用户名: 密码: 验证码:
Sinorhizobium sp.NGR234的广宿主适应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根瘤菌与豆科植物互作最特殊之处就是形成固氮器官-根瘤,根瘤按照持续分生组织的有无分为无限根瘤和有限根瘤。根瘤菌对两种根瘤适应机制的比较研究是根瘤菌-豆科植物共生的研究热点。由于根瘤菌有很强的宿主选择性,一直以来对于根瘤菌适应这两种根瘤的系统研究都是基于不同根瘤菌和不同宿主,菌株间遗传背景的筹异使得相关的比较分析困难重重。本论文选取广宿主根瘤菌Sinorhizobium sp. NGR234与无限根瘤宿主(银合欢,Leucaena leucocephala)和有限根瘤宿主(豇豆,Vigna unguiculata)为材料研究同一株根瘤菌对两种根瘤的适应机制。通过对NGR234在银合欢、豇豆根瘤中形成的类菌体进行链特异性RNA-seq比较转录组学研究,从全局上揭示根瘤菌对无限根瘤和有限根瘤的适应机制,进而通过遗传学手段研究相关差异表达基因在共生过程中的作用,逐步揭示根瘤菌适应无限根瘤和有限根瘤机制的异同。
     以对数生长期的纯培养根瘤菌Sinorhizobium sp. NGR234为参照,对该菌株在两种根瘤中形成的类菌体进行了基于链特异性RNA-seq的比较转录组学研究。结果发现:1)相对于纯培养根瘤菌,在类菌体中两个质粒上的基因表达上调显著,但染色体上的基因下调显著;2)两种根瘤中的类菌体的以下一些编码基因都表达上调,如细胞色素cbb3氧化酶、硫胺素合成、硝酸盐还原途径(产生NO)、琥珀酸代谢途径、PHB(聚-β-羟基丁酸)合成和磷酸/磷酸盐转运途径;3)两种根瘤中的类菌体在以下一些相关编码基因的表达有显著差异,EPS (Exopolysaccharides)、LPS (Lipopolysaccharides)、T3SS(Ⅲ型分泌系统)及其效应蛋白、细胞色素bd泛醌氧化酶、PQQ (Pyrroloquinoline quinone)、细胞色素c550、假天青蛋白、生物素、phasins、乙醇酸氧化酶、谷氨酸和苯丙氨酸代谢等。
     基于上述转录组数据,构建了19个差异表达基因的删除突变株。其中9个突变株与豇豆共生时,类菌体发育不止常:分别编码Phasin1、Phasin3, ATP-dependent carboxylate-amine ligase, Hypothetical protein, PRC-barrel domain protein, UspA, Cytochrome bd-11, RibH。而这9个突变体中的5个突变体不能止常侵染木豆(Cajanus cajan);4个突变体不能止常侵染扁豆(Lablab purpureus),1个突变体在扁豆根瘤中的类菌体发育不正常。而绝大部分突变体(18/19)与银合欢的共生能力和野生型菌株均无显著性差异,或许是银合欢能够为其无限根瘤中的根瘤菌提供更丰富的碳源或能源物质,即使根瘤菌丧失了上述基因功能,仍然能够进行正常的生物固氮。这四种宿主中,木豆和银合欢形成无限根瘤,而豇豆和扁豆形成有限根瘤。这表明根瘤菌NGR234的同一个基因在与不同宿主共生过程中,同一基因可能影响与不同宿主互作的不同阶段--侵染阶段或类菌体发育阶段,而这种共生表型与根瘤类型无关。
     与NGR234基因组系统发育关系较近的根瘤菌都可以与大豆/野大豆(Glycine max/Glycine sojae)共生,但NGR234却不能与大豆/野大豆共生。通过对NGR234进行Tn5突变体库的构建和筛选获得与野大豆共生能力比野生型菌株提高的7株突变体——但结瘤数量少,结瘤表型不稳定。推测NGR234需要多次突变或获得外源基因才能与野大豆建立有效共生关系。在突变体库中筛选到一个LysR转录调控因子编码基因的突变体,能够与木豆、银合欢和豇豆正常结瘤固氮,但侵染原宿主扁豆的能力大大降低,该转录调控因子目前已知的同源蛋白大多存在于病原菌中,这说明NGR234可能使用与这些病原菌类似的机制来侵染扁豆,而这个转录因子编码基因有可能是通过水平基因转移获得的。
The rhizobium-legume interaction is characterized by its ability of forming nitrogen-fixing nodules. Nodules can be categorized into either indeterminate or determinate nodules based on whether a persistent meristem is present or not. The adaptation mechanisms of rhizobium in these two kinds of nodules have been intensively studied. However because of host specificity, most systematic studies in this field were performed on different bacteria and their corresponding hosts. In this study, by using broad host rhizobium Sinorhizobium sp. NGR234and its indeterminate nodule host Leucaena leucocephala and determinate nodule host Vigna unguiculata, we aimed to study the adaptive mechanisms of a rhizobium in these two different nodules. RNA-seq was used to uncover transcriptomic differences between bacteroids in determinate nodules and those in indeterminate nodules. Genetic methods were then used to study the symbiotic role of representatives of differentially expressed genes. This study would provide further insights into the adaptation mechanisms of rhizobium in determinate and indeterminate nodules.
     In contrast to exponentially growing free-living bacteria, in bacteroids most genes on two plasmids were significantly up-regulated whereas the majority of chromosomal genes were down-regulated. Bacteroids from two legumes recruited several common cellular functions such as cbb3oxidase, thiamine biosynthesis, nitrate reduction pathway (NO-producing), succinate metabolism, PHB (poly-3-hydroxybutyrate) biosynthesis and phosphate/phosphonate transporters. However, different transcription profiles between bacteroids from two legumes were also uncovered for genes involved in the biosynthesis of exopolysaccharides, lipopolysaccharides, T3SS (type three secretion system) and effector proteins, cytochrome bd ubiquinol oxidase, PQQ (pyrroloquinoline quinone), cytochrome c550, pseudoazurin, biotin, phasins and glycolate oxidase, and in the metabolism of glutamate and phenylalanine.
     Based on these transcriptomic results,19deletion mutants were constructed for corresponding differentially expressed genes. Nine mutants showed defects in bacteroids persistance in V. unguiculata nodules and these genes encode Phasin1, Phasin2, ATP-dependent carboxylate-amine ligase, Hypothetical protein, PRC-barrel domain protein, UspA, cytochrome bd-Ⅱ, and RibH respectively. Among these nine mutants, five and four mutants were impaired in infecting nodules of Cajanus cajan and Lablab purpureus, respectively; one mutant showed defects in bacteroids persistence in L. purpureus nodules. However no significant differences were observed between wild type strain and18/19mutants when they were inoculated on L. leucocephala. Thus we hypothesized that, in contrast to V. unguiculata, C. cajan and L. purpureus, L. leucocephala might provide rhizobia with more carbon and energy sources that could support normal symbiotic process when the above mentioned mutants were inoculated. Among these four lemume hosts, L. leucocephala and C. cajan formed indeterminate nodules whereas V. unguiculata and L. purpureus formed determinate nodules. Taken together, these findings suggest that the symbiotic role of the same gene of NGR234showed noticeable variations, when forming symbiosis with different legume hosts, in terms of the essentialbility for different symbiotic stages (infection or bacteroids differentiation). And these symbiotic phenotypes have no correlation with nodule types (indeterminate or determinate nodules).
