用户名: 密码: 验证码:
线粒体营养素对运动性疲劳的预防和保护作用及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运动性疲劳是训练中一种正常的生理现象。适当的疲劳与快速的恢复是提高运动能力的关键。实验证据表明,运动性疲劳可能是细胞内线粒体自由基过量生成导致细胞氧化损伤的结果。因而,抑制氧化损伤,提高线粒体功能,可能会减少运动性疲劳并促进其快速恢复。在前期研究中,我们将一类靶向于线粒体、促进和维持线粒体结构功能完整的营养物质定义为线粒体营养素。我们的研究提示,选择适当的线粒体营养素,使之分别作用于改善线粒体结构与功能的各条途径,充分发挥多种营养素的协同作用,可能是减少运动性疲劳发生,促进其快速恢复的新的有效手段。
     研究目的:
     本研究以运动性疲劳进程中线粒体氧化损伤为中心,揭示线粒体营养素或其他抗氧化活性物质—线粒体—运动性疲劳之间的相互关系及其分子机制,研究线粒体损伤中的线粒体数目及合成与分解,和功能的变化;线粒体合成的基因变化;线粒体内膜上的解偶联蛋白的调控。应用多个营养素及抗氧化活性物质在多个模型上筛选及优化组合,确定线粒体营养素及抗氧化活性物质最佳配方,研究结果将为运动性疲劳的营养调控制提供新的理论依据和应用思路。
     研究方法:
     比较待测营养素——线粒体营养素对力竭运动大鼠模型预防和治疗的效果。建立力竭运动大鼠模型;检测大鼠的各组血乳酸,睾酮,皮质酮等水平。然后将各组大鼠处死,取血,取骨骼肌、心肌,肝脏等组织,抽提骨骼肌,肝脏线粒体,线粒体测定ROS等高活性代谢分子的水平,测定线粒体膜蛋白巯基含量,测定骨骼肌、肝脏线粒体呼吸链活性以及蛋白、核酸及脂质氧化损伤水平;电镜观察线粒体结构。
     研究结果:
     1)运动距离测试:营养素干预组较力竭运动组的运动距离明显增加;
     2)血液指标测试:跑台运动8周后,营养素干预组的谷丙转氨酶含量,血清尿素氮,肌酐含量,红细胞数,血红蛋白的含量均降低;
     3)免疫系统测试:营养素干预组细胞凋亡率和活性氧的产生下降;脾淋巴细胞增殖明显增加;
     4)抗氧化能力测试:营养素干预组血清总抗氧化力和GST酶活力显著增加;
     5)对骨骼肌系统的研究:营养素干预组大鼠骨骼肌的单侧腓肠肌指数,股四头肌指数及比目鱼肌指数均上升,血清肌酸激酶和乳酸脱氢酶的活力下降;肌糖原的含量增加;线粒体数目增加。营养素干预组可显著增加线粒体复合物Ⅰ,Ⅱ和Ⅲ蛋白的表达,促进线粒体DNA的合成,同时上调了参与调控线粒体生成的转录因子PPARGCIA, Nrf1和Tfam的表达;营养素干预可显著上调MFN1和MFN2的表达;
     6)对肝脏系统的测试:力竭运动增加肝脏线粒体复合物工,Ⅰ,Ⅳ和Ⅴ的活性,同时增加谷胱甘肽的水平。力竭运动诱导增加肝脏匀浆中丙二醛,谷胱甘肽转移酶,烟酰胺腺嘌呤二核苷酸磷酸辅酶氧化还原酶的能力。营养素干预组能缓解复合物V和NQO-1的能力。同时增加了线粒体复合物Ⅰ和复合物Ⅳ的活性。
     结论:
     营养素干预可显著提高大鼠的运动能力;增强机体的抗疲劳能力;增强机体的免疫功能;保护机体细胞免受运动性损伤;促进骨骼肌的线粒体生成,缓解肝脏线粒体氧化损伤,改善线粒体的功能。
     总之,本研究中所使用的线粒体营养素组合具有优异的抗疲劳,改善线粒体功能的效果。
Endurance exercise-induced fatigue is a common physiological response. The key point for improving exercise ability is having appropriate fatigue with quick recovery. It has been proven that the exercise-induced fatigue could result in over production of reactive oxygen species from mitochondria. Therefore, inhibiting oxidative damage and improving mitochondrial function might be a good strategy to reduce exercise induced-fatigue and accelerate recovery. We have identified a group of nutrients as mitochondrial targeting nutrients because they protect mitochondria from damage and maintain the function of mitochondria for normal physiological activities. In the present study, we have shown that an appropriately selected combination of mitochondrial nutrients is effective on reducing exercise-induced fatigue and accelerating recovery by synergistically improving mitochondrial structure and function through the actions on various pathways.
     Aims:Exhaustive exercise causes fatigue due to mitochondrial dysfunction and oxidative stress. In order to find an effective strategy to prevent fatigue and/or enhance recovery, we studied the effects of a combination of mitochondrial targeting nutrients on physical activity, mitochondrial function and oxidative stress in exhaustively exercised rats.
