用户名: 密码: 验证码:
两株海洋来源链霉菌的分类鉴定及其活性次级代谢产物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋链霉菌是多种新颖天然产物的重要来源。对海洋链霉菌进行分离、鉴定及其活性次级代谢产物分离纯化、结构解析,有助于深入挖掘其独特的基因资源和生物合成潜能,为开发在医药和农业等领域迫切需要的药物和先导化合物奠定基础。微生物影像质谱是近几年来发展起来的研究微生物与环境、微生物细胞间次级代谢产物相互作用而产生的新技术,目前国内相关的研究还较少。本课题组在大连周边海域沉积物样品中分离了几百株海洋放线菌,但对其分类鉴定和活性化合物的研究还没有深入进行。本研究针对其中的两株放线菌S187和M10,分别从菌株的分类鉴定、活性次级代谢产物的分离纯化和结构解析、发酵条件的优化等几个方面进行了研究,并利用影像质谱和基因组挖掘对两株放线菌产生的活性次级代谢产物进行了分析预测,所取得的研究结果如下:
     1.多相分类法鉴定菌株S187
     通过形态特征、培养特征、细胞化学组分、16S rRNA序列分析及基因组DNA-DNA随机杂交对菌株S187进行分类鉴定。菌株S187与其近缘菌株Streptomyces flavofuscus NRRL B-8036T和S. albiaxialis DSM在培养特征、生理生化特征等均呈现明显差异。DNA-DNA杂交试验表明,菌株S187同S. flavofuscus和S. albiaxialis的相关性仅为31.4%和46.9%,因此,鉴定S187为链霉菌属的新种,命名为星海链霉菌(S. xinghaiensis sp.nov.)。星海链霉菌对大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌和铜绿假单胞菌等细菌测试菌具有良好的拮抗活性,具有潜在的开发前景。
     2.星海链霉菌活性次级代谢产物研究
     对星海链霉菌在三种不同固体培养基TSB、Al和Marine agar上的纯培养和琼脂块法抗菌活性测试影像质谱分析,结果表明,星海链霉菌的次级代谢物中没有有效的质谱信号与抑菌圈完全吻合。以金黄色葡萄球菌为指示菌,通过乙酸乙酯萃取、硅胶柱层析、C18快速分离柱和半制备HPLC从25L星海链霉菌发酵液中分离得到两个化合物xinghaiamine A和B。运用质谱、红外光谱、紫外光谱和核磁共振(1H-NMR,13C-NMR,1H-1H cosy, HSQC, HMBC, DEPT135)等光谱方法对两个化合物进行表征,结构解析确定xinghaiamine A为一种含亚砜官能团的生物碱,文献检索确定其为一种新结构化合物且其特征的亚砜结构系首次从微生物中分离得到。抗菌活性测试表明,xinghaiamine A和B具有广谱抗细菌活性,且对耐药金黄色葡萄球菌(MRSA)具有较强的抑制作用,但对真菌没有抑制作用。细胞毒活性表明,xinghaiamine A对四株人类肿瘤细胞均有一定的抑制作用,但xinghaiamine B对四株细胞株的其抑制作用较弱。
     3.星海链霉菌发酵生产xinghaiamine A条件优化
     单因素实验确定星海链霉菌最佳发酵条件为:起始pH7,接种量6%(v/v),温度28℃,装液量为160mL/500mL。最佳碳源、有机氮源和无机氮源分别为可溶性淀粉、黄豆粉和(NH4)2SO4。均匀设计法优化发酵培养基组成为(g/L):可溶性淀粉22,黄豆粉50,(NH4)2SO42.2,CaCO35, NaCl2和K2HPO40.5.利用原位固相萃取优化xinghaiamine A产量,结果表明:在发酵接种后72h后加入3%(w/v)的树脂HP-20,抗生素产量从0.35mg/L提升到3.4mg/L,发酵周期从18d缩短为9d。细胞自毒性实验表明,xinghaiamine A对其生产菌株星海链霉菌具有强烈的抑制作用,最小抑菌浓度为8μg/mL,推测自毒性的减弱或消除是树脂吸附增加抗生素产量的原因。
     4.基因组挖掘、影像质谱和串联质谱分析菌株M10活性次级代谢产物
     放线菌M10经过形态观察和16S rRNA序列分析初步鉴定为摩洛哥链霉菌(S.marokkonensis)的相似菌株。对M10进行全基因组测序,生物信息学分析表明基因组中含有20个与次级代谢产物相关的生物合成基因簇,包括3个PKS、4个NRPS、4个杂合PKS-NRPS、2个lantibiotic、4个萜类和3个siderophore基因簇。其中一个PKS基因簇(pks1)与杀念珠菌素生物合成基因簇具有一定的相似性,通过RNA反转录验证了该基因簇中的部分基因的转录。对链霉菌M10在三种不同固体培养基TSB、Al和Marine琼脂上的纯培养,琼脂块法抗菌活性测试和与测试菌共培养的影像质谱分析,结果表明:m/z1152和1168两个质谱信号在TSB和A1上纯培养、琼脂块法抗菌活性测试和与番茄叶霉菌共培养上均可检测到,推断其为M10产生的抗真菌化合物。对M10在A1培养基上粗提物进行串联质谱多肽分析,结果表明在900-1000Da范围内存在两个多肽类化合物家族MF1和MF2。
     5.链霉菌M10抗真菌物质分离纯化
     收集M10在A1固体培养基上的培养物,先后经过乙酸乙酯和丁醇萃取,得到乙酸乙酯和丁醇粗提物。对丁醇粗提物分别经过Sephadex LH-20层析柱,C18快速分离柱和半制备HPLC,以白色念珠菌为指示菌,以多烯大环内酯类物质为假定目标分离物,最终得到三个化合物9-03、9-04和9-05。紫外吸收表明,三个化合物具有典型的多烯大环内酯类化合物特征吸收:核磁共振光谱分析表明,化合物9-04具有特征的共轭双键和内酯结构。因此推断链霉菌M10能够产生多烯大环内酯类抗生素。同时,使用MALDI-TOF在M10乙酸乙酯粗提物流经Sephadex LH-20的组分中检测到了之前发现了两个多肽化合物家族MF1和MF2,表明菌株M10在A1琼脂培养基上能够产生多肽类化合物。
Marine streptomyces are rich source of novel natural products. Isolation and characterization of marine streptomyces, purification and structure elucidation of bioactive secondary metabolites not only benefit the exploration of the unique genetic resources and the potential of biosynthesis of the new species, but also provide novel bioactive compounds for drug discovery. Imaging mass spectrometery (IMS) has been used as a new technology for microbial natural product using microbial interactions. However, related studies using marine actinomyces have been poorly reported. In our previous studies, marine-derived actinomycetes were isolated from various areas in Dalian, but studies on species characterization and their bioactive secondary metabolites were still limited. In this study, two marine-derived actinomycetes S187and M10were investigated on species characterization, purification and structure elucidation of bioactive compounds, and optimization of fermentation. Meanwhile, bioactive secondary metabolites from these two strains were explored. The results listed below were obtained.