     All strains closely clustered with NGR234in the genome based phylogenetic tree can form nitrogen-fixing nodules with Glycine max/Glycine sojae, whereas NGR234can not. By constructing and screening a Tn5mutant library of NGR234, seven mutants were found to be able to form nitrogen-fixing nodules on G. sojae (1-1.6nodules per plant), though10%-30%of plants inoculated with these seven mutants did not have effective nodules. These results imply that multiple mutation events or some foreign genes might be needed by NGR234for establishing more stable and effective symbiosis with G. sojae. Interestingly, in this mutant library, a mutant of the gene encoding a LysR regulator formed effective nodules on C. cajan, L. leucocephala and V. unguiculata, but was impaired in infecting its primary host L. purpureus. Most homologs of this LysR regulator were present in pathogenic bacteria, indicating that NGR234could use certain mechanism similar to those pathogens to infect L. purpureus and that the coding gene of this regulator could have been laterally transferred to NGR234.
引文
1. Ames P, Bergman K. Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti. Journal of Bacteriology.1981,148:728-908.
    2. Ampe F, Kiss E, Sabourdy F and Batut J. Transcriptome analysis of Sinorhizobium meliloti during symbiosis. Genome Biology.2003,4(2):R15.
    3. Anantharaman V and Aravind L. The PRC-barrel:a widespread, conserved domain shared by photosynthetic reaction center subunits and proteins of RNA metabolism. Genome Biology.2002, 3(11):research 0061.1-0061.9.
    4. Aneja P, Zachertowska A, Charles T C. Comparison of the symbiotic and competition phenotypes of Sinorhizobium meliloti PHB synthesis and degradation pathway mutants. Canadian Journal of Microbiology.2005,51(7):599-604.
    5. Ardissone S, Kobayashi H, Kambara K et al. Role of BacA in lipopolysaccharide synthesis, peptide transport, and nodulation by Rhizobium sp. strain NGR234. Journal of Bacteriology.2011,193(9): 2218-2228.
    6. Bacher A, Eberhardt S, Fischer M et al. Biosynthesis of vitamin B2 (riboflavin). Annual review of Nutrition.2000,20(1):153-167.
    7. Bardin S, Dan S, Osteras M, Finan T M. A phosphate transport system is required for symbiotic nitrogen fixation by Rhizobium meliloti. Journal of Bacteriology.1996,178:4540-4547.
    8. Barnett M J, Toman C J, Fisher R F and Long S R. A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proceedings of the National Academy of Sciences.2004,101(47):16636-16641.
    9. Baudouin E, Pieuchot L, Engler G et al. Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules. Molecular Plant-Microbe Interactions.2006, 19:970-975.
    10. Becker A, Barnett M J, Capelac D et al. A portal for rhizobial genomes:RhizoGATE integrates a Sinorhizobium meliloti genome annotation update with postgenome data. Journal of Biotechnology. 2009,140:45-50.
    11. Becker A, Berges H, Krol E et al. Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Molecular Plant-Microbe Interactions.2004,17(3): 292-303.
    12. Bernardelli C E, Luna M F, Galar M L, Boiardi J L. Periplasmic PQQ-dependent glucose oxidation in free-living and symbiotic rhizobia. Current Microbiology.2001,42:310-315.
    13. Bernardelli C E, Luna M F, Galar M L et al. Symbiotic phenotype of a membrane-bound glucose dehydrogenase mutant of Sinorhizobium meliloti. Plant and Soil.2008,313:217-225.
    14. Berck S, Perret X, Quesada-Vincens D et al. NolL of Rhizobium sp. strain NGR234 is required for O-acetyltransferase activity. Journal of Bacteriology.1999,181(3):957-964.
    15. Bhagwat A A, Tully R E, Keister D L. Isolation and characterization of an ndvB locus from Rhizobium fredii. Molecular Microbiology.1992,6(15):2159-2165.
    16. Bontemps C, Elliott G N, Simon M F, et al. Burkholderia species are ancient symbionts of legumes. Molecular Ecology.2010,19(1):44-52.
    17. Borziak K, Zhulin I B. FIST:a sensory domain for diverse signal transduction pathways in prokaryotes and ubiquitin signaling in eukaryotes. Bioinformatics.2007,23:2518-2521.
    18. Bott M, Thony-Meyer L, Loferer H et al. Bradyrhizobium japonicum cytochrome c550 is required for nitrate respiration but not for symbiotic nitrogen fixation. Journal of Bacteriology.1995,177: 2214-2217.
    19. Braeken K, Fauvart M, Vercruysse M et al. Pleiotropic effects of a rel mutation on stress survival of Rhizobium etli CNPAF512. BMC Microbiology.2008,8:219 doi:10.1186/1471-2180-8-219.
    20. Breedveld M W, Cremers H C, Batley M. et al. Polysaccharide synthesis in relation to nodulation behavior of Rhizobium leguminosarum. Journal of Bacteriology.1993,175(3):750-757.
    21. Brewin N J. Plant cell wall remodelling in the Rhizobium-legume symbiosis. Critical Reviews in Plant Sciences.2004,23(4):293-316.
    22. Broughton W, Hanin M, et al. Flavonoid-inducible modifications to rhamnan O antigens are necessary for Rhizobium sp. strain NGR234-legume symbioses. Journal of Bacteriology.2006, 188(10):3654-3663.
    23. Bueno E, Bedmar E J, Richardson D J, et al. Role of Bradyrhizobium japonicum cytochrome c550 in nitrite and nitrate respiration. FEMS Microbiology Letters.2008,279:188-194.
    24. Bueno E, Mesa S, Bedmar E J, et al. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions:redox control. Antioxidants and Redox Signaling.2012,16(8):819-852.
    25. Bylund G O, Mattias J L, Mikael P W. Characterization of Mutations in the metY-nusA-infB operon that suppress the slow growth of a ArimM mutant. Journal of Bacteriology.2001,183(20): 6095-6106.
    26. Cabanes D, Boistard P and Batut J. Identification of Sinorhizobium meliloti genes regulated during symbiosis. Journal of Bacteriology.2000,182(13):3632-3637.
