1998(2):11-12
    [40]李安良.液压多路换向阀双阀芯控制技术的应用[J].工程机械,2005(2):54-56
    [41]江国耀.力士乐LUDV系统[J].工程机械,2004.6
    [42]张书元.多路阀换向冲击动态特性的分析[J].烟台大学学报,1996(1):62-66
    [43]李乐奇,何清华,郭勇,陈勇.现代液压挖掘机斗杆阀联的结构[J].建筑机械,2006.5
    [44]陆元章.液压系统的建模与分析[M].上海:上海交通大学出版社,1989.12
    [45]林建亚,何存兴.液压元件[M].北京:机械工业出版社,1988
    [46]章宏甲著.液压传动[M].北京:机械工业出版社,2003.4
    [47]Xu Bing,Liu Yingjie,Yang Huayong,Wang yangbin.Simulation Study of the Novel Valve Arrangement Used in Hydraulic Control System[C]//The Sixth International Fluid Power Conference,Dresden,Germany,2008,Workshop,Group B:139-146.
    [48]刘英杰.负载口独立控制关键技术研究.浙江大学博士学位论文开题报告,2008.12
    [49]Henke R.W.Evolution of load-sensing hydraulics.Diesel Progress International Edition,1998,17(4):53-55
    [50]Maiti,R,Pan,S.,and Bera,D.,Analysis of a Load Sensing Hydraulic Flow Control Valve,Proc.of 3rd JHPS International Symposium on Fluid Power,K.Araki,ed.,Yokohama,Japan,1996,307-312.
    [51]Bin Yao,Chris DeBoer.Energy-Saving Adaptive Robust Motion Control of Single-Rod Hydraulic Cylinders with Programmable valves.In:Proc.of the American Control Conference,Anchorag-e,AK.2002,5:4819-4824
    [52]Caterpillar.System and Method for controlling an Independent Metering Valve.USP 5,960,695,1999.
    [53]Wang Qingfeng,Gu Linyi,Lu Yongxiang.Resear-ch on digital control of meter-in and meter-out independent regulating for high inertia load.In:Fluid Power Systems and Technology-1999,ASME,Tennessee,USA.1999:109-114
    [54]Haibo Hu,Qin Zhang.Realization of program-Mable control using a set of individually control-led electrohydraulic valves.International Journal of Fluid Power,2002,v3,n2:29-34
    [55]Backe,W.Design systematics and perform-ance of cartridge valve controls.In:Inter-national Conference on Fluid Power,Tampere,Finland.1987,3:1-48
    [56]Jansson,Arne,Palmberg,Jan-Ove.Separate controls of meter-in and meter-out orifices in mobile hyraulicsystems.SAE Transactions,1990,99(2):377-383
    [57]Wu,D.Schoenau,G.,Burton,R.,and Bitnet,D."Model and experimental validation of a load sensing system," Intl.Journal Fluid Power,vol.6.5-8,Nov 2005.
    [58]黎启柏.液压元件手册[M].北京:机械工业出版社,1999.10
    [59]余佑官,龚国芳,胡国良.AMESim仿真技术及其在液压系统中的应用[J].液压气动与密封,2005(3):28-31
    [60]赵阳,郑政宝.基于流场仿真的多路阀流道结构优化设计[J].流体传动与控制,2007.5
    [61]WU Duqiang.Modeling and experimental evaluation of a load-sensing and pressure compensated hydraulic system.PHD Dissertations.Saskatchewan University.
    [62]S.CetinkuntU.PinsoponC.ChenA.EgeljaS.Anwar.Implement-by-Wire Control of Electrohydraulic Closed Center Systems for Mobile Equipment Applications.International Association of Science and Technology for Development) International Conference on Robotics and Applications,2003
    [63]Elfving M.,A concept for a distributed controller of fluid power actuators.[PhD thesis].Sweden:Link(o|¨)ping University,1997
    [64]Elfving M.,Palmberg J.O.Distributed control of fluid power actuators-decoupled chamber pressure controlled cylinder.In:the ninth Bath International Fluid Power Workshop,Bath,England,1996
    [65]Elfving M.,Palmberg J.O.,Jansson A.Distributed control of fluid power actuators-experimental verification of a decoupled chamber pressure controlled cylinder.In:the fourth International Conference on Fluid Power Transmission and Control,Hangzhou,China,1997
    [66]Elfving M.,Palmberg J.O.Distributed control of fluid power actuators-a load sensing application of a cylinder with decoupled chamber pressure control.In:the fifth Scandinavian International Conference on Fluid Power,Link(o|¨)ping,Sweden,1997
    [67]葛徐.电液比例多路阀的研究[M].浙江大学硕士学位论文,1993
    [68]付永领,祁晓野.AMESim系统建模和仿真—从入门到精通[M].北京:北京航空航天大学出版社,2006
    [69]刘海丽.基于AMESim的液压系统建模与仿真技术研究[M].西北工业大学硕士学位论文,2006
    [70]袁红兵,岳大灵.基于AMESim的液控单向阀卸载动态特性仿真研究[J].煤炭科学技术,2008.12
    [71]安林超,廉自生.基于AMESim的安全阀动态特性优化仿真[J].流体传动与控制,2009.5
    [72]成大先.机械设计手册第四版[M].化学工业出版社,2002.1
    [73]张正国,王世平.水冷式油冷却器的新进展[J].华东电力,1998(6)
    [74]周思涛主编.可编程控制器原理及其在液压系统中的应用[M].北京:机械工业出版社.2005
    [75]陈锡辉,张银鸿.Labview8.20程序设计从入门到精通[M].北京:清华大学出版社,2007.7
    [76]骆涵秀,李世伦,朱捷等.机电控制[M].杭州:浙江大学出版社,1994
    [77]王春行.液压控制系统[M].北京:机械工业出版社,1999
    [78]吴贤才.浅易工程机械机电一体化[J].工程机械,1992.23(1):29-33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700