用户名: 密码: 验证码:
两株海洋微生物中的活性吲哚生物碱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋微生物生存环境复杂特殊,其次生代谢产物结构新颖、种类繁多,是新结构活性化合物的重要来源。为了寻找结构新颖的活性化合物,本论文采用活性追踪的方法开展了对海洋放线菌和海洋细菌次生代谢产物的研究工作。内容主要包括:活性菌株的筛选及初步评价,抗肿瘤活性成分的追踪分离,单体化合物的结构解析,化合物抗肿瘤及抑菌活性的初步评价。
     经研究发现,多种海洋生物包括海绵、被囊动物、红藻以及海洋共附生微生物等都可以产生结构新颖的吲哚生物碱类化合物,该类化合物是海洋来源生物碱最重要的组成部分。这些海洋来源的吲哚类生物碱与陆生来源的相比不仅具有结构骨架的复杂性,而且存在卤素取代的现象。目前为止,海洋来源吲哚类生物碱具有细胞毒活性、抗病毒、抗微生物、抗炎、抑制拓扑异构酶Ⅰ等多种生物活性,因此该类化合物构效关系的研究广泛受到科学家们的关注。
     将分离自青岛沿海及南海红树林样品的126株放线菌和细菌进行集成筛选。首先采用SRB法,以小鼠白血病P388肿瘤细胞为筛选模型进行体外抗肿瘤活性的筛选,然后结合HPLC指纹图谱及薄层色谱进行化学筛选,得到具有较强细胞毒活性的菌株4株,最终确定了1株主产吲哚咔唑生物碱、细胞毒活性较强的链霉菌Streptomyces sp. FMA作为进一步研究的目标菌株。同时,为了开发病原菌资源,选择了以吲哚生物碱为主要次生代谢产物并可产生多种高丝氨酸内酯(AHLs)信号分子的致病菌迟缓爱德华氏菌(E. tarda) LTB-4作为另一目标菌株。
     以迟缓爱德华氏菌(E. tarda)和海洋链霉菌Streptomyces sp. FMA为研究对象,对发酵产物运用萃取,薄层层析,正相、反相硅胶柱层析,LH-20凝胶柱层析,反相高压液相等多种化学的分离纯化手段,进行活性次生代谢产物的追踪分离。从E. tarda LTB-4的次生代谢产物中分离得到15个单体化合物(1-15),从Streptomyces sp. FMA的次生代谢产物中分离得到13个单体化合物(16-28)。继而,利用理化性质和波谱学方法(IR,UV,MS,NMR等)结合化学反应的方法阐述了28个化合物的化学结构(化合物结构及名称参见Table 1),其中新天然产物2个(1,2),新化合物2个(16,17)。所得化合物的结构类型包括:吲哚咔唑类化合物(16-22)、简单吲哚类生物碱(1-10,23)、黄酮类(11)、苯类衍生物(12-13,24-26)、核苷碱基(14-15)、呋喃类(27)和不饱和内酯类(28)。由此可见,吲哚类生物碱是Streptomyces sp. FMA和E. tarda次生代谢产物的主要结构类型。
     通过气相色谱和质谱连用(GC-MS)的测试手段,对迟缓爱德华氏菌(E. tarda)胞外的5种酰化高丝氨酸内酯(AHLs)信号分子进行了结构鉴定,分别为C4-HSL、C6-oxo-HSL、C8-HSL、C8-oxo-HSL和C10-HSL,为该类细菌信号传导的研究提供了依据。
     利用SRB法、MTT法及药敏纸片法对分离获得的单体化合物的抗肿瘤、抗菌活性分别进行了初步评价。筛选出了3个抗肿瘤化合物(2、16、18);1个抗菌活性化合物(12)。其中,化合物2对A549的IC50为6.24μM,化合物16对HL60和A549细胞的IC50分别为4.97μM和2.01μM化合物18对P388和Hela细胞的IC50分别为1.37μM和5.06μM;化合物12对产气杆菌(Clostridium perfringens)和大肠杆菌(E. coli)均有抑制作用,其最小抑菌浓度(MIC)分别为31.25μg/mL和37.5μg/mL。
     综上,本文对两株海洋微生物的次生代谢产物进行了系统研究,共分离鉴定了28个化合物,包括天然来源的新吲哚生物碱2个,新吲哚咔唑类生物碱2个,较高抗肿瘤活性化合物3个;并且提供了1株能特征产生吲哚咔唑类生物碱的海洋链霉菌和1株可高产吲哚类生物碱的海洋细菌。这一研究丰富了海洋天然产物的结构类型,同时也为抗肿瘤药物的筛选提供了活性化合物及活性菌株。
Because of the special ecological environment, marine-derived microorganisms possess distinct and complex metabolic capabilities, resulting in wide diversity of their secondary metabolites in chemical structure and biological activity. Thus, bacterium and actinomycetes become important resources of active lead compounds. This thesis describes the bioactive constituents from marine-derived bacterium E. tarda and Streptomycetes sp. FMA. The work includes screening aimed strains, fermentation studies, bioassay-guided fractionation, structural elucidation, preliminary evaluation for anti-tumor and anti-bacterial activities of pure compounds.