     Main methods:The present study was to investigate the effects of a combination of mitochondrial nutrients on physical performance and related biochemical parameters in rats during long-term exhaustive exercise. Rats were randomly divided into three groups:sedentary control (SC), exhaustive-exercise (EC) and exhaustive-exercise with nutrients (EN) which received a combination of mitochondrial nutrients supplementation for 12 weeks (4 week prior to the exercise program and 8 weeks during the exercise prohram). Rats in EC and EN groups were submitted to an exercise program, which contains four- week endurance training and four-week exhaustive exercise.
     Key findings:Examination of running distance over the 4-week period revealed that EC group rats ran less distance throughout the entire duration of the exhaustive exercise period compared with EN group rats. The activities of plasma alanine transaminase (ALT), lactate dehydrogenase (LDH) and creatine-kinase (CK) in the EC group were significantly higher than those in the SC group. However, nutrients supplementation attenuated the elevation of these enzyme activities in the plasma of rats. The rise in malondialdehyde (MDA) following the treadmill test was significantly less after nutrients supplementation. In addition, nutrients also inhibited the decrease of the activity of glutathione S-transferase (GST) and total antioxidant capacity (TOC) in plasma. The percentage of apoptotic cells increased significantly in spleen lympocytes and the generation of reactive oxygen species (ROS) also enhanced after 24h-recovery of the exhaustive exercise in the EC group. Nutrients supplementation also suppressed the elevation of ROS and apoptosis in the EN group. We found that the nutrient treatment significantly increased the running time, improved mitochondrial function and reduced oxidative stress in muscle.
     We also found that exhaustive exercise induced an increase in activities of mitochondrial complexes I, IV and V, an increase in GSH level and a decrease in ROS in liver mitochondria but no change in levels of ROS and MDA, or in activities of complexes II and III. Exercise also induced a significant increase in MDA and activities of glutathione S-transferase and NADPH-quinone-oxidoreductase 1 (NQO-1) in the liver homogenate. The nutrient treatment showed amelioration of the complex V and NQO-1 activities, but no effect on other parameters.
     Conclusions:We found that exhaustive exercise reduced the running time, increased the activities of ALT and LDH and the levels of red blood cells, hemoglobin and hemocrit, depressed kidney function (decreased levels of BUN and creatine) and immune function, decreased mitochondrial function in muscle and liver, elevated oxidative stress and decreased antioxidant defense in plasma, muscle, liver and spleen. We also found that the mitochondrial targeting nutrient treatment treatment significantly increased the running time, ameliorated the abnormality of plasma enzymes and oxygen transportation system, imporved the kidney function and immune function, protected the mitochondrial dysfunction in muscle and liver, enhanced antioxidant defense system and reduced oxidative stress in plasma, muscle, liver and spleen. In addition, we showed that, the nutrient treatment has less impact on exercise-induced oxidative and mitochondrial stress in the liver than in the muscle.
引文
1. Benton, C.R., D.C. Wright, and A. Bonen, PGC-1alpha-mediated regulation of geneexpression and metabolism: implications for nutrition and exercise prescriptions.Appl Physiol Nutr Metab,2008.33(5):p.843-62.
    2. Gottlieb, E. and I.P.M. Tomlinson, Mitochondrial tumour suppressors: A genetic andbiochemical update. Nature Reviews Cancer,2005.5(11):p.857-866.
    3. Mathai, A.S., et al., Rapid exercise-induced changes in PGC-1 {alpha} mRNA and protein in human skeletal muscle. Journal of Applied Physiology,2008.105(4): p.1098.
    4. Liesa, M., M. Palacin, and A. Zorzano, Mitochondrial Dynamics in Mammalian Health and Disease. Physiological Reviews,2009.89(3):p.799-845.
    5. Ding, H., et al., Response of mitochondrial fusion and fission protein gene expressionto exercise in rat skeletal muscle. Biochim Biophys Acta,2009.
    6. Leger, B., et al., Human skeletal muscle atrophy in amyotrophic lateral sclerosis reveals a reduction in Akt and an increase in atrogin-1. The FASEB Journal,2006: p.05.
    7. Ji, L.L., Antioxidants and oxidative stress in exercise. Experimental Biology and medicine,1999.222(3):p.283.
    8. Davies, K.J., et al., Free radicals and tissue damage produced by exercise. BiochemBiophys Res Commun,1982.107(4):p.1198-205.
    9. Bejma, J. and L.L. Ji, Aging and acute exercise enhance free radical generation in ratskeletal muscle. Journal of Applied Physiology,1999.87(1):p.465.
    10. Jackson, M.J., R.H.T. Edwards, and M.C.R. Symons, Electron spin resonance studiesof intact mammalian skeletal muscle. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,1985.847(2):p.185-190.
    11. Yu, B.P., Free radicals in aging.1993:Informa HealthCare.
    12. Ji, L.L., F.W. Stratman, and H.A. Lardy, Enzymatic down regulation with exercise inrat skeletal muscle. Archives of biochemistry and biophysics,1988.263(1):p.137.
    13. Hellsten, Y., Xanthine dehydrogenase and purine metabolism in man. With specialreference to exercise. Acta physiologica Scandinavica. Supplementum,1994. 621:p.1.
    14. Norman, B., et al., ATP breakdown products in human skeletal muscle during prolonged exercise to exhaustion. Clinical Physiology and Functional Imaging, 1987.7(6):p.503-510.
    15. Hellsten-Westing, Y., et al., The effect of high-intensity training on purine metabolismin man. Acta Physiol Scand,1993.149(4):p.405-412.
