用户名: 密码: 验证码:
行星际天文导航方法及其精度影响因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪世界各国都加快了太空探索的步伐,飞行任务的长时间远距离和深空环境的复杂性决定了天文导航方法成为最适合行星际飞行的自主导航方法。针对具体的飞行任务研究合理的行星际天文导航方法并对其进行优化设计,无论在理论上还是工程上均具有重要意义。本论文研究了适合星际巡航飞行的天文导航方法,并对其精度影响因素进行了针对性研究。主要内容包括:
     建立了基于多体问题的探测器的轨道动力学模型和无陀螺姿态运动模型。结合观测模型,对现有的近地空间和深空自主天文导航方法进行了总结和比较,研究了适合星际巡航飞行的自主天文导航方法。
     在所提出的行星际自主天文导航方法基础上,着重研究了状态方程、量测方程和滤波算法的选取对系统导航精度的影响。首先,建立了不同轨道描述参数和姿态描述参数下的系统模型,分析了不同状态描述形式对系统计算效率和导航精度的影响。其次,考虑到探测器所处的深空环境和所用的观测手段,研究了最优导航天体的筛选准则,并结合导航系统的可观测性和可观测度,进一步分析了星敏感器的测量精度、导航恒星的数目和量测模型对系统导航精度的影响。最后,研究了常用的非线性滤波算法,并针对自主导航系统的非线性、非高斯及初始导航偏差较大的问题,仿真分析了UKF和UPF对系统导航精度的影响。为导航系统参数的选取提供了良好的理论基础。
Many countries around the world have accelerated the pace of space exploration in the new century. The long-time and far-distance flight and the complicated environment determine the celestial navigation method as the most appropriate autonomous navigation method for deep space missions. The research of rational interplanetary celestial navigation method and its optimum design according the specific mission have important theoretical significance and applied value. This paper studies the autonomous celestial navigation method suitable for interplanetary cruise flight and analyses its accuracy influential factors. The main contents of this paper are as follows.
     Orbit dynamical models based on multi-body problem and gyroless attitude motion models of the probe are established. This paper summarizes and compares the existing near-earth space and deep space autonomous navigation methods based on the measurement models. An autonomous navigation method suitable for interplanetary cruise flight is presented.
     Based on the above research results, this paper emphatically studies the effect of the selection of the state equation, measurement equation and the filter algorithm on the navigation accuracy. First, the system models of different orbit representation parameters and attitude representation parameters are established, and then the effect of different state representations on the computation efficiency and the navigation accuracy. Second, the optimal selection criteria of the navigation celestial bodies are proposed considering the deep space environment of the probe and the observational methods. Then the effect of the star sensor precision, the numbers of the navigation stars and the measurement models on the navigation accuracy is analysed by using the observability theory and the observability index theory. Finally, the popular nonlinear filtering algorithm is researched in this paper. In view of the nonlinear non-Gasussian and the problem of large deviation of initial estimation of the navigation system, the effect of the UKF and UPF on system navigation accuracy is presented by the numerical simulation. The results offer nice theoretical basis to the choice of navigation system parameters.
引文
1 J. E. Riedel, S. Bhaskaran and S. P. Synnott et al. An Autonomous Optical Navigation and Control System for Interplanetary Exploration Missions. AIAA Symposia and Scientific Meetings, Washington D.C., USA, April 16~19,1996:32~43
    2 T. Misu, T. Hashimto and K. Ninomiya. Optical Guidance for Autonomous Landing of Spacecraft. IEEE Transaction on Aerospace and Electronic Systems.1999, 35(2):459~473
    3 S. Bhaskaran, D. Desai and P. J. Dumont et al. Orbit Determination Performance Evaluation of the Deep Space 1 Autonomous Navigation System. Proceedings of the AAS/AIAA Spaceflight Mechanics Meeting, Monterrey, Canada, February 9~12, 1998:1295~1314
    4刘宇飞.深空自主导航方法研究及在接近小天体中的应用.哈尔滨工业大学博士论文. 2007:2~5
    5 M. A. Chory, D. P. Hoffman and C. S. Major, et al. Autonomous Navigation—Where We Are in 1984. Proceeding of the AIAA Guidance and Navigation Symposium. 1984:27~36
    6 James W. Lowrie. Autonomous Navigation Systems Technology Assessment. Proceeding of the AIAA Guidance and Navigation Symposium. 1979:1~12
    7 Hosken R. W, Wertz J. R. Mircrocosm Autonomous Navigation System On Orbit Operation. Proc. of 18th Annual AAS Guidance and Control Conference, Keystone, Colorado, 1995:491~506
    8 C. Elachi. The Critical Role of Communications and Navigation Technologies to the Success of Space Science Enterprise Missions. Keynote Address Descanso International Symposium, 21 September, 1999.