     A variety of marine sources including sponges, tunicates, red alga, acorn worms, and symbiotic bacteria have been shown to generate indole alkaloids, which represent the largest number and most complicated of the marine alkaloids (1/4 of total alkaloids). The alkaloids obtained from marine organisms frequently possess novel frameworks while in other cases terrestrially related compounds clearly exist. Marine metabolites often possess complexities such as halogen substituents. Their structure elucidation, chemical modification, stereochemistry, synthesis, and pharmacology have received a great deal of interdisciplinary attention from areas of research other than chemistry and include pharmacology, physiology, and medicine.
     Four active strains were picked out based on integrated screening that combines the cytotoxicity against P388 cells with chemodiversity (HPLC and TLC properties) of the metabolites from 126 marine-derived actinomycetes and bacterias. Among them, Streptomycetes sp. FMA was selected for further study of their secondary metabolites exhibited high anti-tumor activities and a series of HPLC peaks with similar UV absorption to those of indolocarbazoles. Besides, the gram-negative bacterium E. tarda, pathogen of fish, animal and human was also found to display a series of HPLC peaks with similar UV absorption to those of indolalkaloids. In order to investigate the potential of pathogens for drug discovery, the secondary metabolites and AHLs of E. tarda were studied as well.
     140L-scale fermentation of the E. tarda and 100L-scale fermentation of the Streptomycetes sp. FMA were performed to obtain the active extracts, respectively. By means of chromatography over silica gel column, Sephadex LH20, preparative TLC and semi-preparative HPLC, fifteen (1-15) and thirteen compounds (16-28) were isolated from E. tarda and Streptomycetes sp. FMA, respectively. Basing on their physico-chemical properties and spectral data (IR, UV, MS, NMR, etc.), twenty eight compounds were elucidated as 1,1-(3,3'-diindolyl)-2-phenylethane (1),3-(1H-indol-3-yl)-2,3'-bi-(1H-indole) (2),2,2-di(3-indolyl)-3-indolone (3), tri(1H-indol-3-yl) methane (4),2-[2,2-bis(1H-indol-3-yl)]ethylphenylamine (5), bis-(1H-indol-3-yl) phenylmethane (6),4-di(1H-indol-3-yl) methylphenol (7), (2S)-3,3-bis-(1H-indol-3-yl) propane-1,2-diol (8), Indole (9),2-(1H-indol-3-yl) ethanol (10), genistein (11), (2-Naphthyl)phenylamine (12), benzeneethanol (13), uracil (14), thymine (15), streptocarbazole A (16), streptocarbazole B (17),3'-(S)-epi-K252a (18),3'-(S)-K252a (19), RK 286c (20), K252c (21),4-bis(3-indolyl)-1H-pyrrole-2,5-dione (22),1H-indole-3-carboxylic acid (23), vanillic acid (24),4-hydroxybenzoic acid (25), 1-(2-phenyl)-1,2-ethandiol (26), 1-(2-furyl)-1,2-ethandiol (27) and 4-methoxy-3-methyl-2H-pyran-2-one (28), respectively. Among them, compound 1 and 2 were isolated from the natural sources for the first time. The other known compounds were identified as six indolecarbazole alkaloids (18-22), ten simple indole derivatives (2-10, 23), a isoflavonoid derived (11), a-naphthalene alkaloid (12),five benzene derivates (12-13,24-26) and four other kinds compounds (14-15,27-28). Besides, five N-acyl homoserine lactones (AHLs) signaling molecules of E.tarda were identified using gas chromatography-mass spectrometry (GC-MS) including C4-HSL, C6-oxo-HSL, C8-HSL, C8-oxo-HSL and C10-HSL.