    16. Sahlin, K., K. Ekberg, and S. Cizinsky, Changes in plasma hypoxanthine and freeradical markers during exercise in man. Acta Physiol Scand,1991.142(2): p.275-281.
    17. Petrone, W.F., et al., Free radicals and inflammation: superoxide-dependent activation of a neutrophil chemotactic factor in plasma. Proceedings of the National Academy of Sciences,1980.77(2):p.1159.
    18. Vi a, J., et al., Mitochondrial biogenesis in exercise and in ageing. Advanced Drug Delivery Reviews,2009.
    19. Somani, S.M., Pharmacology in exercise and sports. Glutathione and excercise., ed.L.L. Ji and L. C.1996:CRC.97-123.
    20. Leeuwenburgh, C., et al., Adaptations of glutathione antioxidant system to endurancetraining are tissue and muscle fiber specific. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,1997.272(1):p. 363.
    21. Judge, S., et al., Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart. Am J Physiol Regul Integr Comp Physiol,2005.289(6):p. R1564-72.
    22. Moyers, S.B. and N.B. Kumar, Green tea polyphenols and cancer chemoprevention:multiple mechanisms and endpoints for phase Ⅱ trials. Nutr Rev, 2004.62(5):p.204-11.
    23. Meydani M and E. WJ, Free radicals, excercise, and aging. Free radicals in aging, ed.B.P. Yu.1993, Boca Rotaon: Informa HealthCare.183-204.
    24. Packer, L., et al., A comparative study on the effects of ascorbic acid deficiency andsupplementation on endurance and mitochondrial oxidative capacities in various tissues of the guinea pig. Comparative biochemistry and physiology. B, Comparative biochemistry,1986.83(1):p.235.
    25. Miller, J.W., et al., Photodynamic therapy of experimental choroidal neovascularization using lipoprotein-delivered benzoporphyrin. Arch Ophthalmol, 1995.113(6):p.810-8.
    26. Navarro, A., et al., Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology,2004.286(3): p.505.
    27. Anderson, S., et al., Sequence and organization of the human mitochondrial genome.Nature,1981.290(5806):p.457-65.
    28. Kempermann, G., H.G. Kuhn, and F.H. Gage, More hippocampal neurons in adult mice living in an enriched environment. Proc. Natl Acad. Sci. USA,1995.92:p 7075-7079.
    29. Gobbo, O.L. and S.M. O'Mara, Impact of enriched-environment housing on brain-derived neurotrophic factor and on cognitive performance after a transient global ischemia. Behavioural brain research,2004.152(2):p.231-241.
    30. Arnaiz, S.L., et al., Enriched environment, nitric oxide production and synaptic plasticity prevent the aging-dependent impairment of spatial cognition. Molecular Aspects of Medicine,2004.25(1-2):p.91-101.
    31. Menshikova, E.V., et al., Effects of exercise on mitochondrial content and function inaging human skeletal muscle. Journals of Gerontology Series A:Biological and Medical Sciences,2006.61(6):p.534.
    32. Rovio, S., et al., Leisure-time physical activity at midlife and the risk of dementia and Alzheimer's disease. Lancet neurology,2005.4(11):p.705-711.
    33. Yamada, M., et al., Association between dementia and midlife risk factors: the radiation effects research foundation adult health study. Journal of the American Geriatrics Society,2003.51(3):p.410-414.
    34. Hauptmann, S., et al., Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging,2009. 30(10):p.1574-86.
    35. Poulton, N.P. and G.D. Muir, Treadmill training ameliorates dopamine loss but notbehavioral deficits in hemi-parkinsonian rats. Experimental Neurology,2005. 193(1):p.181-197.
    36. Yousefi, B., et al., Exercise therapy, quality of life, and activities of daily living in patients with Parkinson disease: a small scale quasi-randomised trial. Trials,2009.10: p.67.
    37. Hackney, M.E. and G.M. Earhart, Health-related quality of life and alternative forms of exercise in Parkinson disease. Parkinsonism Relat Disord,2009.15(9):p. 644-8.
    38. Emter, C.A., et al., Low-intensity exercise training delays onset of decompensated heart failure in spontaneously hypertensive heart failure rats. American Journal of Physiology-Heart and Circulatory Physiology,2005.289(5):p. H2030.
    39. Lanza, I.R., et al., Endurance exercise as a countermeasure for aging. Diabetes, 2008.57(11):p.2933.
    40. Short, K.R., et al., Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes,2003.52(8):p.1888.
    41. Green, D.R. and J.C. Reed, Mitochondria and apoptosis. Science,1998. 281(5381):p.1309-12.
    42. Kang, P.M., et al., Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ Res,2000.87(2): p.118-25.
    43. Gollnick, P.D., et al., The effect of high-intensity exercise on the respiratory capacityof skeletal muscle. Pflugers Arch,1990.415(4):p.407-13.
    44. Nybo, L. and P. Rasmussen, Inadequate cerebral oxygen delivery and central fatigue during strenuous exercise. Exerc Sport Sci Rev,2007.35(3):p.110-8.
    45. Vollestad, N.K. and O.M. Sejersted, Biochemical correlates of fatigue. A brief review. Eur J Appl Physiol Occup Physiol,1988.57(3):p.336-47.