     1. Identification of strain S187by polyphasic taxonomy
     Strain S187was investigated by polyphasic taxonomy including morphological characteristics, cultural characteristics, cell chemical composition,16S rRNA sequence analysis and genomic DNA-DNA hybridization. Compared with its phylogenetically closed strain S. flavofuscus NRRL B-8036T and S. albiaxialis DSM41799T, S187differed in the characteristics of phenotype, chemotype and genotype, and it was proposed that strain S187represented a novel species of the genus Streptomyces, for which the name S. xinghaiensis sp. nov. is proposed and the type strain is S187.
     2. Bioactive secondary metabolites from S. xinghaiensis
     IMS was performed using S. xinghaiensis growing on TSB agar, A1agar and Marine agar media, and the results indicated that no MS signals was in accordance with the inhibition zone. Xinghaiamine A and B were purified from25L S. xinghaiensis fermentation broth by ethyl acetate extraction, silica gel column, flash C18column and semi-preparative HPLC using S. aureus as an indicator. The sturcture elucidation was performed on the basis of ESI-MS, IR, UV and NMR spectrum ('H-NMR,13C-NMR,'H-'H COSY, HSQC, HMBC and DEPT135). Xinghaiamine A was identified as a novel alkaloid with sulfoxide functional group which has never been reported in microorganism. Xinghaiamine A and B exhibited excellent broad-spectrum antibacterial activities, especially to the MRSA isolates, but no inhibition to C. albicans was observed. Xinghaiamine A also showed cytotoxicity to the tested human tumor cell lines.
     3. Fermentation optimization of xinghaiamine A production from S. xinghaiensis
     The optimum fermentation condition was determined to be initial pH7, inoculation rate6%(v/v), temperature28℃with the medium volume of160mL in500mL flask. The optimum organic carbon source, organic and inorganic nitrogen source were starch, soybean powder and (NH4)2SO4. An addition of3%(w/v) adsorbent resin HP-20at72h post-inoculation significantly improved xinghaiamine A production from0.35to3.4mg/L and shortened fermentation time from18to9days. Self-cytotoxicity of xinghaiamine A was verified and MIC value to its producing strain was estimated to be8μ/mL.
     4. Genome mining, IMS and MS/MS analysis of M10secondary metabolites
     Strain M10was demonstrated to be most closely related to S. marokkonensis by16S rRNA sequence analysis, and bioinformatics analysis identified20secondary metabolites associated gene clusters involved in the genome of M10, including three PKS, four NRPS, four hybrid PKS-NRPS, two lantibiotics, four terpenoid and three siderophores biosynthesis gene clusters. Among the gene clusters, pksl exhibited85%sequence similarity to the candicidin gene cluster and selected genes in pksl gene cluster were demonstrated in transcriptional level by RT-PCR experiment. IMS signals of m/z1152and1168produced by M10were found on both TSB, A1agar and were in accordance with the inhibition zone and time-dependent cocultures of M10and Fulva fulva, which demonstrated that they could be the antifungal compounds produced by M10. Analysis of M10crude extract on A1agar by MS/MS revealed two peptide families (MF1and MF2) with the molecular weight ranging from900to1000Da.
     5. Purification of antifungal compounds produced by M10
     A total of630A1agar plates of M10were collected and extracted successively with ethyl acetate and butanol. Three compounds named9-03,9-04and9-05with the typical UV adsorption of polyene molecules were purified from the butanol extract by employing Sephadex LH-20column, flash C18column and semi-preparative HPLC. The NMR data of9-04also exhibited several conjugated double bonds and one lactone bond, indicating that it belongs to the polyene macrolides. In addition, the peptide molecule familes MF1and MF2were detected in the Sephadex LH-20column fractions using MALDI-TOF, indicating that M10produce peptide antibiotics on A1agar medium.
引文
[1]Berdy J. Bioactive microbial metabolites [J]. The Journal of antibiotics,2005,58(1):1-26.
    [2]Bull AT, Stach JEM. Marine actinobacteria:new opportunities for natural product search and discovery [J]. Trends in Microbiology,2007,15(11):491-499.
    [3]Helmke E, Weyland H. Rhodococcus marinonascens sp. nov., an actinomycete from the sea [J]. International Journal of Systematic Bacteriology,1984,34(2):127-138.
    [4]Heald SC, Brandao, PF, Hardicre R, et al. Physiology, biochemistry and taxonomy of deep-sea nitrile metabolising Rhodococcus strains [J]. Antonie Van Leeuwenhoek,2001,80(2):169-183.
    [5]Kwon HC, Kauffman CA, Jensen PR, et al. Marinomycins A-D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus "Marinispora" [J]. Journal of the American Chemical Society,2006,128(5):1622-1632.
    [6]Maldonado LA, Fenical W, Jensen PR, et al. Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae [J]. International Journal of Systematic and Evolutionary Microbiology,2005,55(5):1759-1766.
    [7]Jensen PR, Gontang E, Mafnas C, et al. Culturable marine actinomycete diversity from tropical Pacific Ocean sediments [J]. Environmental Microbiology,2005,7(7):1039-1048.