     Cytotoxic activities of these compounds against several cancer cell lines were assayed by MTT and SRB methods, and three compounds (2,16,18) showed appreciated cytotoxicity. The anti-bacterial activities of compounds 1-10,12 against Clostridium perfringens, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Candida albicans were tested by drug sensitive slips method and double dilution. The result indicated that compound 12 showed moderate inhibitions against C. perfringens and E. coli with MIC values of 31.25 and 37.5μg/mL, respectively.
     In a word, two new natural indolealkaloids, two novel indolecarbazole alkaloids together with twenty-four known compounds were obtained from the two marine-derived microorganisms. Studies mentioned above provide novel structures for searching new leading compounds and microbial resources for further study and it proves the method we used is effective in finding new active compounds.
引文
[1]Nuijen B, Bouma M, Manada C, et al. Pharmaceutical development of anticancer agents derived from marine sources [J]. Anticancer Drugs.2000,11(10):793-811.
    [2]缪浑南,方旭东,焦炳华.海洋生物资源开发研究概况与展望[J].氨基酸和生物资源,1999,21(4):12-18.
    [3]师晓栋,陈秀兰,何海伦等.海洋蛋白酶解物中生物活性肽的研究进展[J].氨基酸和生物资源,2000,22(4):13-16.
    [4]史清文,顾玉诚.海洋天然药物的研究概况[J].河北医科大学学报,2006,27(4):308-313.
    [5]Unson MD, Faulkner DJ. Cyanobaeterial symbiont biosynthesis of chlorinated metabolites from Dys/dea herbacea (Porifera). [J]. Experientia.1993,49:349-353.
    [6]Horan A.C, Golik J, Matson J.A, and Patel M.G. Indolocarbazole natural products: occurrence, biosynthesis and biological activity. US Pat., US4743594,1988.
    [7]Gul W, Hamann M. T. Indole alkaloid marine natural products:An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases [J]. Life Sciences.2005,78:442-453.
    [8]S. Grabley, R. Thiericke, Drug discovery from nature. Springer,2000, pp.124.
    [1]Kin S L. Discovery of novel metabolites from marine actinomycete [J]. Current Opinion in Microbiology 2006,9:245-251.
    [2]姚新生.海洋抗肿瘤药物研究展望.[J].第二军医大学学报.2002,23(3):233-235.
    [3]Tracy J M, Paul R J, Christopher A K, et al. Widespread and persistent population of a major new marine actionmycete taxon in ocean sediments [J]. Applied and Environmental Microbiology.2002,68(10):5005-5011.
    [4]王友绍,何磊,王清吉,等.药用红树植物的化学成分及其药理研究进展[J].中国海洋药物,2004,23(2):26-31.
    [5]P. Skehan, R. Storeng, D. Scudiero, et al. New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. J. Natl. Cancer Inst.1990,82,1107.
    [6]S. Grabley, R. Thiericke, Drug discovery from nature. Springer,2000, pp.124.
    [7]Wood J.L, Stoltz B.M, Goodman S.N, Onwueme K. Design and Implementation of an Efficient Synthetic Approach to Pyranosylated Indolocarbazoles:Total Synthesis of (+)-RK286c, (+)-MLR-52, (+)-Staurosporine, and (-)-TAN-1030a.[J]. J. Am. Chem. Soc.1997, 119:9652-9661.
    [8]Sato S and Sato T. A mild and environmentally friendly scandium(III) trifluoromethane-sulfonate-catalyzed synthesis of bis(3'-indolyl)alkanes and bis(3'-indolyl)-1-deoxyalditols.[J]. Carbohydrate Research.2005,340:2251-2255.