    46. Sies, H. and E. Cadenas, Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci,1985.311(1152):p.617-31.
    47. Nunomura, A., et al., Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol,2001.60(8):p.759-67.
    48. Powers, S.K. and M.J. Jackson, Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev,2008.88(4): p.1243-76.
    49. Commoner, B., J. Townsend, and G.E. Pake, Free radicals in biological materials.Nature,1954.174(4432):p.689-91.
    50. Brady, P.S., L.J. Brady, and D.E. Ullrey, Selenium, vitamin E and the response to swimming stress in the rat. J Nutr,1979.109(6):p.1103-9.
    51. Dillard, C.J., et al., Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. J Appl Physiol,1978.45(6):p.927-32.
    52. Boveris, A. and B. Chance, The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J,1973. 134(3):p.707-16.
    53. Davies, K.J., et al., Muscle mitochondrial bioenergetics, oxygen supply, and work capacity during dietary iron deficiency and repletion. Am J Physiol,1982.242(6): p.E418-27.
    54. Reid, R.A., CAN MIGRATORY MITOCHONDRIAL-DNA ACTIVATE ONCOGENES.Trends in Biochemical Sciences,1983.8(6):p.190-191.
    55. Barclay, J.K. and M. Hansel, Free radicals may contribute to oxidative skeletal muscle fatigue. Can J Physiol Pharmacol,1991.69(2):p.279-84.
    56. Jacob, S., et al., The antioxidant alpha-lipoic acid enhances insulin-stimulated glucose metabolism in insulin-resistant rat skeletal muscle. Diabetes,1996.45(8):p. 1024-9.
    57. Powers, S.K., A.N. Kavazis, and K.C. DeRuisseau, Mechanisms of disuse muscle atrophy: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol, 2005.288(2):p. R337-44.
    58. Kanter, M.M., Free radicals, exercise, and antioxidant supplementation. Int J Sport Nutr,1994.4(3):p.205-20.
    59. Kobzik, L., et al., Nitric oxide in skeletal muscle. Nature,1994.372(6506):p. 546-8.
    60. Peake, J.M., K. Suzuki, and J.S. Coombes, The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J Nutr Biochem,2007.18(6):p.357-71.
    61. Gandevia, S.C., Spinal and supraspinal factors in human muscle fatigue. Physiol Rev,2001.81(4):p.1725-89.
    62. Meister, A. and M.E. Anderson, Glutathione. Annu Rev Biochem,1983.52; p.711-60.
    63. Marin, E., et al., Enzymes of glutathione synthesis in dog skeletal muscles and their response to training. Acta Physiol Scand,1993.147(4):p.369-73.
    64. Tritschler, H.J., L. Packer, and R. Medori, Oxidative stress and mitochondrial dysfunction in neurodegeneration. Biochem Mol Biol Int,1994.34(1):p.169-81.
    65. Packer, L., E.H. Witt, and H J. Tritschler, alpha-Lipoic acid as a biological antioxidant. Free Radic Biol Med,1995.19(2):p.227-50.
    66. Khanna, S., et al., Skeletal muscle and liver lipoyllysine content in response to exercise, training and dietary alpha-lipoic acid supplementation. Biochem Mol Biol Int,1998.46(2):p.297-306.
    67. Daneryd, P., et al., Coenzymes Q9 and Q10 in skeletal and cardiac muscle in tumour-bearing exercising rats. Eur J Cancer,1995.31A(5):p.760-5.
    68. Bowles, D.K., et al., Effects of acute, submaximal exercise on skeletal muscle vitaminE. Free Radic Res Commun,1991.14(2):p.139-43.
    69. Liu, J. and B.N. Ames, Reducing mitochondrial decay with mitochondrial nutrients to delay and treat cognitive dysfunction, Alzheimer's disease, and Parkinson's disease. Nutr Neurosci,2005.8(2):p.67-89.
    70. Echtay, K.S., Mitochondrial uncoupling proteins--what is their physiological role? Free Radic Biol Med,2007.43(10):p.1351-71.
    71. Shen, W., et al., A combination of nutriments improves mitochondrial biogenesis and function in skeletal muscle of type 2 diabetic Goto-Kakizaki rats. PLoS One, 2008.3(6):p. e2328.
    72. Hao, J., et al., Mitochondrial nutrients improve immune dysfunction in the type 2 diabetic Goto-Kakizaki rats. J Cell Mol Med,2009.13(4):p.701-11.
    73. Liu, J., et al., Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: Hope from natural mitochondrial nutrients. Adv Drug Deliv Rev,2009.
    74. Shen, W., et al., Protective effects of R-alpha-lipoic acid and acetyl-L-carnitine in MIN6 and isolated rat islet cells chronically exposed to oleic acid. J Cell Biochem, 2008.104(4):p.1232-43.
    75. Taylor, S.W., et al., Characterization of the human heart mitochondrial proteome. Nat Biotechnol,2003.21(3):p.281-6.
    76. Jia, H., et al., High doses of nicotinamide prevent oxidative mitochondrial dysfunction in a cellular model and improve motor deficit in a Drosophila model of Parkinson's disease. J Neurosci Res,2008.86(9):p.2083-90.