    27. Cam Y, Pierre O, Boncompagni E et al. Nitric oxide (NO):a key player in the senescence of Medicago truncatula root nodules. New Phytologist.2012,196:548-560.
    28. Capela D, Filipe C, Bobik C, Batut J, Bruand C. Sinorhizobium meliloti differentiation during symbiosis with alfalfa:a transcriptomic dissection. Molecular Plant-Microbe Interactions.2006,19: 363-372.
    29. Carlson R W, Reuhs B, Chen T B, et al. Lipopolysaccharide core structures in Rhizobium etli and mutants deficient in O-antigen. Journal of Biological Chemistry.1995,270(20):11783-11788.
    30. Cevallos M. A, Encarnacion S, Leija A, et al. Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly-beta-hydroxybutyrate. Journal of Bacteriology.1996,178(6):1646-1654.
    31. Chang Y L, Wang E T, Sui X H, et al. Molecular diversity and phylogeny of rhizobia associated with Lablab purpureus (Linn.) grown in Southern China. Systematic and Applied Microbiology. 2011.34:276-284.
    32. Cheng H P and Walker G C. Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. Journal of Bacteriology.1998,180(19): 5183-5191.
    33. Colebatch G, Desbrosses G, Ott, T et al. Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. The Plant Journal.2004,39: 487-512.
    34. Cremers H C C, Batley M, Redmond J W, et al. Rhizobium leguminosarum exoB mutants are deficient in the synthesis of UDP-glucose 4'-epimerase. Journal of Biological Chemistry.1990, 265(34):21122-21127.
    35. Croucher N J and Thomson N R. Studying bacterial transcriptomes using RNA-seq. Current Opinion in Microbiology.2010,13(5):619-624.
    36. D'Antuono A L, Casabuono A, Couto A, et al. Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis. Molecular Plant-Microbe Interactions.2005, 18(5):446-457.
    37. da Silva Batista J S, Hungria M. Proteomics reveals differential expression of proteins related to a variety of metabolic pathways by genistein-induced Bradyrhizobium japonicum strains. Journal of Proteomics.2012,75:1211-1219.
    38. Dalebroux Z D, Svensson S L, Gaynor E C et al. ppGpp conjures bacterial virulence. Microbiology and Molecular Biology Reviews.2010,74(2):171-199.
    39. Dalebroux Z D. and Swanson M S. ppGpp:magic beyond RNA polymerase. Nature Reviews Microbiology.2012,10:203-212.
    40. Daniels T C, Lyons R E. Concerning the physical properties of solutions of certain phenyl-substituted acids in relation to their bactericidal power. The Journal of Physical Chemistry. 1931,35(7):2049-2060.
    41. Day D A, Dean P G and Udvardi M K. Membrane interface of the Bradyrhizobium japonicum-Glycine max symbiosis:peribacteroid units from soyabean nodules. Functional Plant Biology.1989,16(1):69-84.
    42. Delmotte N, Ahrens C H, Knief C, et al. An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules. Proteomics.2010,10:1391-1400.
    43. Djordjevic M A, Chen H C, Natera S et al. A global analysis of protein expression profiles in Sinorhizobium meliloti:discovery of new genes for nodule occupancy and stress adaptation. Molecular Plant-Microbe Interactions.2003,16(6):508-524.
    44. Djordjevic M A. Sinorhizobium meliloti metabolism in the root nodule:a proteomic perspective. Proteomics.2004,4(7):1859-1872.
    45. Dylan T N P, Helinski D R and Ditta G S. Symbiotic pseudorevertants of Rhizobium meliloti ndv mutants. Journal of Bacteriology.1990,172(3):1409-1417.
    46. Economou A, Davies A E, Johnston A W B, et al. The Rhizobium leguminosarum biovar viciae nodO gene can enable a nodE mutant of Rhizobium leguminosarum biovar trifolii to nodulate vetch. Microbiology.1994,140(9):2341-2347.
    47. Encarnacion S, Dunn M, Willms K et al. Fermentative and aerobic metabolism in Rhizobium etli. Journal of Bacteriology.1995,177:3058-3066.
    48. Evans H J. Enhancing biological nitrogen fixation:Proceedings of a Workshop Held June 6th[D]. Washington, DC 20550.1975,52.
    49. Ewald P W. Transmission modes and evolution of the parasitism-mutualism continuuma. Annals of the New York Academy of Sciences.1987,503(1):295-306.
    50. Fellay R, Hanin M, et al. nodD2 of Rhizobium sp. NGR234 is involved in the repression of the nodABC operon. Molecular Microbiology.1998,27(5):1039-1050.
    51. Ferguson B J, Indrasumunar A, Hayashi Satomi et al. Molecular analysis of legume nodule development and autoregulation. Journal of Integrative Plant Biology.2010,52 (1):61-76.
    52. Finan T M, Gough C, Truchet G. Similarity between the Rhizobium meliloti fliP gene and pathogenicity-associated genes from animal and plant pathogens. Gene.1995,152:65-67.
    53. Finnie C, Hartley N M, Findlay K C, et al. The Rhizobium leguminosarum prsDE genes are required for secretion of several proteins, some of which influence nodulation, symbiotic nitrogen fixation and exopolysaccharide modification. Molecular Microbiology.1997,25(1):135-146.
    54. Franck W L, Chang W S, Qiu J, et al. Whole-genome transcriptional profiling of Bradyrhizobium japonicum during chemoautotrophic growth. Journal of Bacteriology.2008,190:6697-6705.
    55. Fraysse N, Jabbouri S, Treilhou M, et al. Symbiotic conditions induce structural modifications of Sinorhizobium sp. NGR234 surface polysaccharides. Glycobiology.2002,12(11):741-748.
    56. Fraysse N, Couderc F, Poinsot V et al. Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. European Journal of Biochemistry.2003,270(7):1365-1380.
    57. Freiberg C, Fellay R, Bairoch A et al. Molecular basis of symbiosis between Rhizobium and legumes. Nature.1997,387:394-401.
    58. Fujihara S. Biogenic amines in rhizobia and legume root nodules. Microbes and Environment.2009, 24:1-13.
    59. Fujishige N A, Kapadia N N, De Hoff P L et al. Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecology.2006,56:195-206.
    60. Gage D J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiology and Molecular Biology Reviews.2004,68(2):280-300.
    61. Gao J L, Turner S L, Kan F L et al. Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. International Journal of Systematic and Evolutionary Microbiology.2004,54(6):2003-2012.
    62. Gay-Fraret J, Ardissone S, Kambara K, et al. Cyclic-β-glucans of Rhizobium(Sinorhizobium) sp. strain NGR234 are required for hypo-osmotic adaptation, motility, and efficient symbiosis with host plants. FEMS microbiology letters.2012,333(1):28-36.
