用户名: 密码: 验证码:
断续模式反激变换器的优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界范围内对节能和环保的日益重视,使得行业对电源适配器的工作能效和待机损耗的要求不断增加,本论文以64W断续模式反激变换器为研究背景,分析了其主要损耗点,并在此基础上对几个主要的损耗点提出了一些有效的优化措施。
     同步整流是提高效率最直接有效的方式,论文通过比较各种同步整流驱动方案,选取了芯片集成的电压型自驱动作为驱动方法,并通过实验取得了较大的效率提升。
     论文分析了两种广泛应用的反激变换器的控制方法:关断时间控制和准谐振控制,通过原理分析和实验比较了两种控制方式在不同输入和负载条件下所表现处的优缺点。本文在研究控制方法和同步整流的基础上提出了一种新型带同步整流的软开关控制方案以进一步提升效率,这种控制方法可以在不同的输入和负载条件下实现零电压开关,且不需要额外的辅助MOS管,文中给出了设计过程中的几个重要参数及设计方法,并通过实验验证了该方法在较简单拓扑的优势下对效率优化的作用。
     本论文重点阐述了反激变压器中的铜损计算方法,指出了传统变压器的铜损计算方法在反激变换器中的不适用原因。在综述了现有的反激变换器铜损计算方法的基础上提出了一种基于傅立叶分解之后原副边相位差关系的频域反激变压器铜损计算方法,该方法将傅立叶分解之后的原副边电流进行分解,得到一个复数域的边界磁场强度。并通过FEA和实验验证了该方法的实用性。此方法提出了一种计算变压器损耗的全新视角,对于像Interleaving结构的变压器的铜损计算具有比传统方法更高的精度。论文通过所提出的方法证明了Interleaving变压器结构相比Non-interleaving结构在减小交流铜损上具有十分明显的作用。
     同时,论文在磁芯计算经验公式和改进的经验公式(MSE)的基础上总结并计算出了一种适合断续模式反激变压器的磁损计算方法,具有比生产商提供的正弦激励下的损耗曲线更高的精度。论文在结合铜损和磁损的计算模型基础上通过实验比较对反激变压器进行了优化,实现了用同样或更少的成本绕制更高效率的变压器。
     论文还对反激变压器设计中一些既定的输入元件对效率的影响作出了实验分析,这些参数的变化对整个拓扑的效率具有终重要的影响。同时,分析了待机状态下的主要损耗点,并指出了一些在待机损耗的优化过程中可以采用的方法。
With the growing emphasize on the worldwide energy-saving and environmental protection, the annual energy consumption of the External Power Supply is now being one the most significant environmental aspect, improvements in the electricity consumption of external power supplies should be achieved. This dissertation mainly focused on the optimal design of the DCM Flyback converter with respect to some critical losses. Based on the detailed loss evaluation, the efficiency optimization based on the secondary synchronous rectification, control method and transformer optimization are presented.
     Based on the research to the control method and the synchronous rectification, a novel soft switching Flyback converter with synchronous rectification is proposed to achieve a higher efficiency without an additional MOSFET. Detailed steady state analysis and design consideration are presented. And both the analysis and experimental results show that the proposed control scheme could effectively realize ZVS at both low and high input as well as any load line.
     This dissertation also focuses on the winding loss calculation model, and the reason why the traditional winding loss analytical model is not suitable to the Flyback transformer is presented. An improved winding loss analytical model for the Flyback transformer is proposed by considering the phase shift angle of the two currents and building a new magnetic field in the region between each layer. The proposed winding analytical model is verified with FEA simulation as well as experimental results. It proves that interleaving structure does obviously have less ac winding loss in the Flyback transformer. Meanwhile, a modified core loss model of DCM Flyback is also presented in this dissertation to get a more accurate result.
     Based on the proposed winding loss analytical model and the core loss model, the transformer optimal design is described to show that a lower loss could be reached by less copper through proper design. All the calculated efficiency improvement has been validated with experimental results, and the results turn out to be satisfying.
     Other parameters which are critical to the optimal design are shown with experimental results. These parameters have much to do with the efficiency of the whole converter once it is fixed. And some methods to reduce the loss at no load are pointed out and analyzed experimentally to get a lower stand-by loss.