    [8]Mincer TJ, Fenical W, Jensen PR. Culture-dependent and culture-independent diversity within the obligate marine actinomycete genus Salinispora [J]. Applied and Environmental Microbiology,2005, 71(11):7019-7028.
    [9]Bruns A, Philipp H, Cypionka H, et al. Aeromicrobium marinum sp. nov., an abundant pelagic bacterium isolated from the German Wadden Sea [J]. International Journal of Systematic and Evolutionary Microbiology,2003,53(6):1917-1923.
    [10]Han SK, Nedashkovskaya OI, Mikhailov VV, et al. Salinibacterium amurskyense gen. nov., sp. nov., a novel genus of the family Microbacteriaceae from the marine environment [J]. International Journal of Systematic and Evolutionary Microbiology,2003,53(6):2061-2066.
    [11]Riedlinger J, Reicke A, Zahner, H, et al. Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032 [J]. The Journal of Antibiotics, 2004,57(4):271.
    [12]张海涛,靳艳,吴佩春.一株海绵放线菌的分离鉴定及活性研究[J].微生物学通报,2004,31(5):60-64.
    [13]姜健,杨宝灵,元起.海洋共附生微生物的分离和抗菌活性鉴定[J].中国海洋药物,2005,24(3):39-42.
    [14]王书锦,胡江春,薛德林,等.中国黄、渤海、辽宁近海地区海洋微生物资源的研究[J].锦州师范学院学报(自然科学版),2001,22(1):1-5.
    [15]张晓敏,刘秋,刘限,等.1株具有广谱抗菌活性的海洋小单孢菌MN10的分离及鉴定[J].甘肃农业大学学报,2013,48(2):99-104.
    [16]林灵,谭亿,陈菲菲,等.大连渤海老虎滩海域沉积物可培养放线菌的多样性[J].微生物学报,2011,51(2):262-269.
    [17]Piel J. Metabolites from symbiotic bacteria [J]. Natural Product Reports,2009,26(3):338-362.
    [18]Blunt JW, Copp BR, Hu WP, et al. Marine natural products [J]. Natural Product Reports,2009, 26(2):170.
    [19]Williams PG, Buchanan GO, Feling RH, et al. New cytotoxic salinosporamides from the marine actinomycete Salinispora tropica [J]. Journal of Organic Chemistry,2005,70(16):6196-6203.
    [20]Feling RH, Buchanan GO, Mincer TJ, et al. Salinosporamide A:a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora [J]. Angewandte Chemie International Edition,2003,42(3):355-357.
    [21]Fenical W, Jensen PR, Palladino MA, et al. Discovery and development of the anticancer agent salinosporamide A (NPI-0052) [J]. Bioorganic & Medicinal Chemistry,2009,17(6):2175-2180.
    [22]Cho JY, Kwon HC, Williams PG, et al. Azamerone, a terpenoid phthalazinone from a marine-derived bacterium related to the genus Streptomyces (Actinomycetales) [J]. Organic Letters,2006, 8(12):2471-2474.
    [23]Furumai T, Igarashi Y, Higuchi H, et al. Kosinostatin, a quinocycline antibiotic with antitumor activity from Micromonospora sp. TP-A0468 [J]. The Journal of antibiotics,2002,55(2):128.
    [24]Bister B, Bischoff D, Stroebele M, et al. Abyssomicin C,a polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway [J]. Angewandte Chemie International Edition,2004,43(19):2574-2576.
    [25]Engelhardt K, Degnes KF, Kemmler M, et al. Production of a new thiopeptide antibiotic, TP-1161, by a marine Nocardiopsis species [J]. Applied and Environmental Microbiology,2010, 76(15):4969-4976.
    [26]Arumugam M, Mitra A, Jaisankar P, et al. Isolation of an unusual metabolite 2-allyloxyphenol from a marine actinobacterium, its biological activities and applications [J]. Applied Microbiology and Biotechnology,2010,86(1):109-117.
    [27]El-Gendy MM, Shaaban M, Shaaban KA, et al. Essramycin:A first triazolopyrimidine antibiotic isolated from nature [J]. The Journal of antibiotics,2008,61 (3):149-157.
    [28]McArthur KA, Mitchell SS, Tsueng G, et al. Lynamicins AE, Chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete [J]. Journal of Natural Products,2008,71(10):1732-1737.
    [29]Hughes CC, Prieto-Davo A, Jensen PR, et al. The marinopyrroles, antibiotics of an unprecedented structure class from a marine Streptomyces sp. [J]. Organic Letters,2008,10(4):629-631.
    [30]J(?)rgensen H, Degnes KF, Dikiy A, et al. Insights into the evolution of macrolactam biosynthesis through cloning and comparative analysis of the biosynthetic gene cluster for a novel macrocyclic lactam, ML-449 [J]. Applied and Environmental Microbiology,2010,76(1):283-293.
    [31]Fiedler H-P, Bruntner C, Riedlinger J, et al. Proximicin A, B and C, Novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora [J]. The Journal of antibiotics,2008,61 (3):158-163.
    [32]Hawas UW, Shaaban M, Shaaban KA, et al. Mansouramycins A-D, cytotoxic isoquinolinequinones from a marine Streptomycete [J]. Journal of Natural Products,2009,72(12):2120-2124.
    [33]Hohmann C, Schneider K, Bruntner C, et al. Albidopyrone, a new a-pyrone-containing metabolite from marine-derived Streptomyces sp. NTK 227 [J]. The Journal of Antibiotics,2009,62(2):75-79.
    [34]Mitchell SS, Nicholson B, Teisan S, et al. Aureoverticillactam, a novel 22-atom macrocyclic lactam from the marine actinomycete Streptomyces aureoverticillatus [J]. Journal of Natural Products,2004, 67(8):1400-1402.
    [35]Abdel-Mageed WM, Milne BF, Wagner M, et al. Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment [J]. Organic & Biomolecular Chemistry,2010,8(10):2352-2362.
    [36]Charan RD, Schlingmann G, Janso J, et al. Diazepinomicin, a new antimicrobial alkaloid from a marine Micromonospora sp [J]. Journal of Natural Products,2004,67(8):1431-1433.