    63. Geiger O, Rohrs V, Weissenmayer B, et al. The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N,N,N-trimethylhomoserine in Rhizobium(Sinorhizobium) meliloti. Molecular Microbiology.1999,32:63-73.
    64. Gerhardt S, Schott Ann-Kathrin, Kairies N, et al. Studies on the reaction mechanism of riboflavin synthase:X-ray crystal structure of a complex with 6-carboxyethyl-7-oxo-8-ribityllumazine. Structure.2002,10(10):1371-1381.
    65. Geurts R, Heidstra R, Hadri A E, et al. Sym2 of pea is involved in a nodulation factor-perception mechanism that controls the infection process in the epidermis. Plant Physiology.1997,115(2): 351-359.
    66. Glazebrook J, Ichige A, and Walker G C. A Rhizobium meliloti homolog of the Escherichia coli peptide-antibiotic transport protein SbmA is essential for bacteroid development. Genes and Development.1993,7(8):1485-1497.
    67. Giuffre A, Borisov V B., Mastronicola D et al. Cytochrome bd oxidase and nitric oxide:From reaction mechanisms to bacterial physiology. FEBS Letters.2012,586:622-629.
    68. Gottfert M, Grob P, and Hennecke H. Proposed regulatory pathway encoded by the nodV and nodW genes, determinants of host specificity in Bradyrhizobium japonicum. Proceedings of the National Academy of Sciences.1990,87(7):2680-2684.
    69. Guan S H, Chen W F, Wang E T et al. Mesorhizobium caraganae sp. nov., a novel rhizobial species nodulated with Caragana spp. in China. International Journal of Systematic and Evolutionary Microbiology.2008,58(11):2646-2653.
    70. Hahn M and Daniel S. Competitiveness of a nif Bradyrhizobium japonicum mutant against the wild-type strain. FEMS Microbiology Letters.1986,33(1):143-148.
    71. Hakoyama T, Niimi K, Watanabe H, et al. Host plant genome overcomes the lack of a bacterial gene for symbiotic nitrogen fixation. Nature.2009,462 (26):514-517.
    72. Hanin, M, Jabbouri S, et al. Sulphation of Rhizobium sp. NGR234 Nod factors is dependent on noeE, a new host-specificity gene. Molecular Microbiology.1997,24(6):1119-1129.
    73. Haruyama K, Nakai T, et al. Structures of Escherichia coli histidinol-phosphate aminotransferase and its complexes with histidinol-phosphate and N-(5'-phosphopyridoxyl)-L-glutamate:double substrate recognition of the enzyme. Biochemistry.2001,40:4633-4644.
    74. Hernandez L I, Segovia L, Martinez R E and Pueppke S G. Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L. Applied and Environment Microbiology.1995,61(7):2775-2779.
    75. Herridge D F, Peoples M B, Boddey R M. Global inputs of biological nitrogen fixation in agricultural systems. Plant and soil.2008,311(1):1-18.
    76. Hofmann K, Heinz E B, Charles T C et al. Sinorhizobium meliloti strain 1021 bioS and bdhA gene transcriptions are both affected by biotin available in defined medium. FEMS Microbiology Letters. 2000,182:41-44.
    77. Hong G F, Burn J E, Johnston A W B. Evidence that DNA involved in the expression of nodulation (nod) genes in Rhizobium binds to the product of the regulatory gene nodD. Nucleic Acids Research.1987,15(23):9677-9690.
    78. Horchani F, Prevot M, Boscari A, et al. Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiology.2010, 155:1023-1036.
    79. Hotter G S, and Scott D B. Exopolysaccharide mutants of Rhizobium loli are fully effective on a determinate nodulating host but are ineffective on an indeterminate nodulating host. Jornal of Bacteriology.1991,173:851-859.
    80. Hou B C, Wang E T, Li Y et al. Rhizobium tibeticum sp. nov., a symbiotic bacterium isolated from Trigonella archiducis-nicolai (Sirj.) Vassilcz. International Journal of Systematic and Evolutionary Microbiology.2009,59(12):3051-3057.
    81. Hubber A, Vergunst A C, Sullivan J T, et al. Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type Ⅳ secretion system. Molecular Microbiology.2004,54(2):561-574.
    82. Ibanez F and Fabra A. Rhizobial Nod factors are required for cortical cell division in the nodule morphogenetic programme of the Aeschynomeneae legume Arachis. Plant Biology.2011,13: 794-800.
    83. Irigoyen J J, Sanchez-Diaz M, and Emerich D W. Carbon metabolism enzymes of Rhizobium meliloti cultures and bacteroids and their distribution within alfalfa nodules. Applied and Environmental Microbiology.1990,56:2587-2589.
    84. Jabbouri S, Fellay R, Talmont F et al. Involvement of nodS in N-methylation and nodU in 6-O-carbamoylation of Rhizobium sp. NGR234 nod factors. Journal of Biological Chemistry.1995, 270(39):22968-22973.
    85. Jamet A, Mandon K, Puppo A et al. H2O2 is required for optimal establishment of the Medicago sativa-Sinorhizobium meliloti symbiosis. Journal of Bacteriology.2007,189:8741-8745.
    86. Jamet A, Sigaud S, Van de Sype G et al. Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process. Molecular Plant-Microbe Interactions.2003,16:217-225.
    87. Johnson G V, Evans H J, Ching T. Enzymes of the glyoxylate cycle in rhizobia and nodules of legumes. Plant Physiology.1966,41:1330-1336.
    88. Jones J D G and Dangl J L. The plant immune system. Nature.2006,444:323-329.
    89. Jones K M, Kobayashi H, Davies B W, et al. How rhizobial symbionts invade plants:the Sinorhizobium-Medecago model. Nature Reviews Microbiology.2007,5:619-633.
    90. Jude F, Kohler T, Branny P, et al. Posttranscriptional Control of quorum-sensing-dependent virulence genes by DksA in Pseudomonas aeruginosa. Journal of Bacteriology.2003,185(12): 3558-3566.
    91. Kaminski P A, Kitts C L, Zimmerman Z, et al. Azorhizobium caulinodans uses both cytochrome bd (quinol) and cytochrome cbb3 (cytochrome c) terminal oxidases for symbiotic N2 fixation. Journal of Bacteriology.1996,178(20):5989-5994.
    92. Kanehisa M, Goto S, Kawashima S et al. The KEGG resource for deciphering the genome. Nucleic Acids Research.2004,32:D277-280.
    93. Karunakaran R, Ramachandran V K, Seaman J C, et al. Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca. Journal of Bacteriology.2009,191(12):4002-4014.
    94. Karunakaran R, Haag A F, et al. BacA is essential for bacteroid development in nodules of galegoid, but not phaseoloid legumes. Journal of Bacteriology.2010,192(11):2920.