    77. Sun, L., et al., Endurance exercise causes mitochondrial and oxidative stress in rat liver: Effects of a combination of mitochondrial targeting nutrients. Life Sci, 2009.
    78. Reznick, R.M. and G.I. Shulman, The role of AMP-activated protein kinase in mitochondrial biogenesis. J Physiol,2006.574(Pt 1):p.33-9.79. Irrcher, I., et al., Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med, 2003.33(11):p.783-93.
    80. Hood, D.A., et al., Coordination of metabolic plasticity in skeletal muscle. J Exp Biol,2006.209(Pt 12):p.2265-75.
    81. Shen, W., et al., R-alpha-Lipoic acid and acetyl-L:-carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes. Diabetologia, 2008.51(1):p.165-74.
    82. Liu, J., The effects and mechanisms of mitochondrial nutrient alpha-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview.Neurochem Res,2008.33(1):p.194-203.
    1. Wu HJ, Chen KT, Shee BW, Chang HC, Huang YJ, Yang RS:Effects of 24 h ultra-marathon on biochemical and hematological parameters. World J Gastroenterol 10:2711-2714,2004
    2. Rasmussen UF, Krustrup P, Bangsbo J, Rasmussen HN:The effect of high-intensity exhaustive exercise studied in isolated mitochondria from human skeletal muscle. Pflugers Arch 443:180-187,2001
    3. Radak Z, Sasvari M, Nyakas C, Taylor AW, Ohno H, Nakamoto H, Goto S: Regular training modulates the accumulation of reactive carbonyl derivatives in mitochondrial and cytosolic fractions of rat skeletal muscle. Arch Biochem Biophys 383:114-118,2000
    4. Kushnareva YE, Haley LM, Sokolove PM:The role of low (< or= 1 mM) phosphate concentrations in regulation of mitochondrial permeability:modulation of matrix free Ca2+ concentration. Arch Biochem Biophys 363:155-162,1999
    5. Zoratti M, Szabo I:The mitochondrial permeability transition. Biochim Biophys Acta 1241:139-176,1995
    6. Hansford RG, Zorov D:Role of mitochondrial calcium transport in the control of substrate oxidation. Mol Cell Biochem 184:359-369,1998
    7. Bernardi P:Mitochondrial transport of cations:channels, exchangers, and permeability transition. Physiol Rev 79:1127-1155,1999
    8. McCutcheon LJ, Byrd SK, Hodgson DR: Ultrastructural changes in skeletal muscle after fatiguing exercise. JAppl Physiol 72:1111-1117,1992
    9. Willis WT, Jackman MR: Mitochondrial function during heavy exercise. Med Sci Sports Exerc 26:1347-1353,1994
    10. Liu J, Ames BN:Reducing mitochondrial decay with mitochondrial nutrients to delay and treat cognitive dysfunction, Alzheimer's disease, and Parkinson's disease. Nutr Neurosci 8:67-89,2005
    11. Shen W, Liu K, Tian C, Yang L, Li X, Ren J, Packer L, Head E, Sharman E, Liu J: Protective effects of R-alpha-lipoic acid and acetyl-L-carnitine in MIN6 and isolated rat islet cells chronically exposed to oleic acid. J Cell Biochem 104:1232-1243,2008
    12. Shen W, Liu K, Tian C, Yang L, Li X, Ren J, Packer L, Cotman CW, Liu J: R-alpha-Lipoic acid and acetyl-L:-carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes. Diabetologia 51:165-174, 2008
    13. Messa C, Notarnicola M, Russo F, Cavallini A, Pallottini V, Trentalance A, Bifulco M, Laezza C, Gabriella Caruso M:Estrogenic regulation of cholesterol biosynthesis and cell growth in DLD-1 human colon cancer cells. Scand J Gastroenterol 40:1454-1461,2005
    14. Ohkawa H, Ohishi N, Yagi K: Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351-358,1979
    15. Voloboueva LA, Liu J, Suh JH, Ames BN, Miller SS:(R)-alpha-lipoic acid protects retinal pigment epithelial cells from oxidative damage. Invest Ophthalmol Vis Sci 46:4302-4310,2005
    16. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C:A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271-279,1991
    17. Bowers WD, Jr., Hubbard RW, Leav I, Daum R, Conlon M, Hamlet MP, Mager M, Brandt P:Alterations of rat liver subsequent to heat overload. Arch Pathol Lab Med 102:154-157,1978
    18. Nuviala RJ, Roda L, Lapieza MG, Boned B, Giner A:Serum enzymes activities at rest and after a marathon race. J Sports Med Phys Fitness 32:180-186,1992
    19. Itoh H, Ohkuwa T, Yamazaki Y, Shimoda T, Wakayama A, Tamura S, Yamamoto T, Sato Y, Miyamura M:Vitamin E supplementation attenuates leakage of enzymes following 6 successive days of running training. Int J Sports Med 21:369-374,2000