    [37]Williams DE, Dalisay DS, Patrick BO, et al. Padanamides A and B, Highly modified linear tetrapeptides produced in culture by a Streptomyces sp. isolated from a marine sediment [J]. Organic Letters,2011,13(15):3936-3939.
    [38]Schultz AW, Oh DC, Carney JR, et al. Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin [J]. Journal of the American Chemical Society,2008,130(13):4507-4516.
    [39]Moore BS, Trischman JA, Seng D, et al. Salinamides, antiinflammatory depsipeptides from a marine streptomycete [J]. The Journal of Organic Chemistry,1999,64(4):1145-1150.
    [40]Perez BJ, Canedo L, Fernandez PJ, et al. Thiocoraline, a novel depsipeptide with antitumor activity produced by a marine Micromonospora. Ⅱ. Physico-chemical properties and structure determination [J]. The Journal of antibiotics,1997,50(9):738.
    [41]Miller ED, Kauffman CA, Jensen PR, et al. Piperazimycins:cytotoxic hexadepsipeptides from a marine-derived bacterium of the genus Streptomyces [J]. The Journal of Organic Chemistry,2007, 72(2):323-330.
    [42]Marks HS, Hilson JA, Leichtweis HC, et al. S-methylcysteine sulfoxide in Brassica vegetables and formation of methyl methanethiosulfinate from brussels sprouts [J]. Journal of Agricultural and Food Chemistry,1992,40(11):2098-2101.
    [43]Rose P, Whiteman M, Moore PK, et al. Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium:the chemistry of potential therapeutic agents [J]. Natural Product Report,2005, 22(3):351-368.
    [44]Kubec R, Kim S, McKeon DM, et al. Isolation of S-n-butylcysteine sulfoxide and six n-butyl-containing thiosulfinates from Allium siculum [J]. Journal of Natural Products,2002, 65(7):960-964.
    [45]Hornickova J, Velisek J, Ovesna J, et al. Distribution of S-alk(en)yl-L-cysteine sulfoxides in garlic (Allium sativum L.) [J]. Czech Journa of Food Science,2009,27:S232-S235.
    [46]Lake RJ, Brennan MM, Blunt JW, et al. Eudistomin K sulfoxide-an antiviral sulfoxide from the New Zealand ascidian Ritterella sigillinoides [J]. Tetrahedron Letters,1988,29(18):2255-2256.
    [47]Murata O, Shigemori H, Ishibashi M, et al. Eudistomidins E and F, new β-carboline alkaloids from the okinawan marine tunicate Eudistoma glaucus [J]. Tetrahedron Letters,1991,32(29):3539-3542.
    [48]Aiello A, Fattorusso E, Imperatore C, et al. Aplisulfamines, new sulfoxide-containing metabolites from an Aplidium tunicate:absolute stereochemistry at chiral sulfur and carbon atoms assigned through an original combination of spectroscopic and computational methods [J]. Marine Drugs,2012, 10(1):51-63.
    [49]Graham SK, Lambert LK, Pierens GK, et al. Psammaplin metabolites new and old:an NMR study involving chiral sulfur chemistry [J]. Australian Journal of Chemistry,2010,63(6):867-872.
    [50]Barber JM, Quek NCH, Leahy DC, et al. Lehualides E-K, cytotoxic metabolites from the Tongan marine sponge Plakortis sp. [J]. Journal of Natural Products,2011,74(4):809-815.
    [51]Kyung K H. Antimicrobial properties of allium species[J]. Current Opinion in Biotechnology,2012, 23(2):142-147.
    [52]Gerwick WH, Proteau PJ, Nagle DG, et al. Structure of curacin A, a novel antimitotic, antiproliferative and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula [J]. The Journal of Organic Chemistry,1994,59(6):1243-1245.
    [53]Nagle DG, Geralds RS, Yoo H-D, et al. Absolute configuration of curacin A, a novel antimitotic agent from the tropical marine cyanobacterium Lyngbya majuscula [J]. Tetrahedron Letters,1995, 36(8):1189-1192.
    [54]Shin HJ, Murakami M, Matsuda H, et al. Oscillapeptin, an elastase and chymotrypsin inhibitor from the cyanobacterium Oscillatoria agardhii (NIES-204) [J]. Tetrahedron Letters,1995, 36(29):5235-5238.
    [55]Ishida K, Murakami M, Matsuda H, et al. Micropeptin 90, a plasmin and trypsin inhibitor from the blue-green alga Microcystis aeruginosa (NIES-90) [J]. Tetrahedron Letters,1995,36(20):3535-3538.
    [56]陈惠方.植物活性成分辞典,第一册[M].北京:中国医药科技出版社,2001.
    [57]Takaishi Y, Murakami Y, Uda M, et al. Hydroxyphenylazoformamide derivatives from Calvatia craniformis [J]. Phytochemistry,1997,45(5):997-1001.
    [58]Kawagishi H, Fukuhara F, Sazuka M, et al.5'-Deoxy-5'-methylsulphinyladenosine, a platelet aggregation inhibitor from Ganoderma lucidum [J]. Phytochemistry,1993,32(2):239-241.
    [59]陈惠方.植物活性成分辞典,第三册[M].北京:中国医药科技出版社,2001.
    [60]LaLonde R, Wong C. Sulfur containing alkaloids from Nuphar luteum [J]. Phytochemistry,1972, 11(11):3305-3306.
    [61]Bifulco G, Bruno I, Minale L, et al. Novel HIV-inhibitory halistanol sulfates FH from a marine sponge, Pseudoaxinissa digitata [J]. Journal of Natural Products,1994,57(1):164-167.
    [62]Johnson JR, Bruce WF, Dutcher JD. Gliotoxin, The antibiotic principle of gliocladium fimbriatum. I. Production, physical and biological propertiesl [J]. Journal of the American Chemical Society,1943, 65(10):2005-2009.
    [63]Bentley S, Chater K, Cerdeno-Tarraga A-M, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2) [J]. Nature,2002,417(6885):141-147.