    [1]王波,莫照兰.迟缓爱德华氏菌及其致病机理[J].海洋科学集刊.2007,48:133-139.
    [2]陈翠珍.爱德华氏菌及鱼类爱德华氏菌病[J].河北科技师范学院学报.2004,18(3):70-76.
    [3]李筠,颜显辉,陈吉祥,等.养殖大菱鲆腹水病病原的研究[J] 中国海洋大学学报.2006,36:649-654.
    [4]Timothy S, Charlton, et al. A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry:application to a model bacterial biofilm.[J]Environmental Microbiology.2000,2(5):530-541.
    [5]Max T, et al. Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium.[J]. Arch. Microbiol.2003,180:494-497.
    [6]Noguchi-Yachide T, Tetsuhashi M, Aoyama H, Hashimoto Y. Enhancement of chemically-induced HL-60 cell differentiation by 3,3-diindolylmethane derivatives.[J]. Chemical and Pharmceutical Bulletin.2009,57(5):536-540.
    [7]Richter J.M, Whitefield B.W, Maimone T.J, Lin D.W, Castrovieio M.P, Baran P.S Scope and mechanism of direct indole and pyrrole couplings adjacent to carbonyl compounds:total synthesis of Acremoauxin A and Oxazinin 3.[J]. Journal of the American Chemical Society. 2007,129(42):12857-12859.
    [8]Stull T.L, Hyun L, Sharetzsky C, Wooten J, McCauley J.P, Smith A.B. Production and oxidation of indole by Haemophilus influenzae. [J]. The Journal of Biological Chemistry. 1995,270(1):5-8.
    [9]Veluri R, Oka I, Wagner-Dobler I, Laatsch H. New Indole Alkaloids from the North Sea Bacterium Vibrio parahaemolyticus Bio2491.[J]. J. Nat. Prod.2003,66:1520-1523.
    [10]Pal B, Giri V.S, Jaisankar P. First indium trichloride catalyzed self-addition of indoles:One pot synthesis of indolylindolines.[J] Cat. Comm.2005,6:711-715.
    [11]Nishiki M, Qi W, Ito K. Anion binding properties of indolylmethanes.[J]. Journal of Inclusion Phenomena and Macrocyclic Chenmistry.2008,61:61-69.
    [12]Firouzabadi H, Iranpoor N, Jafari A.A. Aluminumdodecatungstophosphate (AlPWi2O40), a versatile and a highly water tolerant green Lewis acid catalyzes efficient preparation of indole derivatives.[J]. J. Mol. Cat. A:Chemical.2006,244:168-172.
    [13]Sato S and Sato T. A mild and environmentally friendly scandium(III) trifluoromethane-sulfonate-catalyzed synthesis of bis(3'-indolyl)alkanes and bis(3'-indolyl)-1-deoxyalditols.[J]. Carbohydrate Research.2005,340:2251-2255.
    [14]Marzi M, Minetti P, Moretti G.P, Giannini G, Garattini E. Bis-heterocyclic (e.g., indolyl, pyrrolyl) compounds with antitumor and chemosensitizing activity.2002, PCT Int. Appl. WO 02/36561 A1,103 pp.
    [15]Yamane Y, Liu X.H, Hamasaki A, Ishida T, Haruta M, Yokoyama T, Tokunaga M. One-Pot Synthesis of Indoles and Aniline Derivatives from Nitroarenes under Hydrogenation Condition with Supported Gold Nanoparticles.[J]. Org. Lett.2009,11:5162-5165.
    [16]Yasumasa Sugiyama; Yuki Ito; Motofumi Suzuki; Akira Hirota. Indole Derivatives from a Marine Sponge-Derived Yeast as DPPH Radical Scavengers.[J]. J. Nat. Prod.2009,72: 2069-2071.
    [17]Hosny M and John P. N. R. Microbial Hydroxylation and Methylation of Genistein by Streptomycetes. [J]. J. Nat. Prod.1999,62:1609-1612.
    [18]Gao C.Y, Yang L.M.Nicel-Catalyzed Aminatio of Aryl Tosylates. [J] J. Org. Chem.2008,73: 1624-1627.