    20. Jimenez L, Lefevre G, Richard R, Couderc R, Saint George M, Duvallet A, Rieu M:Oxidative stress in hemodialyzed patients during exhausting exercise. J Sports Med Phys Fitness 41:513-520,2001
    21. Zajac A, Waskiewicz Z, Pilis W: Anaerobic power, creatine kinase activity, lactate concentration, and acid-base equilibrium changes following bouts of exhaustive strength exercises. J Strength Cond Res 15:357-361,2001
    22. Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P:Plasma malondialdehyde as biomarker for oxidative stress:reference interval and effects of life-style factors. Clin Chem 43:1209-1214,1997
    23. Volek JS, Rawson ES:Scientific basis and practical aspects of creatine supplementation for athletes. Nutrition 20:609-614,2004
    24. Kerner J, Hoppel C:Fatty acid import into mitochondria. Biochim Biophys Acta 1486:1-17,2000
    25. Kraemer FB, Shen WJ, Harada K, Patel S, Osuga J, Ishibashi S, Azhar S: Hormone-sensitive lipase is required for high-density lipoprotein cholesteryl ester-supported adrenal steroidogenesis. Mol Endocrinol 18:549-557,2004
    26. Volek JS, Kraemer WJ, Rubin MR, Gomez AL, Ratamess NA, Gaynor P: L-Carnitine L-tartrate supplementation favorably affects markers of recovery from exercise stress. Am JPhysiol Endocrinol Metab 282:E474-482,2002
    27. Williams MH:Dietary supplements and sports performance:introduction and vitamins. J Int Soc Sports Nutr 1:1-6,2004
    28. McCarty MF:Up-regulation of PPARgamma coactivator-1alpha as a strategy for preventing and reversing insulin resistance and obesity. Med Hypotheses 64:399-407,2005
    29. Novelli GP, Bracciotti G, Falsini S:Spin-trappers and vitamin E prolong endurance to muscle fatigue in mice. Free Radic Biol Med 8:9-13,1990
    30. Moriura T, Matsuda H, Kubo M:Pharmacological study on Agkistrodon blomhoffii blomhoffii BOIE. V. anti-fatigue effect of the 50% ethanol extract in acute weight-loaded forced swimming-treated rats. Biol Pharm Bull 19:62-66, 1996
    31. Packer L, Roy S, Sen CK: Alpha-lipoic acid: a metabolic antioxidant and potential redox modulator of transcription. Adv Pharmacol 38:79-101,1997
    32. Packer L, Tritschler HJ, Wessel K: Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med 22:359-378,1997
    33. Packer L, Witt EH, Tritschler HJ: alpha-Lipoic acid as a biological antioxidant. Free Radic Biol Med 19:227-250,1995
    34. Suh JH, Shenvi SV, Dixon BM, Liu H, Jaiswal AK, Liu RM, Hagen TM: Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci U S A 101:3381-3386, 2004
    35. Cao Z, Tsang M, Zhao H, Li Y:Induction of endogenous antioxidants and phase 2 enzymes by alpha-lipoic acid in rat cardiac H9C2 cells:protection against oxidative injury. Biochem Biophys Res Commun 310:979-985,2003
    36. Burke DG, Chilibeck PD, Parise G, Tarnopolsky MA, Candow DG:Effect of alpha-lipoic acid combined with creatine monohydrate on human skeletal muscle creatine and phosphagen concentration. Int J Sport Nutr Exerc Metab 13:294-302, 2003
    37. Hagen TM, Ingersoll RT, Lykkesfeldt J, Liu J, Wehr CM, Vinarsky V, Bartholomew JC, Ames AB:(R)-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. Faseb J 13:411-418,1999
    38. Shimomura Y, Suzuki M, Sugiyama S, Hanaki Y, Ozawa T: Protective effect of coenzyme Q10 on exercise-induced muscular injury. Biochem Biophys Res Commun 176:349-355,1991
    39. Ungvari ZI, Labinskyy N, Mukhopadhyay P, Pinto JT, Bagi Z, Ballabh P, Zhang C, Pacher P, Csiszar A:Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells. Am J Physiol Heart Circ Physiol,2009
    40. Yatabe Y, Miyakawa S, Miyazaki T, Matsuzaki Y, Ochiai N:Effects of taurine administration in rat skeletal muscles on exercise. J Orthop Sci 8:415-419,2003
    41. El Idrissi A, Trenkner E: Taurine regulates mitochondrial calcium homeostasis. Adv Exp Med Biol 526:527-536,2003
    42. Warskulat U, Flogel U, Jacoby C, Hartwig HG, Thewissen M, Merx MW, Molojavyi A, Heller-Stilb B, Schrader J, Haussinger D:Taurine transporter knockout depletes muscle taurine levels and results in severe skeletal muscle impairment but leaves cardiac function uncompromised. Faseb J 18:577-579, 2004
    [1]张勇,文立,聂金雷等.运动性疲劳的线粒体膜分子机研究Ⅲ:线粒体质子跨膜势能与运动性内源自由基生成的关系.中国运动医学杂志,2000,19(4):346-348.
    [2]聂金雷,蒋春森,张勇等.运动性疲劳的线粒体膜分子机制研究Ⅳ:线粒体质子跨膜势能、质子漏与运动性内源活性氧生成的相互关系.中国运动医学杂志,2001,20(2):137-141.
    [3]时庆德.运动性疲劳的线粒体膜分子机制研究.Ⅱ,运动性氧自由基代谢途径再探讨.中国运动医学杂志,2000,19(1):43-55.
    [4]张桦,焦选茂,刘树森.缺血再灌注对大鼠心肌线粒体电子传递与质子泵出偶联的影响.中国病理生理杂志,1993,9(5):561-563.