    [64]omura S, Ikeda H, Ishikawa J, et al. Genome sequence of an industrial microorganism Streptomyces avermitilis:deducing the ability of producing secondary metabolites [J]. Proceedings of the National Academy of Sciences,2001,98(21):12215-12220.
    [65]Oliynyk M, Samborskyy M, Lester JB, et al. Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338 [J]. Nature Biotechnology,2007,25(4):447-453.
    [66]Ohnishi Y, Ishikawa J, Hara H, et al. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350 [J]. Journal of Bacteriology,2008,190(11):4050-4060.
    [67]Song JY, Jeong H, Yu DS, et al. Draft genome sequence of Streptomyces clavuligerus NRRL 3585, a producer of diverse secondary metabolites [J]. Journal of Bacteriology,2010,192(23):6317-6318.
    [68]Wang X-J, Yan Y-J, Zhang B, et al. Genome sequence of the milbemycin-producing bacterium Streptomyces bingchenggensis [J]. Journal of Bacteriology,2010,192(17):4526-4527.
    [69]Barbe V, Bouzon M, Mangenot S, et al. Complete genome sequence of Streptomyces cattleya NRRL 8057, a producer of antibiotics and fluorometabolites [J]. Journal of Bacteriology,2011, 193(18):5055-5056.
    [70]Donadio S, Monciardini P, Sosio M. Polyketide synthases and nonribosomal peptide synthetases:the emerging view from bacterial genomics [J]. Natural Product Reports,2007,24(5):1073-1109.
    [71]Udwary DW, Zeigler L, Asolkar RN, et al. Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica [J]. Proceedings of the National Academy of Sciences,2007,104(25):10376-10381.
    [72]Zerikly M, Challis GL. Strategies for the discovery of new natural products by genome mining [J]. ChemBioChem,2009,10(4):625-633.
    [73]Davis BL. Methods for the preparation, isolation and purification of epothilone B, and X-ray crystal structures of epothilone B. EP Patent 2,287,168; 2011.
    [74]Lam K, Veitch J, Lowe S, et al. Effect of neutral resins on the production of dynemicins by Micromonospora chersina [J]. Journal of industrial microbiology,1995,15(5):453-456.
    [75]Warr G, Veitch J, Walsh A, et al. BMS-182123, a fungal metabolite that inhibits the production of TNF-α by macrophages and monocytes [J]. The Journal of antibiotics,1996,49(3):234-240.
    [76]Gastaldo L, Marinelli F, Acquarella C, et al. Improvement of the kirromycin fermentation by resin addition [J]. Journal of industrial microbiology,1996,16(5):305-308.
    [77]Kim CH, Kim SW, Hong SI. An integrated fermentation-separation process for the production of red pigment by Serratia sp. KH-95 [J]. Process Biochemistry,1999,35(5):485-490.
    [78]Lee JC, Park HR, Park DJ, et al. Improved production of teicoplanin using adsorbent resin in fermentations [J]. Letters in Applied Microbiology,2003,37(3):196-200.
    [79]Singh MP, Leighton MM, Barbieri LR, et al. Fermentative production of self-toxic fungal secondary metabolites [J]. Journal of Industrial Microbiology & Biotechnology,2009,37(4):335-340.
    [80]Xu LJ, Liu YS, Zhou LG, et al. Enhanced beauvericin production with in situ adsorption in mycelial liquid culture of Fusarium redolens Dzf2 [J]. Process Biochemistry,2009,44(10):1063-1067.
    [81]Marshall V, McWethy S, Sirotti J, et al. The effect of neutral resins on the fermentation production of rubradirin [J]. Journal of industrial microbiology,1990,5(5):283-287.
    [82]Kusunose Y, Wang D. Preliminary studies on extractive fermentation of phenylalanine using uncharged polymeric beads [J]. Chemical Engineering Communications,2004,191(9):1185-1198.
    [83]Park SW, Han SJ, Kim DS, et al. Improvement of epothilone B production by in situ removal of ammonium using cation exchange resin in Sorangium cellulosum culture [J]. Biochemical Engineering Journal,2007,37(3):328-331.
    [84]Inoue K, Yamazaki M, Armentrout RW, et al. Process for producing streptovaricin C. European Patent, 91309793.7 (P).1993
    [85]Inoue K, Murofushi K, Yamazaki M, et al. Process for producing streptovaricin C. EP Patent 0,538,050 (P).1997,05,14
    [86]Arslanian RL, Parker CD, Wang PK, et al. Large-scale isolation and crystallization of epothilone D from Myxococcus x anthus cultures [J]. Journal of Natural Products,2002,65(4):570-572.
    [87]Lau J, Frykman S, Regentin R, et al. Optimizing the heterologous production of epothilone D in Myxococcus xanthus [J]. Biotechnology and Bioengineering,2002,78(3):280-288.
    [88]Frykman SA, Tsuruta H, Licari PJ. Assessment of fed-batch, semicontinuous, and continuous epothilone D production processes [J]. Biotechnology Progress,2005,21(4):1102-1108.
    [89]Tsueng G, Lam KS. Stabilization effect of resin on the production of potent proteasome inhibitor NPI-0052 during submerged fermentation of Salinispora tropica [J]. The Journal of antibiotics,2007, 60(7):469-472.
    [90]Hara M, Asano K, Kawamoto I, et al. Leinamycin, a new antitumor antibiotic from Streptomyces: producing organism, fermentation and isolation [J]. The Journal of antibiotics,1989,42(12):1768.
    [91]Lam KS, Gustavson DR, Veitch JA, et al. The effect of cerulenin on the production of esperamicin Al byActinomadura verrucosospora [J]. Journal of industrial microbiology,1993,12(2):99-102.
    [92]Jia B, Jin ZH, Lei YL, et al. Improved production of pristinamycin coupled with an adsorbent resin in fermentation by Streptomyces pristinaespiralis [J]. Biotechnology Letters,2006,28(22):1811-1815.
    [93]Voelker F, Altaba S. Nitrogen source governs the patterns of growth and pristinamycin production in 'Streptomyces pristinaespiralis'[J]. Microbiology,2001,147(9):2447-2459.