    9 S. Bhaskaran, J. E. Riedel, and S. P. Synnott. Autonomous Optical Navigation for Interplanetary Missions. Proceeding of the Conference on Society of Photo-Optical Instrumentation Engineers (SPIE Proceeding), Denver, CO, 1996:32~43
    10 S. Desai, D. Ham and S. Bhaskaran et al. Autonomous Optical Navigation Technology Validation Report. Deep Space 1 Technology Validation Report—Autonomous Optical Navigation. 2002:1~39
    11 S. Bhaskaran. J. E. Riedel, and S. P. Synnott. Autonomous Nucleus Tracking for Comet/Asteroid Encounters: The STARDUST Example. 1998 IEEE AerospaceConference, Aspen, CO, Mar. 21-28, 1998. Proceedings, Piscataway, NJ, Institute of and Electrical and Eletronics Engineers, 1998, (2):353~365
    12 S. Bhaskaran. J. E. Riedel, and S. P. Synnott. Demonstration of Autonomous Orbit Determination around Small Bodies. Proceedings of the ASS/AIAA Astrodynamics Conference, February 14-17, 1995, Halifox, Nova Scotia, Canada. Advances in the Astronautical Science Series, 1996, 90(2):1297~1308
    13 A. E. Johnson, Y. Cheng and L. H. Matthies. Machine Vision for Autonomous Small Body Navigation. IEEE Aerospace Conference Proceedings. 2000, (7):661~671
    14 A. E. Marini, G. D. Racca and B. H. Foing. SMART-1 Technology Preparation for Future Planetary Missions. Advances in Space Research. 2002, 30(8):1895~1900
    15 J. D. Lafontaine. Autonomous Spacecraft Navigation and Control for Comet Landing. Journal of Guidance, Control and Dynamics. 1992, 15(3):567~576
    16 C. Champetier, P. Regnier and J. D. Lafontaine. Advanced GNC Concepts and Techniques for an Interplantetary Mission. Proceedings of the Annual Rocky Mountain Guidance and Control Conference, Keystone, CO, Feb. 2-6, 1991:433~452
    17 T. Kubota, T. Hashimoto and J. Kawaguchi, et al. An Autonomous Navigation and Guidance System for MUSES-C Asteroid Landing. Acta Astronautica. 2003, 52:125~131
    18 A. E. Johnson, L. H. Matthies. Precise Image-Based Motion Estimation for Autonomous Small Body Exploration. Proceedings of the Fifth International Symposium on Artificial Intelligence. Robotics and Automation in Space, Netherlands, European Space Agency, June 1-3, 1999:627~634
    19 T. Misu, T. Hashimoto and K. Ninomiya. Optical Guidance for Autonomous Landing of Spacecraft. IEEE Transaction on Aerospace and Electronic Systems. 1999, 35(2):459~473
    20 G. Wahba. A Least Squares Estimate of Satellite Attitude. SIAM Review, 1965. 7(3):409
    21林玉荣,邓正隆.基于矢量观测确定飞行器姿态的算法综述.哈尔滨工业大学学报. 2003, 35(1):38~45
    22 M. D. Shuster, S. D. Oh. Three-Axis Attitude Determination from Vector Observation. Journal of Guidance, Control and Dynamics. 1981, 4(1):70~77
    23 M. D. Shuster. A Comment on Fast Three-Axis Attitude Determination using Vector Observation and Inverse Iteration. Journal of the Astronautical Sciences. 1983, 31(4):579~584
    24 F. L. Markley. Attitude Determination from Vector Observation and the Singular Value Decomposition. Journal of the Astronautical Science. 1988, 36(3):245~258
    25 F. L. Markley. Attitude Determination from Vector Observation: A Fast Optimal Matrix Algorithm. Journal of the Astronautical Science. 1993, 41(2):261~280
    26 I. Y. Bar-itzhack, R. R. Harman. Optimized TRIAD Algorithm for Attitude Determination. Journal of Guidance, Control and Dynamics. 1997, 20(1):208~211