    95. Kereszt A, Mergaert P and Kondorosi E. Bacteroid development in legume nodules:evolution of mutual benefit or of sacrificial victims? Molecular Plant-Microbe Interactions.2011,24(11): 1300-1309.
    96. Kistner C and Parniske M. Evolution of signal transduction in intracellular symbiosis. Trends in Plant Science.2002,7(11):511-518.
    97. Klinke S, Zylberman V, et al. Structural and kinetic properties of lumazine synthase isoenzymes in the order Rhizobiales. Journal of Molecular Biology.2007,373(3):664-680.
    98. Kobayashi H, Naciri-Graven Y, Broughton W J, et al. Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Molecular Microbiology. 2004,51(2):335-347.
    99. Kobayashi H, Simmons LA, Yuan D S, et al. Multiple Ku orthologues mediate DNA non-homologous end-joining in the free-living form and during chronic infection of Sinorhizobium meliloti. Molecular Microbiology.2008,67:350-363.
    100. Koch M, Delmotte N, Rehrauer H et al. Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis. Molecular Plant-Microbe Interactions.2010,23(6):784-790.
    101. Kereszt, A, Kiss E, Reuhs B L, et al. Novel rkp Gene Clusters of Sinorhizobium meliloti Involved in Capsular Polysaccharide Production and Invasion of the Symbiotic Nodule:the rkpK Gene Encodes a UDP-Glucose Dehydrogenase. Journal of Bacteriology.1998,180(20):5426-5431.
    102. Krol E and Becker A. ppGpp in Sinorhizobium meliloti:biosynthesis in response to sudden nutritional downshifts and modulation of the transcriptome. Molecular Microbiology.2011,81(5): 1233-1254.
    103. Kukimoto M, Nishiyama M, Ohnuki T, et al. Identification of interaction site of pseudoazurin with its redox partner, copper-containing nitrite reductase from Alcaligenes faecalis S-6. Protein Engineering.1995,8:153-158.
    104. Lang K, Lindemann A, Hauser F, Gottfert M. The genistein stimulon of Bradyrhizobium japonicum. Molecular Genetics and Genomics.2008.279:203-211.
    105. Larsson J T., Rogstam A and von Wachenfeldt C. Coordinated patterns of cytochrome bd and lactate dehydrogenase expression in Bacillus subtilis. Microbiology.2005,151(10):3323-3335.
    106. Laus M C, Logman T J, Van-Brussel A A N, et al. Involvement of exo5 in production of surface polysaccharides in Rhizobium leguminosarum and its role in nodulation of Vicia sativa subsp. nigra. Journal of bacteriology.2004,186(19):6617-6625.
    107. Law R J, Hamlin J N R, Sivro A, et al. A functional phenylacetic acid catabolic pathway is required for full pathogenicity of Burkholderia cenocepacia in the Caenorhabditis elegans host model. Journal of Bacteriology.2008,190(21):7209-7218.
    108. Le Quere A J, Deakin W J, Schmeisser C. et al. Structural characterization of a K-antigen capsular polysaccharide essential for normal symbiotic infection in Rhizobium sp. NGR234. Journal of Biological Chemistry.2006,281(39):28981-28992.
    109. Lepek V C, Dantuono A L. Bacterial surface polysaccharides and their role in the rhizobia-legume association. Lotus Newsletter.2005,35:93-105.
    110. Lewin A, Cervantes E et al. nodSU, two new nod genes of the broad host range Rhizobium strain NGR234 encode host-specific nodulation of the tropical tree Leucaena leucocephala. Molecular Plant-Microbe Interactions.1990,3(5):317-326.
    111. Li R, Yu C, Li Y, et al. SOAP2:an improved ultrafast tool for short read alignment. Bioinformatics. 2009,25:1966-1967.
    112. Liu L, Iwata K, Kita A, et al. Crystal structure of aspartate racemase from Pyrococcus horikoshii OT3 and its implications for molecular mechanism of PLP-independent racemization. Journal of Molecular Biology.2002,319(2):479-489.
    113.Lodwig EM, Hosie A H F, Bourdes A et al. Amino-acid cycling drives nitrogen fixation in the legume- Rhizobium symbiosis. Nature.2003,422:722-726.
    114. Lopez-Guerrero M G, Ormeno-Orrillo E, Acosta J L, et al. Rhizobial extrachromosomal replicon variability, stability and expression in natural niches. Plasmid.2012,68:149-158.
    115. Lopez-Lara I M, Gao J L, Soto M J et al. Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth. Molecular Plant-Microbe Interactions.2005,18: 973-982.
    116. Masson B C, Giraud E, Perret X, Batut J. Establishing nilrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends in Microbiology.2009,17(10):458-466.
    117. Margaret-Oliver, Lei I, Parada M, et al. Sinorhizobium fredii HH103 does not strictly require KPS and/or EPS to nodulate Glycyrrhiza uralensis, an indeterminate nodule-forming legume. Archive Microbiology.2012,194:87-102.
    118. Marie C, Deakin W J, Ojanen-Reuhs T, et al. TtsI, a key regulator of Rhizobium species NGR234 is required for type Ⅲ-dependent protein secretion and synthesis of rhamnose-rich polysaccharides. Molecular Plant-Microbe Interactions.2004,17(9):958-966.
    119. Meakin G E, Bueno E, Jepson B, et al. The contribution of bacteroidal nitrate and nitrite reduction to the formation of nitrosylleghaemoglobin complexes in soybean root nodules. Microbiology.2007, 153:411-419.
    120. Meinhardt L W, Krishnan H B, Balatti P A, et al. Molecular cloning and characterization of a sym plasmid locus that regulates cultivar-specific nodulation of soybean by Rhizobium fredii USDA257. Molecular Microbiology.1993,9(1):17-29.
    121. Merabet C, Bekki A, Benrabah N, et al. Distribution of Medicago species and their microsymbionts in a saline region of Algeria. Arid Land Research and Management.2006,20(13):219-231.
    122. Mergaert P, Uchiumi T, Alunni B, et al. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proceedings of the National Academy of Sciences.2006,103(13); 5230-5235.
    123. Merrell D S, Hava D L and Camilli A. Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Molecular Microbiology.2002,43(6):1471-1491.
    124. Miller S H, Elliot R M, Sullivan J T, et al. Host-specific regulation of symbiotic nitrogen fixation in Rhizobium leguminosarum biovar trifolii. Microbiology.2007,153(9):3184-3195.
    125. Minder A C, Narberhaus F, Fischer H M, et al. The Bradyrhizobium japonicum phoB gene is required for phosphate-limited growth but not for symbiotic nitrogen fixation. FEMS Microbiology Letters.1998,161(1):47-52.
    126. MirandaRios J, Morera C, Taboada H, et al. Expression of thiamin biosynthetic genes (thiCOGE) and production of symbiotic terminal oxidase cbb(3),in Rhizobium etli. Journal of Bacteriology. 1997,179:6887-6893.