    [94]Lee J-C, Min J-W, Park D-J, et al. Large-scale fermentation for the production of teicoplanin from a mutant of Actinoplanes teichomyceticus [J]. Journal of microbiology and biotechnology,2005, 15(4):787-791.
    [95]Gerth K, Bedorf N, Irschik H, et al. The soraphens:a family of novel antifungal compounds from Sorangium cellulosum (Myxobacteria). I. Soraphen Alα:fermentation, isolation, biological properties [J]. The Journal of antibiotics,1994,47(1):23.
    [96]Gerth K, Pradella S, Perlova O, et al. Myxobacteria:proficient producers of novel natural products with various biological activities—past and future biotechnological aspects with the focus on the genus Sorangium [J]. Journal of Biotechnology,2003,106(2):233-253.
    [97]Singh MP, Leighton MM, Barbieri LR, et al. Fermentative production of self-toxic fungal secondary metabolites [J]. Journal of Industrial Microbiology & Biotechnology,2010,37(4):335-340.
    [98]Yu PL, Dunn NW, Kim WS. Lactate removal by anionic-exchange resin improves nisin production by Lactococcus lactis [J]. Biotechnology Letters,2002,24(1):59-64.
    [99]Junker BH. Scale-up methodologies for Escherichia coli and yeast fermentation processes [J]. Journal of Bioscience and Bioengineering,2004,97(6):347-364.
    [100]Liu B, Hui J, Cheng YQ, et al. Extractive fermentation for enhanced production of thailandepsin A from Burkholderia thailandensis E264 using polyaromatic adsorbent resin Diaion HP-20 [J]. Journal of Industrial Microbiology & Biotechnology,2012,39(5):767-776.
    [101]Carlson JC, Li S, Burr DA, et al. Isolation and characterization of tirandamycins from a marine-derived Streptomyces sp [J]. Journal of Natural Products,2009,72(11):2076-2079.
    [102]Hara M, Takiguchi T, Ashizawa T, et al. Sapurimycin, new antitumor antibiotic produced by Streptomyces. producing organism, fermentation, isolation and biological properties [J]. The Journal of antibiotics,1991,44(1):33.
    [103]Fujii N, Katsuyama T, Kobayashi K, et al. The clecarmycins, new antitumor antibiotic produced by streptomyces:fermentation, isolation and biological properties. [J]. The Journal of antibiotics,1995, 48(8):768-772.
    [104]He H, Ding WD, Bernan VS, et al. Lomaiviticins A and B, Potent antitumor antibiotics from Micromonospora omaivitiensis [J]. Journal of the American Chemical Society,2001, 123(22):5362-5363.
    [105]Fiedler HP, Kulik A, Schuz TC, et al. Biosynthetic capacities of actinomycetes.2. Juglomycin Z, a new naphthoquinone antibiotic from Streptomyces tendae [J]. The Journal of antibiotics,1994, 47(10):1116.
    [106]Nagata H, Ochiai K, Aotani Y, et al. Lymphostin (LK6-A), a novel immunosuppressant from Streptomyces sp. KY11783:taxonomy of the producing organism, fermentation, isolation and biological activities [J]. Journal of Antibiotics,1997,50(7):537-542.
    [107]McDonald LA, Abbanat DR, Barbieri LR, et al. Spiroxins, DNA cleaving antitumor antibiotics from a marine-derived fungus [J]. Tetrahedron Letters,1999,40(13):2489-2492.
    [108]Woo EJ, Starks CM, Carney JR, et al. Migrastatin and a new compound, isomigrastatin, from Streptomyces platensis [J]. The Journal of antibiotics,2002,55(2):141-146.
    [109]Karwowski JP, Jackson M, Sunga G, et al. Dorrigocins:novel antifungal antibiotics that change the morphology of ras-transformed NIH/3T3 cells to that of normal cells. I. Taxonomy of the producing organism, fermentation and biological activity [J]. The Journal of antibiotics,1994,47(8):862-869.
    [110]Gerth K, Washausen P, Hofle G, et al. The jerangolids:A family of new antifungal compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties of jerangolid A [J]. The Journal of antibiotics,1996,49(1):71.
    [111]Boot CM, Gassner NC, Compton JE, et al. Pinpointing pseurotins from a marine-derived Aspergillus as tools for chemical genetics using a synthetic lethality yeast screen [J]. Journal of Natural Products, 2007,70(10):1672-1675.
    [112]Guarro J, Llop C, Aguilar C, et al. Comparison of in vitro antifungal susceptibilities of conidia and hyphae of filamentous fungi [J]. Antimicrobial Agents and Chemotherapy,1997,41(12):2760-2762.
    [113]Varma R, Khan ZK, Singh DA. Antifungal agents:past, present, future prospects:National Academy of Chemistry and Biology (India),1998.
    [114]Georgopapadakou NH, Walsh TJ. Antifungal agents:chemotherapeutic targets and immunologic strategies [J]. Antimicrobial Agents and Chemotherapy,1996,40(2):279.
    [115]Kim DG, Moon K, Kim SH, et al. Bahamaolides A and B, Antifungal polyene polyol macrolides from the marine actinomycete Streptomyces sp [J]. Journal of Natural Products,2012,75(5):959-967.
    [116]Hu Z, Bao K, Zhou X, et al. Repeated polyketide synthase modules involved in the biosynthesis of a heptaene macrolide by Streptomyces sp. FR-008 [J]. Molecular Microbiology,1994,14(1):163-172.
    [117]Chen S, Huang X, Zhou X, et al. Organizational and mutational analysis of a complete FR-008/candicidin gene cluster encoding a structurally related polyene complex [J]. Chemistry & Biology,2003,10(11):1065-1076.
    [118]Aparicio JF, Colina AJ, Ceballos E, et al. The biosynthetic gene cluster for the 26-membered ring polyene macrolide pimaricin a new polyketide synthase organization encoded by two subclusters separated by functionalization genes [J]. Journal of Biological Chemistry,1999, 274(15):10133-10139.