    27 M. D. Shuster. A Simple Kalman Filter and Smoother for Spacecraft Attitude. Journal of the Astronautical Science. 1989, 37(1):89~102
    28 I. Y. Bar-itzhack. RQUEST: A Recursive QUEST Algorithm for Sequential Attitude Determination. Journal of Guidance, Control and Dynamics. 1996, 19(5):1034~1038
    29 D. Mortari. Euler-q Algorithm for Attitude Determination from Vector Observations. Journal of Guidance, Control and Dynamics. 1998, 21(2):328~334
    30 E. J. Lefferts, F. L. Markley, M. D. Shuster. Kalman Filtering for Spacecraft Attitude Estimation. Journal of Guidance, Control and Dynamics. 1982, 5(5):417~429
    31 I. Y. Bar-itzhack, J. Oshman. Attitude Determination from Vector Observations : Quaternion Estimation. IEEE Transaction on Aerospace and Electronic Systems. 1985, 21(1):128~135
    32 S. Vathsal. Spacecraft Attitude Determination Using a Second-Order Nonliear Filter. Journal of Guidance, Control and Dynamics. 1987, 10(6):559~566
    33 M. L. Psiaki. Attitude-Determination Filtering via Extended Quaternion Estimation. Journal of Guidance, Control and Dynamics. 2000, 23(2):206~214
    34 F. L. Markley. Attitude Error Representations for Kalman Filtering. Journal of Guidance, Control and Dynamics. 2003, 63(2):311~317
    35 E. Gai, K. Daly, J. Harrison and L. Lemos. Star-Sensor-Based Satellite Attitude/Attitude Rate Estimator. Journal of Guidance, Control and Dynamics. 1985, 8(5):560~565
    36 R. Azor, I. Y. Bar-itzhack and R. R. Harman. Satellite Angular Rate Estimation from Vector Measurements. Journal of Guidance, Control and Dynamics. 1998, 21(3):450~457
    37 A. Crami, Y. Oshman. Vector Observations-Based Gyroless Spacecraft Attitude/Angular Rate Estimation. AIAA Guidance, Navigation and Control Conference and Exhibit, Keystone, Colorado, August 21-24, 2006, AIAA-2006-6597
    38 J. L. Crassidis. F. L. Markley. Predictive Flitering foe Attitude Estimation Without Rate Sensors. Journal of Guidance, Control and Dynamics. 1997, 20(3):522~527
    39 J. L. Crassidis. F. L. Markley. Unscented Filtering for Spacecraft Attitude Estimation. Journal of Guidance, Control and Dynamics. 2003, 26(4):536~542
    40 A. Crami, Y. Oshman. Attitude Estimation from Vector Observations Using a Genetic Algorithm-Embedded Quaternion Particle Filter. Journal of Guidance, Control and Dynamics. 2006, 29(4):879~891
    41 Y. Cheng, J. L. Crassidis. Particle Filtering for Sequential Spacecraft Attitude Estimation. AIAA Guidance, Navigation and Control Conference and Exhibit, Providence, Rhode Island, August 16-19, 2004, AIAA-2004-5337
    42程杨,杨涤,崔祜涛.利用修正罗德里格参数进行飞行器姿态设计.飞行力学. 2002, 20(4):18-22
    43周剑敏,张洪华.基于UKF的深空探测光学自主导航方法.航天控制. 2007, 25(2):41~46
    44 S. H. Truong. A Robust and Self-tuning Kalman Filter for Autonomous Spacecraft Navigation. PhD Dissertation of the School of Engineering and Applied Science of the George Washington University. 2001:1~24
    45袁健,张文霞,隋树林,于镭.基于高阶EKF探测器巡航段自主光学导航方法.中国宇航学会深空探测专业第三次学术会议.西安. 2006, 11:267~273
    46刘国海,施维,李康吉.插值改进EKF算法在组合导航中的应用.仪器仪表学报. 2007, 28(10): 1897~1901
    47 B. D. Tapley and J. G. Peters. Sequential Estimation Algorithm Using a Continuous UDUT Covariance Factorization. Journal of Guidance and Control. 1980, 3(4): 326~331