    [19]Zhou Y.H, Gao G.C, Li H, Qu J.P. A convenient method to reduce hydroxyl-substituted aromatic carboxylic acid with NaBH4/Me2SO4/B(OMe)3.[J]. Tetrahedron Letters.2008,49: 3260-3263.
    [20]Fritzson P. Semimicrosynthesis of dihydrouracil and uracil labeled in position 4,5, or 6 with carbon-14.[J]. Acta Chemica Scandinavica.1955,9:1239-1240.
    [21]Gillaizeau I, Lagoja, I.M, Nolan S.P, Aucagne V, Rozenski J, Herdewijn P, Agrofoglio L.A. Straightforward synthesis of labeled and unlabeled pyrimidine d4Ns via 2',3'-diyne seco analogues through olefin metathesis reactions. [J]. European Journal of Organic Chemistry. 2003,4:666-671.
    [22]Skehan P, Storeng R, Scudiero D, Monks A, Mc Mahon J, Vistica D.W, Bokesch H, Kenney S, Boyd M.R. New colorimetric cytotoxicity assay for anticancer drug screening [J]. J. Natl. Cancer Inst.1990,82 (13):1107-1112
    [23]Voigh W. Sulforhodamine B assay and chemosensitivity [J]. Methods Mol. Med.2005,110: 39-48.
    [24]Mossman T, Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assay [J]. J. Immunol. Meth.1983,65(1-2):55-63.
    [25]汤春梅.四种植物提取物抑菌活性研究[J].甘肃林业职业技术学院学报.2008,11:38-40.
    [26]刘胜贵,许方美,张兰兰,田春娥,肖桂秋.植物体外抑菌试验的方法研究[J].怀化学院学报.2006,25(2):65-67
    [27]陈峰.微生物的群体感应信号[J].上海农业学报.2005,21(1):98-102.
    [28]Morohoshi T, Inaba T, Kato N, Kanai K and Ikeda T. Identification of quorum-sensing signal molecules and the LuxRI homologs in fish pathogen Edwardsiella tarda. [J]. Journal of Bioscience and Bioengineering.2004,4:274-281.
    [29]Morin D. et al. On-line high-performance liquid chromatography-mass spectrometric detection and quantification of N-acylhomoserine lactones, quorum sensing signal molecules, in the presence of biological matrices. [J]. Chromatography. A.2003,1002: 79-92.
    [30]綦国红,董明盛,王岁楼.N-酰基-高丝氨酸内酯类群体感应信号分子检测方法的建立[J].农业生物技术学报.2007,25(4):696-699.
    [31]McDougal A, Gupta M.S, Morrow D, Ramamoorthy K and Lee Jeong-Eun. Methyl-substituted diindolylmethanes as inhibitors of estrogen-induced growth of T47D cells and mammary tumors in rats.[J].Breast Cancer Research and Tteatment.2001,66:147-157.
    [32]Chao W.R, Yean D, Amin K, et al. Computer-Aided rational drug design:A novel agent (SR13668) designed to mimic the unique anticancer mechanisms of dietary Indole-3-Carbinol to block akt signaling [J]. J. Med. Chem.2007,50:3412-3415.
    [1]Wood J.L, Stoltz B.M, Dietrich Hans-Juergen, Pflum D.A, Petsch D.T. Design and implementation of an efficient synthetic approach to furanosylated indolocarbazoles:Total Synthesis of(+)-and (-)-K252a [J]. J.Am. Chem. Soc..1997,119(41):9641-9651.
    [2]Gingrich D. E and Hudkins R. L. Synthesis and kinade inhibitory activety of 3'-(S)-epi-K-252a [J]. Bioorg. Med. Chem. Lett.2002,12(20):2829-2831.
    [3]Wood J.L, Stoltz B.M, Goodman S.N, Onwueme K. Design and Implementation of an Efficient Synthetic Approach to Pyranosylated Indolocarbazoles:Total Synthesis of (+)-RK286c, (+)-MLR-52, (+)-Staurosporine, and (-)-TAN-1030a.[J]. J. Am. Chem. Soc.1997, 119:9652-9661.