    [119]Brautaset T, Sekurova ON, Sletta H, et al. Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455:analysis of the gene cluster and deduction of the biosynthetic pathway [J]. Chemistry and Biology,2000,7(6):395-403.
    [120]Caffrey P, Lynch S, Flood E, et al. Amphotericin biosynthesis in Streptomyces nodosus:deductions from analysis of polyketide synthase and late genes [J]. Chemistry & Biology,2001,8(7):713-723.
    [121]Boxer SG, Kraft ML, Weber PK. Advances in imaging secondary ion mass spectrometry for biological samples [J]. Annual Review of Biophysics,2009,38(1):53-74.
    [122]Wiseman JM, Ifa DR, Venter A, et al. Ambient molecular imaging by desorption electrospray ionization mass spectrometry [J]. Nat Protocols,2008,3(3):517-524.
    [123]Zimmerman TA, Monroe EB, Tucker K.R, et al. Chapter 13 Imaging of cells and tissues with mass spectrometry:adding chemical information to imaging. In:Dr. John JC, Dr. H. William Detrich, III, editors. Methods in Cell Biology:Academic Press; 2008. p.361-390.
    [124]McDonnell LA, Heeren RMA. Imaging mass spectrometry [J]. Mass Spectrometry Reviews,2007, 26(4):606-643.
    [125]Heeren RMA, Smith DF, Stauber J, et al. Imaging mass spectrometry:Hype or hope? [J]. Journal of the American Society for Mass Spectrometry,2009,20(6):1006-1014.
    [126]Seeley EH, Caprioli RM. Imaging mass spectrometry:Towards clinical diagnostics [J]. PROTEOMICS-Clinical Applications,2008,2(10-11):1435-1443.
    [127]Cornett DS, Reyzer ML, Chaurand P, et al. MALDI imaging mass spectrometry:molecular snapshots of biochemical systems [J]. Nat Meth,2007,4(10):828-833.
    [128]Francese S, Dani F, Traldi P, et al. MALDI mass spectrometry imaging, from its origins up to today: the state of the art [J]. Combinatorial Chemistry & High Throughput Screening 2009,12(2):156-174
    [129]Reyzer ML, Caprioli RM. MALDI-MS-based imaging of small molecules and proteins in tissues [J]. Current Opinion in Chemical Biology,2007,11(1):29-35.
    [130]Burnum KE, Frappier SL, Caprioli RM. Matrix-assisted laser desorption/ionization imaging mass spectrometry for the investigation of proteins and peptides [J]. Annual Review of Analytical Chemistry,2008,1(1):689-705.
    [131]Seeley EH, Caprioli RM. Molecular imaging of proteins in tissues by mass spectrometry [J]. Proceedings of the National Academy of Sciences,2008,105(47):18126-18131.
    [132]Wiseman JM, Ifa DR, Song Q, et al. Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry [J]. Angewandte Chemie International Edition, 2006,45(43):7188-7192.
    [133]Simmons TL, Coates RC, Clark BR, et al. Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages [J]. Proceedings of the National Academy of Sciences,2008,105(12):4587-4594.
    [134]Esquenazi E, Coates C, Simmons L, et al. Visualizing the spatial distribution of secondary metabolites produced by marine cyanobacteria and sponges via MALDI-TOF imaging [J]. Molecular BioSystems,2008,4(6):562.
    [135]Genji T, Fukuzawa S, Tachibana K. Distribution and possible function of the marine alkaloid, norzoanthamine, in the Zoanthid Zoanthus sp. Using MALDI Imaging Mass Spectrometry [J]. Marine Biotechnology,2010,12(l):81-87.
    [136]Yang YL, Xu Y, Straight P, et al. Translating metabolic exchange with imaging mass spectrometry [J]. Nature Chemical Biology,2009,5(12):885-887.
    [137]Wu W, Liang Z, Zhao Z, et al. Direct analysis of alkaloid profiling in plant tissue by using matrix-assisted laser desorption/ionization mass spectrometry [J]. Journal of Mass Spectrometry,2007, 42(l):58-69.
    [138]Shroff R, Vergara F, Muck A, et al. Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense [J]. Proceedings of the National Academy of Sciences,2008,105(16):6196-6201.
    [139]Yang JY, Phelan VV, Simkovsky R, et al. Primer on agar-based microbial imaging mass spectrometry [J]. Journal of Bacteriology,2012,194(22):6023-6028.
    [140]Liu WT, Yang YL, Xu YQ, et al. Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis [J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(37):16286-16290.
    [141]Gonzalez DJ, Haste NM, Hollands A, et al. Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry [J]. Microbiology,2011, 157(9):2485-2492.
    [142]Hankin JA, Barkley RM, Murphy RC. Sublimation as a method of matrix application for mass spectrometric imaging [J]. Journal of the American Society for Mass Spectrometry,2007, 18(9):1646-1652.
    [143]Puolitaival SM, Burnum KE, Cornett DS, et al. Solvent-free matrix dry-coating for MALDI imaging of phospholipids [J]. Journal of the American Society for Mass Spectrometry,2008,19(6):882-886.
    [144]Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples:Localization of peptides and proteins using MALDI-TOF MS [J]. Analytical Chemistry,1997,69(23):4751-4760.
    [145]Graupner K, Scherlach K, Bretschneider T, et al. Imaging mass spectrometry and genome mining reveal highly antifungal virulence factor of mushroom soft rot pathogen [J]. Angewandte Chemie International Edition,2012,51(52):13173-13177.
    [146]Liu WT, Kersten RD, Yang YL, et al. Imaging mass spectrometry and genome mining via short sequence tagging identified the anti-infective agent arylomycin in Streptomyces roseosporus [J]. Journal of the American Chemical Society,2011,133(45):18010-18013.
    [147]Barger SR, Hoefler BC, Cubillos-Ruiz A, et al. Imaging secondary metabolism of Streptomyces sp. Mgl during cellular lysis and colony degradation of competing Bacillus subtilis [J]. Antonie Van Leeuwenhoek,2012,102(3):435-445.
    [148]Shirling EB, Gottlieb D. Cooperative description of type cultures of Streptomyces III. Additional species descriptions from first and second studies [J]. International Journal of Systematic Bacteriology, 1968,18(4):279-392.