    127. Misra H S, Rajpurohit Y S, Khairnar N P. Pyrroloquinoline-quinone and its versatile roles in biological processes. Journal of Biosciences.2012,37:313-325.
    128. Mogull S A, Runyen J L J, Hong M, et al. dksA is required for intercellular spread of Shigella flexneri via an RpoS-independent mechanism. Infection and Immunity.2001,69(9):5742-5751.
    129. Mortazavi A, Williams B A, McCue K et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods.2008,5:621-628.
    130. Mortier V, Wever E D, Vuylsteke M, et al. Nodule members are governed by interaction between CLE peptides and cytokinin signaling. The Plant Journal.2012,70(3):367-76.
    131.Mottier V, Holsters M and Goormachtig S. Never too many? How legumes control nodule numbers. Plant, Cell and Environment.2011,35(2):245-258.
    132. Nagata M, Murakami E, Shimoda Y et al. Expression of a class 1 hemoglobin gene and production of nitric oxide in response to symbiotic and pathogenic bacteria in Lotus japonicus. Molecular Plant-Microbe Interactions.2008,21:1175-1183.
    133. Nakanishi N, Abe H, Ogura Y et al. ppGpp with DksA controls gene expression in the locus of enterocyte effacement (LEE) pathogenicity island of enterohaemorrhagic Escherichia coli through activation of two virulence regulatory genes. Molecular Microbiology.2006,61(1):194-205.
    134. Nystrom T and Neidhardt F C. Expression and role of the universal stress protein, UspA, of Escherichia coli during growth arrest. Molecular Microbiology.1994,11(3):537-544.
    135. Noel K D, Forsberg L S, Carlson R W. Varying the abundance of O antigen in Rhizobium etli and its effect on symbiosis with Phaseolus vulgaris. Journal of Bacteriology.2000,182(19):5317-5324.
    136. Oldroyd G E D, Murray J D, Poole P S, et al. The rules of engagement in the legume-rhizobial symbiosis. Annual Review of Genetics.2011,45:119-144.
    137. Oldroyd, G. E. Speak, friend, and enter:signaling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology.2013,11(4):252-263.
    138. Oliver H F, Orsi R H, Ponnala L, et al. Deep RNA sequencing of L. monocytogenes reveals overlapping and extensive stationary phase and sigma B-dependent transcriptomes, including multiple highly transcribed noncoding RNAs. BMC Genomics.2009,10:641.
    139. Oono R, Denison R F and Kiers E T. Controlling the reproductive fate of rhizobia:how universal are legume sanctions? New Phytologist.2009,183:967-979
    140. Oono R and Denison R F. Comparing symbiotic efficiency between swollen versus nonswollen rhizobial bacteroids. Plant physiology.2010,154(3):1541-1548.
    141. Oono R, Schmitt 1, Sprent J I et al. Multiple evolutionary origins of legume traits leading to extreme rhizobial differentiation. New Phytologist.2010,187(2):508-520.
    142. Pankhurst C E, Schwinghamer E A and Bergersen F J. The structure and acetylene-reducing activity of root nodules formed by a riboflavin-requiring mutant of Rhizobium trifolii. Journal of General Microbiology.1972,70(2):161-177.
    143. Pankhursta C E, Schwinghamer E A, Thorne S W, et al. The flavin content of clovers relative to symbiosis with a riboflavin-requiring mutant of Rhizobium trifoli. Plant Physiology.1974,53(2): 198-205.
    144. Park K M, So J S. Altered cell surface hydrophobicity of lipopolysaccharide-deficient mutant of Bradyrhizobium japonicum. Journal of Microbiological Methods.2000,41(3):219-226.
    145. Parniske M, Schmidt, P E, Kosch K and Muller P. Plant defense responses of host plants with determinate nodules induced by EPS-defective exoB mutants of Bradyrhizobium japonicum. Molecular Plant-Microbe Interactions.1994,7:631-638.
    146. Peck M C, Fisher R F and Long S R. Diverse flavonoids stimulate NodDl binding to nod gene promoters in Sinorhizobium meliloti. Journal of Bacteriology.2006,188(15):5417.
    147. Perkins T T, Kingsley R A, Fookes M C et al. A strand-specific RNA-seq analysis of the transcriptome of the Typhoid Bacillus Salmonella Typhi. PLoS Genetics.2009,5:e1000569.
    148. Perret X, Freiberg C, Rosenthal A et al. High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Molecular Microbiology.1999,32:415-425.
    149. Perret X, Staehelin C and Broughton W J. Molecular basis of symbiotic promiscuity. Microbiology and Molecular Biology Reviews.2000,64(1):180-201.
    150. Pessi G, Ahrens CH, Rehrauer H, et al. Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules. Molecular Plant-Microbe Interactions.2007,20(11): 1353-1363.
    151. Pii Y, Crimi M, Cremonese G, et al. Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biology.2007,7:21.
    152. Pilsl H, Smajs D, Braun V. Characterization of colicin S4 and its receptor, OmpW, a minor protein of the Escherichia coli outer membrane. Journal of Bacteriology.1999,181(11):3578-3581.
    153. Popp C and Ott T. Regulation of signal transduction and bacterial infection during root nodule symbiosis. Current Opinion in Plant Biology.2011,14:458-467.
    154. Potter M, Madkour M H, Mayer F and Steinbuche A. Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology.2002, 148(8):2413-2426.
    155. Potter M, Muller H and Steinbiichel A. Influence of homologous phasins (PhaP) on PHA accumulation and regulation of their expression by the transcriptional repressor PhaR in Ralstonia eutropha H16. Microbiology.2005,151(3):825-833.
    156. Prell J and Poole P. Metabolic changes of rhizobia in legume nodules. Trends in Microbiology. 2006,14(4):161-168.
    157. Perez-Llamas C and Lopez-Bigas N. Gitools:analysis and visualisation of genomic data using interactive heat-maps. PLoS ONE.2011,6:e19541.
    158. Pueppke S G and Broughton W J. Rhizobium sp. Strain NGR234 and R. fredii USDA257 Share Exceptionally Broad, Nested Host Ranges. Molecular Plant-Microbe Interactions.1999, 12(4):293-318.
    159. Puppo A, Groten K, Bastian F, et al. Legume nodule senescence:roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytologist.2004,165(3): 683-701.
    160. Radutoiu S, Madsen L H, Madsen E B et al. LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. The EMBO Journal.2007,26(17): 3923-3935.
    161. Ramachandran V K. Microarray analysis of Rhizobium leguminosarum bv. viciae 3841 colonization of the rhizosphere [D]. University of Reading.2008.
    162. Ramachandran V K, East A K, Karunakaran R, et al. Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics. Genome Biology.2011,12:R106.