    [4]Takahashi H, Osada H, Uramoto M, Isono K. New inhibitor of protein kinase C, RK-286 C (4'-demethylamino-4'-hydroxystaurosporine) Ⅱ. Isolation, Physico-chemical propeities and structure [J]. The Journal of antibiotics.1990,43(2):168-73.
    [5]Liu R, Zhu T.J, Li D.H, Gu J.Y, Xia W, Fang Y.C, Liu H.B, Zhu W.M, Gu Q.Q. Two indolocarbazole alkaloids with apoptosis activity from a marine-derived actinomycete Z2039-2 [J]. Arch Pharm Res.2007,3:270-274.
    [6]Schupp P, Eder C, Proksch P, Wray V, Schneider B, Herderich M, Paul V. Staurosporine Derivatives from the Ascidian Eudistoma toealensis and its predatory flatworm Pseudoceros sp. [J]. J. Nat. Prod.1999,62:959-962.
    [7]Nakazono M, Nanbu S, Uesaki A, Kuwano R, Kashiwabara M, Zaitsu K. Bisindolylmalei- mides with Large Shift and Long-Lasting Chemiluminescence Properties [J]. Organic Letters. 2007,9(18):3583-3586.
    [8]Burton G, Ghini A.A., Gros E.G. Carbon-13 NMR spectra of substituted indoles.[J]. Magnetic Resonance in Chemistry.1986,24(9):829-31.
    [9]Pouchert C. J and Behnke J. The Aldrich Library of 13C and 1H-NMR Spectra. Aldrich Chemical Company, Inc., Wisconsin,1993,2:1115.
    [10]Oldfield, M.F, Chen L.R, Botting N.P. The sunthesis of [3,4,1'-13C3]genisten [J]. J. Labelled Compd. Radiopharm.2007,50(14):1266-1271.
    [11]Karadeolian A and Kerr M.A. Examination of homo-[3+2]-dipolar cycloaddition:mechanistic insight into regioand diastereoselectivity. [J]. Journal of organic chemistry.2007,72:10251-10253.
    [12]Paolucci C and Rosini G. Approach to a better underdtanding and modeling of(S)-dihydrofuran-2-yl, (S)-terahydrofuran-2-yl-, and furan-1-yl-β-dialkylaminoethanol ligands for enantioselective alkylation.[J]. Tetrahedron:Asymmetry.2007,18:2923-2946.
    [13]Irzl G.H,Vijayakumar C.T,Fink J.K, Lederer K.[J].Polym.Degrad.Stab.1986,16:53-71.
    [14]Long B.H, Rose W.C, Vyas D.M, Matson J.A. and Forenza S. Discovery of Antitumor Indolocarbazoles:Rebeccamycin, NSC 655649, and Fluoroindolocarbazoles. Curr. Med. Chem.:Anti-Cancer Agents.2002,2:255-266.
    [15]Omura S, Sasaki Y, Iwai Y and Takeshima H. Staurosporine, A potentially important gift from a microorganism. [J]. J. Antibiot.1995,48:535-548.
    [16]Horan A.C, Golik J, Matson J.A, and Patel M.G. Indolocarbazole natural products: occurrence, biosynthesis and biological activity. US Pat., US4743594,1988.
    [17]Garcia G.D, Romero M.F, Perez B.J, Garcia D.T. Thiodepsipeptide isolated from a marine actinomycete. WO9527730,US5681813,1999.
    [1]Nuijen B, Bouma M, Manada C, et al. Pharmaceutical development of anticancer agents derived from marine sources [J]. Anticancer Drugs.2000, 11(10):793-811.
    [2]缪浑南,方旭东,焦炳华.海洋生物资源开发研究概况与展望[J].氨基酸和生物资源,1999,21(4):12-18.
    [3]师晓栋,陈秀兰,何海伦等.海洋蛋白酶解物中生物活性肽的研究进展[J].氨基酸和生物资源,2000,22(4):13-16.
    [4]史清文,顾玉诚.海洋天然药物的研究概况[J].河北医科大学学报,2006,27(4):308-313.
    [5]Gul W, Hamann M. T. Indole alkaloid marine natural products:An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases [J]. Life Sciences.2005,78:442-453.