    [5]田野.急性运动后大鼠骨骼肌线粒体Ca2+摄取的动力学观察.中国运动医学杂志,2000,19(2):132-133.
    [6]Liu, J., Head, E., Gharib, A. M., Yuan, W., Ingersoll, R. T., Hagen, T. M., Cotman, C. W., and Ames, B. N.. Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci U S A,2002; 99:2356-2361.
    [7]Liu, J., and Ames, B. N.. Reducing mitochondrial decay with mitochondrial nutrients to delay and treat cognitive dysfunction, Alzheimer"s disease, and Parkinson"s disease. Nutr Neurosci 2005; 8:67-89.
    [8]Barbiroli B, Iotti S, Lodi R. Improved brain and muscle mitochondrial respiration with CoQ. An in vivo study by 31P-MR spectroscopy in patients with mitochondrial cytopathies. Biofactors,1999,9(2-4):253-260.
    [9]Frei, B., Kim, M. C., and Ames, B. N. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci U S A.1990; 87, 4879-4883.
    [10]Cassano P, Sciancalepore AG, Pesce V, Fluck M, Hoppeler H, Calvani M, Mosconi L, antatore P, Gadaleta MN. Acetyl-L-carnitine feeding to unloaded rats triggers in soleus muscle the coordinated expression of genes involved in mitochondrial biogenesis. Biochim Biophys Acta.2006;1757(9-10):1421-8.
    [11]Hager, K., Marahrens, A., Kenklies, M., Riederer, P., and Munch, G. Alpha-lipoic acid as a new treatment option for Azheimer type dementia. Arch Gerontol Geriatr, 2001; 32,275-282.
    [12]Liu, J., Atamna, H., Kuratsune, H., and Ames, B. N. Delaying brain mitochondrial decay and aging with mitochondrial antioxidants and metabolites. Ann N Y Acad Sci.2002; 959,133-166.
    [13]Liu Y, F. G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem.2002; 80,780-787.
    [14]Reid, M. B., and Durham, W. J. Generation of reactive oxygen and nitrogen species in contracting skeletal muscle:potential impact on aging. Ann N Y Acad Sci. 2002,;959,108-116.
    [1]Davies KJ, Packer L, Brooks GA. Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to endurance training. Arch Biochem Biophys 1981;209(2):539-54.
    [2]Alessio HM. Exercise-induced oxidative stress. Med Sci Sports Exerc 1993;25 (2):218-24.
    [3]Alessio HM, Goldfarb AH, Cao G. Exercise-induced oxidative stress before and after vitamin C supplementation. Int J Sport Nutr 1997;7 (1):1-9.
    [4]Liu J, Yeo HC, Overvik-Douki E, Hagen T, Doniger SJ, Chu DW, Brooks GA, Ames BN. Chronically and acutely exercised rats:biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol 2000;89 (1):21-8.
    [5]Ji LL. Exercise and oxidative stress:role of the cellular antioxidant systems. Exerc Sport Sci Rev 1995;23:135-66.
    [6]Ji LL. Oxidative stress during exercise:implication of antioxidant nutrients. Free Radic Biol Med 1995;18 (6):1079-86.
    [7]Urso ML, Clarkson PM. Oxidative stress, exercise, and antioxidant supplementation. Toxicology 2003; 189 (1-2):41-54.
    [8]Kumar CT, Reddy VK, Prasad M, Thyagaraju K, Reddanna P. Dietary supplementation of vitamin E protects heart tissue from exercise-induced oxidant stress. Mol Cell Biochem 1992;111 (1-2):109-15.
    [9]Goldfarb AH, McIntosh MK, Boyer BT, Fatouros J. Vitamin E effects on indexes of lipid peroxidation in muscle from DHEA-treated and exercised rats. J Appl Physiol 1994;76 (4):1630-5.
    [10]Kanter MM, Nolte LA, Holloszy JO. Effects of an antioxidant vitamin mixture on lipid peroxidation at rest and postexercise. J Appl Physiol 1993;74 (2):965-9.
    [11]Johnson TL, Klueber KM. Skeletal muscle following tonic overload: functional and structural analysis. Med Sci Sports Exerc 1991;23 (1):49-55.
    [12]Sen CK, Rankinen T, Vaisanen S, Rauramaa R. Oxidative stress after human exercise:effect of N-acetylcysteine supplementation. J Appl Physiol 1994;76 (6):2570-7.
    [13]Yu F, Lu S, Feng S, McGuire.PM, Li R, Wang R. Protective effects of polysaccharide from Euphorbia kansui (Euphorbiaceae) on the swimming exercise-induced oxidative stress in mice. Can J Physiol Pharmacol 2006;84 (10):1071-9.
    [14]Echtay KS. Mitochondrial uncoupling proteins-what is their physiological role? Free Radic Biol Med 2007;43 (10):1351-71.
    [15]Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998;78(2):547-81.
    [16]Liu J, Ames BN. Reducing mitochondrial decay with mitochondrial nutrients to delay and treat cognitive dysfunction, Alzheimer's disease, and Parkinson's disease. Nutr Neurosci 2005;8 (2):67-89.
    [17]Yatabe Y, Miyakawa S, Miyazaki T, Matsuzaki Y, Ochiai N. Effects of taurine administration in rat skeletal muscles on exercise. J Orthop Sci 2003;8 (3):415-9.