    48 S. J. Julier, J. K. Uhlmann and H. F. Durrant-whyte. A New Approach for Filtering Nonliear Systems. Proceedings of the American Control Conference,Seattle, Washington. 1995:1628~1632
    49 F Jiancheng, Z Yu. A New Method for the Autonomous Celestial Navigation of Lunar Explorer Based on the Unscented Kalman Filter. Fifth International Symposium on Instrumentation and Control Technology. 2003:690~696
    50 A. E. Wan, V. R. Merwe. The Unscented Kalman Filter for Nonlinear Estimation. Proceedings of Adaptive System for Signal Processing, Communications, and Control Symposium 2000(AS-SPCC), Lake Louise, Canada, 2000:153~158
    51隋树林,姚文龙,赵晓伟.平方根UKF混合滤波在自主光学导航中的应用.青岛科技大学学报(自然科学版). 2007, 28(5):451~454
    52 N. J. Gordon, D. J. Salmond, A. F. M. Smith. A Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation. IEE Proc on Radar and Signal Processing. 1993, 140(2):107-113
    53宋利芳,房建成.基于UPF的航天器自主天文导航方法.航天控制. 2005, 23(6):31~34
    54胡小平.自主导航理论与应用.国防科技大学出版社. 2002:27~28
    55刘林.航天器轨道理论.国防工业出版社. 2000:473~579
    56章仁为.卫星轨道姿态动力学与控制.北京航空航天大学出版社. 1998:145~155
    57 H. Schaub, J. L. Junkins. Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues Parameters. Journal of the Astronautial Science. 1996, 44(1):1~19
    58 M. Idan. Estimation of Rodrigues Parameters from Vector Observations. IEEE Transactions on Aerospace and Electronic Systems. 1996, 32(2):578~585
    59孙军伟.月球探测器自主导航与控制方法研究.哈尔滨工业大学博士论文. 2006:11~12
    60胡小平.自主导航理论与应用.国防科技大学出版社, 2002:18~20
    61 D. G. Tuckness, S. Y. Young. Autonomous Navigation for Lunar Transfer. Journal of Spacecraft and Rockets. 1995, 32(2):279~285
    62 Y. P. Guo. Self-Contained Autonomous Navigation System for Deep Space Missions. Advances in the Astronautical Sciences. 1999, 102(2):1099~1113
    63杨小会.基于天文信息的卫星自主导航.西北工业大学硕士论文. 2006:13~14
    64杨博,房建成,伍小洁.一种利用星敏感器的航天器自主定位方法.中国空间科学技术. 2001, 2(4):26~30
    65李琳琳,孙辉先.基于星敏感器的星光折射卫星自主导航方法研究.系统工程与电子技术. 2004, 26(3):354~357
    66 R. H. Battin. A Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series. 1999:624-626
    67 C. C. Liebe. Accuracy Performance of Star Trackers. IEEE Transaction on Aerospace and Electronic Systems. 2004, 4(6):779~786
    68陈元枝.基于星敏感器的卫星三轴姿态测量方法研究.中国科学院长春光学精密机械及物理研究所博士论文. 2000:32~34
    69 L. Chsussion, S. Elavault. Optical Navigation Performance During Interplanetary Cruise. 17th ISSFD, Moscow, Russia, 2003:1~9
    70徐文明,崔平远,崔祜涛,刘宇飞.深空自主光学导航小行星筛选与规划方法研究.航空学报. 2007, 28(4):891~896
    71 C. C. Liebe. Accuracy Performance of Star Trackers-A Tutorial. IEEE Transaction on Aerospace and Electronic Systems. 2002, 38(2):587~599
    72 R. Doraiswami. A Novel Kalman filter-Based Navigation Using Beacons. IEEE Transactions on Aerospace and Electronic Systems. 1996, 32(2):830-840
    73张辉,袁家虎,刘恩海,郭昌清.星敏感器姿态计算精度的仿真.中国矿业大学学报. 2008, 37(1):112~117
    74刘宇飞,崔平远.深空探测巡航段自主光学导航方案研究.系统仿真学报. 2008, 20(7):1781~1785
    75田宏.影响星敏感器姿态计算精度的因素分析.导弹与航天运载技术. 2004, 272(5):14~17
    76邢光谦.量测系统的能观度和状态估计精度.自动化学报. 1985, 2(11):152~158
    77杨博,房建成,伍小洁,赵建辉.一种航天器天文自主定轨方法.中国惯性技术学报. 2000, 8(3): 33-36
    78宁晓琳,房建成.航天器自主天文导航系统得可观测性及可观测度分析.北京航空航天大学学报. 2005, 31(6):673~677
    79 Z. Chen. Local Obesrvability and its Application to Multiple Measurement Estimation. IEEE Transaction on Industrial Electronics. 1991, 38(6):491~496
    80王志贤.最优状态估计与系统辨识.西北工业大学出版社. 2004:30~36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700