    163. Ramirez-Trujillo J A, Encarnacion S, Salazar E, et al. Functional characterization of the Sinorhizobium meliloti acetate metabolism genes ace A, SMc00767, and glcB. Journal of Bacteriology.2007,189:5875-5884.
    164. Roberts I S. The biochemistry and genetics of capsular polysaccharide production in bacteria. Annual Review of Microbiology.1996,50:285-315.
    165. Ratcliff W C, Kadam S V, Denison R F. Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. FEMS Microbiology Ecology.2008,65(3):391-399.
    166. Reuhs BL, Biserka R, Forsberg L S, et al. Structural characterization of a flavonoid-inducible Pseudomonas aeruginosa A-band-like O antigen of Rhizobium sp. strain NGR234, required for the formation of nitrogen-fixing nodules. Journal of Bacteriology.2005,187(18):6479-6487.
    167. Roche P, Maillet F, Plazanet C, et al. The common nodABC genes of Rhizobium meliloti are host-range determinants. Proceedings of the National Academy of Sciences.1996,93: 15305-15310.
    168. Romanov, V I, Hernandez-Lucas I and Martinez-Romero E. Carbon metabolism enzymes of Rhizobium tropici cultures and bacteroids. Applied and Environmental Microbiology.1994,60: 2339-2342.
    169. Ronson C W, and Primrose S B. Carbohydrate metabolism in Rhizobium trifolii:identification and symbiotic properties of mutants. Journal of General Microbiology.1979,112:77-88.
    170. Russo D M, Williams A and Edwards A. Proteins exported via the PrsD-PrsE type Ⅰ secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum. Journal Bacteriology.2006,188(12):4474-4486.
    171. Saad M M, Kobayashi H, Marie C, et al. NopB, a type Ⅲ secreted protein of Rhizobium sp. strain NGR234, is associated with pilus-like surface appendages. Journal of Bacteriology.2005,187(3): 1173-1181.
    172. Saad M M, Crevecoeur M, Masson-Boivin C et al. The Type 3 protein secretion system of Cupriavidus taiwanensis strain LMG19424 compromises symbiosis with Leucaena leucocephala. Applied and Environmental Microbiology.2012,78(20):7476-7479.
    173. Saeki K and Kouchi H. The lotus symbiont, Mesorhizobium loti:molecular genetic techniques and application. Journal of Plant Research.2000,113:457-465.
    174. Saeki K. Rhizobial measures to evade host defense strategies and endogenous threats to persistent symbiotic nitrogen fixation:a focus on two legume-rhizobium model systems. Cellular and Molecular Life Sciences.2011,68:1327-1339.
    175. Saier M H. Evolution of bacterial type III protein secretion systems. Trends in Microbiology.2004, 12(3):113-115.
    176. Salvagiotti F, Cassman K G, Specht J E et al. Nitrogen uptake, fixation and response to fertilizer N in soybeans:A review. Field Crops Research.2008,108:1-13.
    177. Schmeisser C, Liesegang H, Krysciak D et al. Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Applied and Environmental Microbiology.2009,75(12): 4035.
    178. Schumpp O and Deankin W J. How inefficient rhizobia prolong their existence within nodules. Trends in Plant Science.2010,15(4):189-195.
    179. Serre L, Sailland A, Sy D, et al. Crystal structure of Pseudomonas fluorescens 4-hydroxyphenylpyruvate dioxygenase:an enzyme involved in the tyrosine degradation pathway. Structure.1999,7(8):977-988.
    180. Shantharam S and Mattoo A K. Enhancing biological nitrogen fixation:An appraisal of current and alternative technologies for N input into plants. Plant and Soil.1997,194:205-216.
    181. Sharma A K and Payne S M. Induction of expression of hfq by DksA is essential for Shigella flexneri virulence. Molecular Microbiology.2006,62(2):469-479.
    182. Shimoda Y, Nagata M, Suzuki A, et al. Symbiotic rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicas. Plant and Cell Physiology.2005,46(1): 99-107.
    183. Sousa M C and McKay D B. Structure of the universal stress protein of Haemophilus influenza. Structure.2001,9(12):1135-1141.
    184. Spaink H R. The molecular basis of the host specificity of the Rhizobium bacteria. Antonie van Leeuwenhoek.1994,65:81-98.
    185. Staehelin C, Forsberg L S, D'Haeze W, et al. Exo-oligosaccharides of Rhizobium sp. strain NGR234 are required for symbiosis with various legumes. Journal of Bacteriology.2006,188(17): 6168-6178.
    186. Streit W R, Schmitz R A, Perret X, et al. An evolutionary hot spot:thepNGR234b replicon of Rhizobium sp. strain NGR234. Journal of Bacteriology.2004,186:535-542.
    187. Suzuki S, Aono T, Lee K B, et al. Rhizobial factors required for stem nodule maturation and maintenance in Sesbania rostrata-Azorhizobium caulinodans ORS571 symbiosis. Appllied and Environment Microbiology.2007,73:6650-6659.
    188. Takahashi E and Wraight C A. Potentiation of proton transfer function by electrostatic interactions in photosynthetic reaction centers from Rhodobacter sphaeroides:first results from site-directed mutation of the H subunit. Proceedings of the National Academy of Sciences.1996,93:2640-2645.
    189. Tan X J, Cheng Y, Li Y X, et al. BacA is indispensable for successful Mesorhizobium-Astragalus symbiosis. Applied Microbiology and Biotechnology.2009,84(3):519-526.
    190. Tan Z Y, Kan F L, Peng G X, et al. Rhizobium yanglingense sp. nov., isolated from arid and semi-arid regions in China. International Journal of Systematic and Evolutionary Microbiology. 2001,51(3):909-914.
    191.Teufel R, Mascaraque V, Ismail W, et al. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proceedings of the National Academy of Sciences.2010,107(32):14390-14395.
    192. Thorvaldsdottir H, Robinson J T, Mesirov J P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics.2013, 14(2):178-192.
    193. Timmers A C J, Soupene E, Auriac M C et al. Saprophytic intracellular rhizobia in alfalfa nodules. Molecular Plant-Microbe Interactions.2000,13(11):1204-1213.
    194. Trinick M J. Relationships amongst the fast-growing rhizobia of Lablab purpureus, Lecaena leucocephala, Mimosa spp., Acacia farnesiana and Sesbania grandiflora and their affinities with other rhizobial groups. Journal of Applied Bacteriology.1980,49:39-53.
    195. Tsukada S, Aono T, Akiba N, et al. Comparative genome-wide transcriptional profiling of Azorhizobium caulinodans ORS571 grown under free-living and symbiotic conditions. Applied and Environment Microbiology.2009,75:5037-5046.
    196. Turner S L and Young J P W. The glutamine synthetases of rhizobia:phylogenetics and evolutionary implications. Molecular Biology and Evolution.2000,17(2):309-319.