    [6]Veluri R, Oka I, Wangner-Dobler I, et al. New indole alkaliods from the North Sea bacterium Vibrio parahaemolyticus Bio249 [J]. J.Nat.Prod.2003,66:1520-1523.
    [7]Omura S, Sasaki Y, Iwai Y, et al. Staurosporine,a potentially important gift from a microorganism [J].J. Antibiot.,1995,48:535-548.
    [8]Meksuriyen D, Cordell, G. A. Biosynthesis of staurosporine,1.1H-and 13C-NMR assignments [J]. Journal of Natural Products.1988,51 (5):884-892.
    [9]Horan A.C, Golik J, Matson J.A, and Patel M.G. Indolocarbazole natural products: occurrence, biosynthesis and biological activity. US Pat., US4743594,1988.
    [10]Kohmoto S, Kashman Y, McConnell O.J, et al. Dragmacidin, a new cytotoxic bis (indole) alkaloid from a deep water marine sponge, Dragmacidon sp.[J] Journal of Organic Chemistry. 1988,53:3116-3118.
    [11]Lake R.J, Blunt J.W, Munro M.H.G. Eudistomins from the New Zealand Ascidian Ritterella sigillinoides [J]. Australian Journal of Chemistry.1989,42:1201-1206.
    [12]Moquin-Pattey C and Guyot M. Grossularine-1 and grossularine-2,cytotoxic a-carbolines from the tunicate:Dendrodoa grossularia.[J].Tetrahedron.1989,45 (11):3445-3450.
    [13]Tsujii S, Rinehart K.L, Gunasekera S.P, et al. Topsentin, bromotopsentin, and dihydrodeoxybromo-topsentin:antiviral and antitumor bis-(indolyl) imidazoles from Caribbean deep-sea sponges of the family halichondriidae [J]. Journal of Organic Chemistry. 1988,53:5446-5453.
    [14]Sakemi S and Sun H.H. Nortopsentins A, B, and C. Cytotoxic and antifungal imidazolediylbis [indoles] from the sponge Spongosorites ruetzleri[J]. Journal of Organic Chemistry,1991,56:4304-4307.
    [15]Wright A.E, Pomponi S.A, Cross S.S, McCarthy P. A new bis(indole) alkaloid from a deep-water marine sponge of the genus Spongosorites.[J]. Journal of Organic Chemistry.1992,57: 4772-4775.
    [16]Adesanya S.A, Chbani M, Pais M, Debitus C. Brominated hcarbolinesfrom the marine tunicate Eudistoma album.[J]. Journal ofNatural Products.1992,55(4):525-527.
    [17]Kondo K, Nishi J, Ishibashi M, Kobayashi, J. Two new tryptophanderived alkaloids from the Okinawan marine sponge Aplysina sp.[J]. Journal of Natural Products.1994,57(7):1008-1011.
    [18]Bifulco G, Bruno I, Minale L, Riccio R, Calignano A, Debitus C. (+)-Gelliusines A and B, two diastereomeric brominated tris-indole alkaloids from a deep water New Caledonian marine sponge (Gellius or Orina sp.) [J]. Journal of Natural Products.1994,57(9): 1294-1299.
    [19]Shinonaga H, Shigemori H, Kobayashi J. Konbamidin, a new indole alkaloid from the Okinawan marine sponge Ircinia sp.[J]. Journal of Natural Products.1994,57(11):1603-1605.
    [20]Nakao Y, Yeung B.K.S, Yoshida W.Y, Scheuer P.J, Kelly-Borges M. Kapakahine B:a cyclic hexapeptide with an a-carboline ring system from the marine sponge Cribrochalina olemda.[J]. Journal of American Chemical Society.1995,117:8271-8272.
    [21]Casapullo A, Bifulco G, Bruno I, Riccio R. New bisindole alkaloids of the topsentin and hamacanthin classes from the Mediterranean marine sponge Rhaphisia lacazei. [J] Journal of Natural Products.2000,63:447-451.