引文
[1]安森美半导体.满足“能源之星”最新外部电源规范要求的解决方案.电源世界,2009-4
    [2]COMMISSION REGULATION(EC).Implementing Directive 2005/32/EC of the European Parliament and of the Council with regard to ecodesign requirements for no-load condition electric power consumption and average active efficiency of external power supplies.Official Journal of the European Union,Apr 2009
    [3]大久保聪.AC适配器的发展趋势.电子设计应用.2005
    [4]M.T.Zhang,M.M.Jovanovic,Fred.C.Lee.Design Considerations and Performance Evaluations of Synchronous Rectification in Flyback Converters.IEEE Transactions on Power Electronics,Vol.13,No.3,pp.538-546,May,1998
    [5]Y.K.Lo,J.Y.Lin.Active-Clamping ZVS Flyback Converter Employing Two Transformers.IEEE Transactions on Power Electronics,Vol.22,No.6,pp.2416-2423,2007
    [6]R.Watson,Fred C.Lee,and G.C.Hua.Utilization of an Active-Clamp Circuit to achieve Soft Switching in Flyback Converters.IEEE Transactions on Power Electronics,Vol.11,No.1,pp.162-169,Jan.1996
    [7]A.Rahnamaee,J.Milimonfared,K.Malekian,M.Abroushan.Reliability Consideration for a High Power Zero-Voltage-Switching Flyback Power Supply.EPE-PEMC2008,pp.365-371,2008
    [8]U.Boeke.High Efficiency Flyback Converter Technology.IEEE PCC'07,pp.1268-1273,Apr.2007
    [9]C.M.Wang,C.H.Suand,C.H.Yang.ZVS-PWM flyback converter with a simple auxiliary circuit.IEE Proc.-Electr.PowerAppl.,Vol.153,No.1,pp.116-122,Jan,2006
    [10]Jong Hyun Kim,Myung Hyo Ryu,et al.A Method to Reduce Power Consumption of Active-Clamped Flyback Converter at No-Load Condition.IEEE IECON'06,pp.2811-2814,NOV 2006
    [11]R.Prieto,J.A.Cobos,O.Garcia,P.Alou and J.Uceda.High Frequency Resistance in Flyback Type Transformers.IEEE APEC,vol.2,pp.714-19,Feb 2000
    [12]J.Vandelac and P.D.Ziogas.A novel approach for minimizing high frequency transformer copper losses.IEEE Trans.Power Electron.,vol.3,no.3,pp.166-176,July 1988
    [13]Doug Lavers,Eric Lavers.Waveform Dependent Switching Losses in Flyback Transformer Foil Windings.IEEE APEC,vol.3,pp.116-112,June 2002
    [14]Infineon Technologies,Jens Ejury.How to Compare the Figure Of Merit(FOM) of MOSFETs.Application Note.June 2003
    [15]S.Y.Lee.Synchronous Rectifier Flyback Circuit for Zero Voltage Switching.USA patent No.6198638 B1,Mar 2001
    [16]Xuefei Xie,Joe Chui Pong Liu,Franki N.K.Poon,Man Hay Pong.A Novel High Frequency Current-Driven Synchronous Rectifier Applicable to Most Switching Topologies.IEEE Trans.on PE,vol.16,no.5,pp635-648,Sep 2001
    [17]J.M.Zhang,X.G.Xie,D.Z.Jiao,Zhaoming Qian.A High Efficiency Adapter with Novel Current Driven Synchronous Rectifier.IEEE INTELEC'03,pp205-210,Oct.19-23,2003
    [18]谢小高,张军明,钱照明.基于新型同步整流驱动方案的绿色电源[J].电工技术学报,22(3):96-101,2007
    [19]NXP Semiconductors.TEA1761T-GreenChip synchronous rectifier controller.Product datasheet.Apr.2007
    [20]International Rectifier.IR1167-Smart Rectifier control IC datasheet.Product datasheet.Feb.2006
    [21]On Semiconductor.Variable Off Time PWM Controller.NCP1351.Product datasheet.Nov.2006.
    [22]On Semiconductor.PWM Current-Mode Controller for Free Running Quasi-Resonant Operation.NCP1207.Product datasheet.Oct.2004
    [23]Philips Semiconductors.75W SMPS with TEA1507 Quasi-Resonant Flyback controller.TEA1507.Application note.Jun.2000
    [24]W.Langeslag,et al.A High-Voltage Compatible BCD SoC-ASIC Performing Valley-Switching Control of AC-DC Power Converters Based on PFC and Flyback Cells.IEEE IECON'06,pp.2996-3001,Nov.2006
    [25]Y.Panov,M.M.Jovanovie.Adaptative Off-Time Control for Variable-Frequency,Soft-Switched Flyback Converter at Light Loads.IEEE Power Electronics Specialist Conference.pp.457-462.Jun.1999
    [26]W.Yuan,X.C.Huang,J.M.Zhang,Z.M.Qian.A Novel Soft Switching Flyback Converter with Synchronous Rectification.IEEE IPEMC'09.pp.551-559.May 2009
    [27]R.Severns.Additional losses in high frequency magneticsdue to non ideal field distributions.APEC'92,pp.333-338,1992
    [28]J.K.Hu and C.R.Sullivan.The quasi-distributed gap technique for planar inductors:Design guide lines.IEEE Industry Applications Society Annual Meeting,pp.1147-1152,1997
    [29]P.Wallmeier,N.Frohleke,and H.Grotstollen.Improved analytical modeling of conductive losses in gapped high-frequency inductors.IEEE Industry Applications Society Annual Meeting,pp.913-920,1998
    [30]J.K.Hu and C.R.Sullivan.Optimization of shapes for round wire high-frequency gapped inductor windings.IEEE Industry Applications Society Annual Meeting,pp.900-906,1998
    [31]C.R.Sullivan,T.Abdallah.Optimization of a flyback transformer winding considering two-dimensional field effects,cost and loss.IEEE APEC,pp.1-7,Mar.2001
    [32]P.L.Dowell.Effects of eddy currents in transformer windings.Proceedings of the IEEE,vol.113,no.8,pp.1387-1394,Aug.1966.