    197. Udvardi M, Poole P S. Transport and metabolism in legume-rhizobia symbioses. Annual Review of Plant Biology.2013,64:781-805.
    198. Van de V W, Carlos P G J, Keyser A D, et al. Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant physiology.2006,141(2):711-720.
    199. Van de V W, Zehirov G, Szatmari A, et al. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science.2010,327:1122-1126.
    200. Van Vliet A H M Next generation sequencing of microbial transcriptomes:challenges and opportunities. FEMS Microbiology letters.2009,302(1):1-7.
    201.Vasse J, Billy F D E, Camut S et al. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. Journal of Bacteriology.1990,172(8): 4295-4306.
    202. Vercruysse M, Fauvart M, Beullens S et al. A Comparative transcriptome analysis of Rhizobium etli bacteroids:specific gene-expression during symbiotic nongrowth. Molecular Plant-Microbe Interactions.2011,24(12):1553-1561.
    203. Vercruysse M, Fauvart M, Jans A et al. Stress response regulators identified through genome-wide transcriptome analysis of the (p) ppGpp-dependent response in Rhizobium etli. Genome Biology. 2011,12(2):R17.
    204. Vinardell J M, Fedorova E, Cebolla A et al. Endoreduplication mediated by the anaphase-promoting complex activator CCS52A is required for symbiotic cell differentiation in Medicago truncatula nodules. The Plant Cell.2003,15(9):2093-2105.
    205. Viprey V, Rosenthal A, Broughton W J, et al. Genetic snapshots of the Rhizobium species NGR234 genome. Genome Biology.2000,1(6):1-0014.17.
    206. Vlassak K, Luyten E, Verretch C, et al. The Rhizobium sp. BR816 nodO gene can function as a detetminant for nodulation of Leucaena leucocephala, Phaseolus vulgaris, and Trifolium repens by a diversity of Rhizobium spp. Molecular Plant-Microbe Interactions.1998,11(5):383-392.
    207. Waelkens F, Voets T, Vanderleyden J, et al. The nodS gene of Rhizobium tropici strain CIAT899 is necessary for nodulation on Phaseolus vulgaris and on Leucaena leucocephala. Molecular Plant-Microbe Interactions.1995,8(1):147-154.
    208. Walker S A and Downie J A. Entry of Rhizobium leguminosarum bv. viciae into root hairs requires minimal Nod factor specificity, but subsequent infection thread growth requires nodO or nodE. Molecular Plant-Microbe Interactions.2000,13(7):754-762.
    209. Wang C X, Sheng X Y, Equi R C et al. Influence of the poly-3-hydroxybutyrate (PHB) granule-associated proteins (PhaPl and PhaP2) on PHB accumulation and symbiotic nitrogen fixation in Sinorhizobium meliloti Rm 1021. Journal of Bacteriology.2007,189(24):9050-9056.
    210. Wang D, Griffitts J, Colby S, et al. A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science.2010,327:1126-1129.
    211. Wang P, Zhong Z, Zhou J, et al. Exopolysaccharide biosynthesis is important for Mesorhizobium tianshanense:plant host interaction. Archives of Microbiology.2008,189(5):525-530.
    212. Wei G H, Wang E T, Tan Z Y, et al. Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea. International Journal of Systematic and Evolutionary Microbiology.2002,52:2231-2239.
    213. Wells D H and Long S R. The Sinorhizobium meliloti stringent response affects multiple aspects of symbiosis. Molecular Microbiology.2002,43(5):1115-1127.
    214. Westermann A J, Gorski S A, Vogel J. Dual RNA-seq of pathogen and host. Nature Review of Microbiology.2012,10:618-630.
    215. Wieczorek R, Pries A, Steinbuchel A and Mayer F. Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. Journal of Bacteriology.1995, 177(9):2425-2435.
    216. Winstedt L, Yoshida K I, Fujita Y, et al. Cytochrome bd biosynthesis in Bacillus subtilis: characterization of the cydABCD operon. Journal of Bacteriology.1998,180(24):6571-6580.
    217. Wu G H, Hill S, Kelly M J S, et al. The cydR gene product, required for regulation of cytochrome bd expression in the obligate aerobe Azotobacter vinelandii, is an Fnr-like protein. Microbiology. 1997,143(7):2197-2207.
    218. Perret X, Staehelin C and Broughton W J. Molecular basis of symbiotic promiscuity. Microbiology and Molecular Biology Reviews.2000,64(1):180-201.
    219. Yan Q and Wang N. High-throughput screening and analysis of genes of Xanthomonas citri subsp. citri Involved in citrus canker symptom development. Molecular Plant-Microbe Interactions.2012, 25(1):69-84.
    220. Yang G P, Bhuvaneswari T V, Joseph C M, et al. Roles for riboflavin in the Sinorhizobium-alfalfa association. Molecular Plant-Microbe Interactions.2002,15(5):456-462.
    221. Yang S M, Tang F, Gao M Q, et al. R gene-controlled host specificity in the legume-rhizobia symbiosis. Proceedings of the National Academy of Sciences.2010,107(43):18735-18740.
    222. Yoder-Himes D R, Chain P S, Zhu Y, et al. Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proceedings of National Acadady of Sciences.2009,106:3976-3981.
    223. York G M, Stubbe J, Sinskey A J. New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. Journal of Bacteriology.2001,183(7): 2394-2397.
    224. Yun J, Jeon B, Barton Y W, et al. Role of the DksA-like protein in the pathogenesis and diverse metabolic activity of Campylobacter jejuni. Journal of Bacteriology.2008,190(13):4512-4520.
    225. Yurgela S N and Kahna M L. A mutant GlnD nitrogen sensor protein leads to a nitrogen-fixing but ineffective Sinorhizobium meliloti symbiosis with alfalfa. Proceedings of the National Academy of Sciences.2008,105(48):18958-18963.
    226. Zarembinski T I, Hung L W, Mueller-Dieckmann H J, et al. Structure-based assignment of the biochemical function of a hypothetical protein:A test case of structural genomics. Proceedings of the National Academy of Sciences.1998,95(26):15189-15193.
    227. Zylberman V, Klinke S, Haase I, et al. Evolution of vitamin B2 biosynthesis:6, 7-dimethyl-8-ribityllumazine synthases of Brucella. Journal of Bacteriology.2006,188(17): 6135-6142.
    228.李勤勤.大豆根瘤菌的生物地理学、种群进化和共生适应机制的研究:[博士毕业论文].北京:中国农业大学,2012
    229.陈文新,汪恩涛.中国根瘤菌.北京:科学出版社.2011,1-69
    230.孙志梅,武志杰,陈利军等.农业生产中的氮肥施用现状及其环境效应研究进展.土壤通报,2006,37(4):782-786

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700