    [22]Makarieva T.N, Dmitrenok A.S, Dmitrenok P.S, Grebnev B.B, StonikV.A. Pibocin B, the first N-O-Methylindole marine alkaloid, a metabolite from the Far-Eastern ascidian Eudistoma species.[J]. Journal of Natural Products.2001,64:1559-1561.
    [23]Kamano Y, Zhang H.P, Ichihara Y, Kizu H, Komiyama K, Pettit G.R,. Convolutamydine A, a novel bioactive hydroxyoxindole alkaloid from marine bryozoan Amathia convoluta.[J] Tetrahedron Letters.1995,36(16):2783-2784.
    [24]Hu J.F, Hamann M.T, Hill R, Kelly M. The manzamine alkaloids.[J] The Alkaloids.2003,60: 207-285.
    [25]Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M and Tomita F. New Bisindole Alkaloids Isolated from Myxomycetes Arcyria cinerea and Lycogala epidendrum [J] Biochem. Biophys. Res. Commun.,1986,135:397-402.
    [26]Cai Y, Fredenhagen A, Hug P and Peter H. H. Anitro Analogue of Staurosporine and Other Minor Metabolites Produced by a Streptomyces longisporoflavus Strain [J]. JAntibiot.1995, 48:143-148.
    [27]Cai Y, Fredenhagen A, Hug P, Meyer T and Peter H. H. Further Minor Metabolites of Staurosporine Produced by a Streptomyces longisporoflavus Strain [J].J.Antibiot.1996,49: 519-526.
    [28]Cai Y, Fredenhagen A, Hug P and Peter H. H. Staurosporine Producing Strain Streptomyces longisporoflavus Produces Metabolites Related to K-252a Proposal for Biosynthetic Intermediates of K-252a[J] J.Antibiot.1996,49:1060-1062.
    [29]Rinehart K.L, Kobayashi J, Harbour G.C, Hughes R.G, Mizsak S.A, Scahill T.A,1984. Eudistomins C, E, K and L, potent antiviral compounds containing a novel oxathiazepine ring from Caribbean tunicate Eudistoma olivaceum.[J]. Journal of American Chemical Society. 106:1524-1526.
    [30]Benson D.A, Karsch-Mizrachi I, Lipman D.J, Ostell J, Rapp B.A, Wheeler D.L. Coscinamides A, B and C, three new bis-indole alkaloids from the marine sponge Coscinoderma sp.[J]. Genbank Nucleic Acids Research.2000,28 (1):15-18.
    [31]Rinehart K.L, Kobayashi J, Harbour G.C, Gilmore J, Mascal M, Holt T.G, Shield L.S, Lafargue F. Eudistomins A-Q, h-carbolines from the antiviral Caribbean tunicate Eudistoma olivaceum.[J]. Journal of American Chemical Society.1987,109:3378-3387.
    [32]Bokesch H.R, Pannell L.K, McKee T.C, Boyd M.R. Coscinamides A, B and C, three new bis-indole alkaloids from the marine sponge Coscinoderma sp.[J]. Tetrahedron Letters.2000, 41:6305-6308.
    [33]Roll D.M, Ireland C.M, Lu H.S.M, Clardy J. Fascaplysin, an unusual antimicrobial pigment from the marine sponge Fascaplysinopsis sp.[J]. Journal of Organic Chemistry.1988,53: 3276-3278.
    [34]Bobzin S.C and Faulkner D.J. Aromatic alkaloids from the marine sponge chelonaplysilla sp.[J]. Journal of Organic Chemistry.1991,56:4403-4407.
    [35]Jiang B, Yang C.G, Wang J. Enantioselective synthesis of marine indole alkaloid Hamacanthin B.[J]. Journal of Organic Chemistry.2002,67:1396-1398.
    [36]Sato H, Tsuda M, Watanabe K, Kobayashi J. Rhopaladins A-D, new indole alkaloids from marine tunicate Rhopalaea sp. [J]. Tetrahedron.1998,54:8687-8690.
    [37]Kobayashi J, Nakamura H, Ohizumi Y, Hirata Y. Eudistomidin-A, a novel calmodulin antagonist from the Okinawan tunicate Eudistoma glaucus.[J]. Tetrahedron Letters.1986,27 (10):1191-1194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700