    [18]Liu CC, Huang CC, Lin WT, Hsieh CC, Huang SY, Lin SJ, Yang SC. Lycopene supplementation attenuated xanthine oxidase and myeloperoxidase activities in skeletal muscle tissues of rats after exhaustive exercise. Br J Nutr 2005;94(4):595-601.
    [19]Pan SS. Alterations of atrial natriuretic peptide in cardiomyocytes and plasma of rats after different intensity exercise. Scand J Med Sci Sports 2008;18 (3):346-53.
    [20]Krahenbuhl S, Chang M, Brass EP, Hoppel CL. Decreased activities of ubiquinol:ferricytochrome c oxidoreductase (complex III) and ferrocytochrome c:oxygen oxidoreductase (complex IV) in liver mitochondria from rats with hydroxycobalamin[c-lactam]-induced methylmalonic aciduria. J Biol Chem 1991;266 (31):20998-1003.
    [21]Trounce IA, Kim YL, Jun AS, Wallace DC. Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 1996;264:484-509.
    [22]Humphries KM, Szweda LI. Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase:reaction of lipoic acid with 4-hydroxy-2- nonenal. Biochemistry 1998;37 (45):15835-41.
    [23]Picklo MJ, Amarnath V, McIntyre JO, Graham DG, Montine TJ. 4-Hydroxy-2(E)-nonenal inhibits CNS mitochondrial respiration at multiple sites. J Neurochem 1999;72 (4):1617-24.
    [24]Calon F, Lim GP, Yang F, Morihara T, Teter B, Ubeda 0, Rostaing P, Triller A, Salem N, Jr., Ashe KH, Frautschy SA, Cole GM. Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model. Neuron 2004;43 (5):633-45.
    [25]Picklo MJ, Montine TJ. Acrolein inhibits respiration in isolated brain mitochondria. Biochim Biophys Acta 2001;1535 (2):145-52.
    [26]Zheng J, Ramirez VD. Inhibition of mitochondrial proton FOF1-ATPase/ATP synthase by polyphenolic phytochemicals. Br J Pharmacol 2000; 130 (5):1115-23.
    [27]Royall JA, Ischiropoulos H. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys 1993;302 (2):348-55.
    [28]Liu J, Yeo HC, Doniger SJ, Ames BN. Assay of aldehydes from lipid peroxidation: gas chromatography-mass spectrometry compared to thiobarbituric acid. Anal Biochem 1997;245 (2):161-6.
    [29]Hao J, Shen W, Tian C, Liu Z, Ren J, Luo C, Long J, Sharman E, Liu J. Mitochondrial nutrients improve immune dysfunction in the type 2 diabetic Goto-Kakizaki rats. J. Cell. Mol. Med.2008:(in press).
    [30]Pabst MJ, Habig WH, Jakoby WB. Glutathione S-transferase A. A novel kinetic mechanism in which the major reaction pathway depends on substrate concentration. J Biol Chem 1974;249 (22):7140-7.
    [31]Jaiswal AK. Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic Biol Med 2000;29 (3-4):254-62.
    [32]Wendel A. Glutathione peroxidase. Methods Enzymol.1981; 77325-33.
    [33]Somani SM, Frank S, Rybak LP. Responses of antioxidant system to acute and trained exercise in rat heart subcellular fractions. Pharmacol Biochem Behav 1995-51 (4):627-34.
    [34]Vina J, Borras C, Gomez-Cabrera MC, Orr WC. Part of the series:from dietary antioxidants to regulators in cellular signalling and gene expression. Role of reactive oxygen species and (phyto)oestrogens in the modulation of adaptive response to stress. Free Radic Res 2006;40 (2):111-9.
    [35]Leeuwenburgh C, Ji LL. Glutathione depletion in rested and exercised mice: biochemical consequence and adaptation. Arch Biochem Biophys 1995;316 (2):941-9.
    [36]Lew H, Pyke S, Quintanilha A. Changes in the glutathione status of plasma, liver and muscle following exhaustive exercise in rats. FEBS Lett 1985;185 (2):262-6.
    [37]Sen CK, Marin E, Kretzschmar M, Hanninen 0. Skeletal muscle and liver glutathione homeostasis in response to training, exercise, and immobilization. J. Appl. Physiol.1992;73 (4):1265-72.
    [38]Ji LL, Fu R, Mitchell EW. Glutathione and antioxidant enzymes in skeletal muscle:effects of fiber type and exercise intensity. J Appl Physiol 1992;73 (5):1854-9.
    [39]Ji LL. Antioxidants and oxidative stress in exercise. Proc. Soc. Exp. Biol. Med. 1999;222:283292.
    [40]Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. USA 1994;91:10771-8.
    [41]Vina J, Gomez-Cabrera MC, Lloret A, Marquez R, Minana JB, Pallardo FV, Sastre J. Free radicals in exhaustive physical exercise:mechanism of production, and protection by antioxidants. IUBMB Life 2000;50 (4-5):271-7.
    [42]Vasquez-Garzon VR, Arellanes-Robledo J, Garcia-Roman R, Aparicio-Rautista DI, Villa-Trevino S. Inhibition of reactive oxygen species and pre-neoplastic lesions by quercetin through an antioxidant defense mechanism. Free Radic Res 2009;43 (2):128-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700