    [149]Shirling EB, Gottlieb D. Cooperative description of type cultures of Streptomyces. II. Species descriptions from first study [J]. International Journal of Systematic Bacteriology,1968,18(2):69-189.
    [150]Shirling EB, Gottlieb D. Cooperative description of type cultures of Streptomyces. IV. Species descriptions from the second, third and fourth studies [J]. International Journal of Systematic Bacteriology,1969,19(4):391-512.
    [151]Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species [J]. International Journal of Systematic Bacteriology,1966,16(3):313-340.
    [152]Kelly K. Inter-Society Color Council-National Bureau of standards color-name charts illustrated with centroid colors [J].1964.
    [153]Williams S, Goodfellow M, Alderson G, et al. Numerical classification of Streptomyces and related genera [J]. Journal of General Microbiology,1983,129(6):1743-1813.
    [154]Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes [J]. Journal of General and Applied Microbiology,1983,29(4):319-322.
    [155]Lechevalier M. The chemotaxonomy of actinomycetes [J]. Actinomycete Taxonomy,1980:227-291.
    [156]Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition [J]. Biochemical Systematics and Ecology,1977,5(4):249-260.
    [157]Collins MD. Isoprenoid quinone analysis in classification and identification. [J]. In Chemical Methods in Bacterial Systematics,1985:267-287 Edited by M. Goodfellow & D. E. Minnikin. London: Academic Press.
    [158]Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids [J].1990.
    [159]Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+ C content of deoxyribonucleic acid by high-performance liquid chromatography [J]. International Journal of Systematic Bacteriology,1989,39(2):159-167.
    [160]Ley JD, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates [J]. European Journal of Biochemistry,1970,12(1):133-142.
    [161]Huss V, Festl H, Schleifer K. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates [J]. Systematic and Applied Microbiology,1982,4(2):184-192.
    [162]Jahnke KD. BASIC computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrophotometer on a PC/XT/AT type personal computer [J]. Journal of Microbiological Methods,1992,15(1):61-73.
    [163]Lee Y, Kim H, Liu C, et al. A simple method for DNA extraction from marine bacteria that produce extracellular materials [J]. Journal of Microbiological Methods,2003,52(2):245-250.
    [164]Zhang H, Lee YK, Zhang W, et al. Culturable actinobacteria from the marine sponge Hymeniacidon perleve:isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis [J]. Antonie Van Leeuwenhoek,2006,90(2):159-169.
    [165]Altschul SF, Madden TL, Schaffer A A, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs [J]. Nucleic Acids Research,1997,25(17):3389-3402.
    [166]Plewniak F. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Res,1997,25(24):4876-4882.
    [167]Kumar S, Tamura K, Jakobsen IB, et al. MEGA2:molecular evolutionary genetics analysis software [J]. Bioinformatics,2001,17(12):1244-1245.
    [168]Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees [J]. Molecular Biology and Evolution,1987,4(4):406-425.
    [169]Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes [J]. International Journal of Systematic Bacteriology,1970,20(4):435-443.
    [170]Wayne L, Brenner D, Colwell R, et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics [J]. International Journal of Systematic Bacteriology,1987, 37(4):463-464.
    [171]Sun Y, Hong H, Samborskyy M, et al. Organization of the biosynthetic gene cluster in Streptomyces sp. DSM 4137 for the novel neuroprotectant polyketide meridamycin [J]. Microbiology,2006, 152(12):3507-3515.
    [172]N. Prilezhaeva E. Sulfones and sulfoxides in the total synthesis of biologically active natural compounds [J]. Russian Chemical Reviews,2000,69(5):367-408.
    [173]Li R, Li Y, Li Y, Kristiansen K, et al. SOAP:short oligonucleotide alignment program [J]. Bioinformatics,2008,24(5):713-714.
    [174]Hyatt D, Chen G-L, Chen Gl, et al. Prodigal:prokaryotic gene recognition and translation initiation site identification [J]. BMC Bioinformatics,2010,11:119 doi:110.1186/1471-2105-1111-1119.
    [175]Bouizgarne B, Lanoot B, Loqman S, et al. Streptomyces marokkonensis sp. nov., isolated from rhizosphere soil of Argania spinosa L [J]. International Journal of Systematic and Evolutionary Microbiology,2009,59(11):2857-2863.
    [176]Phay N, Yada H, Higashiyama T, et al. NP-101 A, antifungal antibiotic from Streptomyces aurantiogriseus NPO-101 [J]. Journal of Antibiotics,1996,49(7):703-705.
    [177]Dong Y, Yang J, Zhang H, et al. Wortmannilactones A-D,22-membered triene macrolides from Talaromyces wortmannii [J]. Journal of Natural Products,2005,69(1):128-130.
    [178]Borowski E, Zielinski J, Falkowski L, et al. The complete structure of the polyene macrolide antibiotic nystatin A [J]. Tetrahedron Letters,1971,12(8):685-690.
    [179]Kim YP, Tomoda H, Iizima K, et al. Takanawaenes, novel antifungal antibiotics produced by Streptomyces sp. K99-5278. II. Structure elucidation. [J]. Journal of Antibiotics,2003,56(5):448-453.
    [180]Whitfield GB, Brock TD, Ammann A, et al. Filipin, an Antifungal Antibiotic:Isolation and Properties [J]. Journal of the American Chemical Society,1955,77(18):4799-4801.
    [181]Martin JF and McDaniel LE. Isolation, purification and properties of the hexaene macrolides candihexin I and candihexin II. [J]. Journal of Antibiotics,1974,27(8):610-619.
    [182]Kotler-Brajtburg J, Medoff G, Kobayashi G, et al. Classification of polyene antibiotics according to chemical structure and biological effects [J]. Antimicrobial Agents and Chemotherapy,1979, 15(5):716-722.
    [183]Murphy B, Anderson K, Borissow C, et al. Isolation and characterisation of amphotericin B analogues and truncated polyketide intermediates produced by genetic engineering of Streptomyces nodosus [J]. Organic & Biomolecular Chemistry,2010,8(16):3758.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700