    [33]E.Bennet and S.C.Larson.Effective resistance of alternating currents.American Institute of Electrical Engineers,vol.59,pp.1010-1017,1940
    [34]M.P.Perry.Multiple Layer Series Connected Winding Design for Minimum Losses.IEEE Trans.Power Electronics,vol.PAS-98,No.1,pp.116-123,Jan.1979
    [35]R.L.Stoll.The analysis of eddy currents.Clarendon Press,Oxford,1974
    [36]J.A.Ferreira.Improved analytical modeling of conductive losses in Magnetic components.IEEE Trans.on Power Electronics,no.1,pp.127-131,Jan.1994
    [37]X.Nan and C.R.Sullivan.An Improved Calculation of Proximity-Effect Loss in High-Frequency Windings of Round Conductors.IEEE PESC,vol.2,pp.853-860,Jun.2003
    [38]R.W.Erickson,D.Maksimovic.Fundamentals of Power Electronics.University of Colorado,2000
    [39]P.S.Venkatraman.Winding Eddy Current Losses in Switch Mode Power Transformers Due to Rectangular Wave Currents.in Proc.of Powerconll,Section A,pp.1-11,1984
    [40]Bruce Carsten.High Frequency Conductor Losses in Switch mode Magnetics.High-frequency Power Converter Conference Record,pp.155-176,May 1986
    [41]William Gerard Hurley,Eugene Gath,and John G.Breslin.Optimizing the AC Resistance of Multilayer Transformer Windings with Arbitrary Current Waveforms.IEEE Trans.Power Electron.,vol.15,no.2,Mar.2000
    [42]Zengyi Lu and Wei Chen.Novel Winding Loss Analytical Model of Flyback Transformer.IEEE PESC,pp.1213-1218,Jun.2006
    [43]W.Chen,J.He,H.L.Luo,et.al.Winding Loss Analysis and New Air-Gap Arrangement for High-frequency Inductor.IEEE PESC,pp.2084-2089,June 2001
    [44]X.K.Mao,W.Chen,Y.X.Li.Winding Loss Mechanism Analysis and Design for New Structure High-Frequency Gapped Inductor.IEEE Trans.Magnetics,vol.41,no.10,pp.4036-4038,Oct.2005.
    [45]Lloyd H.Dixon.Unitrode Magnetics Topics.(SEM1200).1998
    [46]C.P.Steinmetz.On the law of hysteresis",AIEE Transactions,vol.9,pp.3-64,1892,Reprinted under the title "A Steinmetz contribution to the ac power revolution,introduction by J.E.Brittain,in Proceedings of the IEEE 72(2),pp.196-221,1984
    [47]S.A.Mulder.Loss formulas for power ferrites and their use in transformer design.Philips Components,1994
    [48]FerroxCube.Design of planer power transformers," Philips Components.FerroxCube Application Note
    [49]J.Reinert,A.Brockmeyer,and R.W.De Doncker.Calculation of losses in ferro-and ferromagnetic materials based on the modified steinmetz equation.IEEE Trans.Power Electron.,vol.37,no.4,Aug.2001
    [50]A.Brockmeyer and L.Sch(u|¨)lting.Modeling of dynamic losses in magnetic material,in Proc.EPE'93,vol.3,Brighton,U.K.,pp.112-117,1993
    [51]A.Brockmeyer.Experimental evaluation of the influence of dc pre magnetization on the properties of power electronic ferrites.IEEE-APEC,vol.1,pp.454-460,1996
    [52]W.K.Mo,K.W.Cheng,and Y.S.Lee.Simple Approximations of the DC Flux Influence on the Core Loss Power Electronic Ferrites and Their Use in Design of Magnetic Components.IEEE Trans.Industrial Electron.,vol.4,no.6,1999
    [53]Maxim.Flyback Transformer Design for MAX1856 SLIC Power Supplies.Application note 1166,Aug.2002.
    [54]International Rectifier.Flyback Transformer Design for the IRIS40xx Series.Application note 1024a,May,2001.
    [55]Fairchild.Transformer Design Consideration for off-line Flyback Converters using Fairchild Power Switch.Application note 4140,Mar.2004.
    [56]石洋.低成本高性能小功率AC/DC变流器设计.[硕士学位论文],浙江大学电气工程学院,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700