用户名: 密码: 验证码:
空间非合作交会接近姿态控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间技术的发展,卫星姿态控制理论在非合作交会接近领域的研究具备了新的意义与需求。本文以空间攻防为课题背景,结合跟踪星负载轴指向目标星的任务要求,主要研究了卫星大角度机动、姿态跟瞄稳定与挠性抑制和使用新型大力矩大动量姿控执行机构三方面的问题。
     三轴卫星姿态控制本质上要解决的是针对非线性、强耦合模型对象的控制设计问题。在结合实际星体的构型特性后,本文一开始给出了挠性三轴多体卫星动力学模型和分别基于欧拉角、四元数的运动学模型。在此基础上,进行了一系列的方案与算法设计的探索性工作:
     首先,利用Lyapunov控制律设计方法,对传统的类PD四元数反馈姿态大角度机动策略进行两方面的改造。为摆脱对模型前馈的依赖,引入欧拉轴分解方法,将拟欧拉机动法应用到本课题的设计上,对路径优选的特性进行了机理分析。为解决系统局限在原点稳定和机动快速性缺陷,设计提出了一种改进的四元数反馈姿态机动律。给出了稳定性证明与仿真分析。结果表明,后者为本课题背景下设计方案选择的优先选择。
     接着,通过对挠性多体三轴稳定卫星模型的显示处理,基于合理假设,设计提出了姿态跟瞄、挠性抑制的反演滑模控制器,并证明了稳定性。进一步的,为处理三轴解耦问题,结合扩张状态观测器的理论,对控制器进行了改造,完成了对不确定项的跟踪补偿。证明新控制器的稳定性后,导出了其参数整定方案。数值仿真结果达到了任务要求,并吻合了前述理论分析。特别的,改造后的方案在挠性抑制和控制精度上具有显著优势。
     最后,提出了一套组合控制方案,兼顾了改进的四元数反馈机动法与反演滑模+扩张状态观测器方法的过程优点。根据完整任务过程的仿真结果,确立了使用五棱锥型控制力矩陀螺的必要性。分析了执行机构模型与奇异特性,对伪逆加零运动操纵律进行了鲁棒性设计。最终仿真的星体、帆板等的稳定性、稳态性能以及执行机构的输出指标与奇异避免等均达到了任务需求,提升了课题的工程实际意义。
With the development of space technology, research on satellite attitude control theory in the field of non-cooperative rendezvous and tracking has taken on a new significance and needs. Under the background of offensive and defensive space mission and according to the requirement that the load axis of tracking satellite keeping pointing to the targeting satellite, this paper has investigated three problems involved in the topics: Large attitude angle maneuver for satellite, suppression of flexible satellite during target tracking, and using new attitude actuator with large torque and momentum output.
     Three-axis satellite attitude control is essentially to solve the controller design of the nonlinear-coupled model. In light of the characteristics of the actual satellite configuration, this thesis gives the dynamical mode and the kinematical model based on the Euler angle, quaternion for three-axis flexible satellite at the beginning. Founded on that, some pilot works about the design of plan and algorithm have been done:
     Firstly, the traditional quaternion feedback algorithm is extended in two different aspects by using the Lyapunov controller design method. To get rid of the dependence on feed forward of the model, according to the theory of eigenaxis decomposition, the near-eigenaxis method has been applied in the design of this topic, and the principal of the optimal path choice has been analysis. We come up with an improved approach of quaternion feedback algorithm to solve the problems that the stable point confined to the origin and the system is weak in rapid response. The stability proof and simulation analysis has been taken out. The results showed that the latter algorithm is the preferred choice of the design plan based on the context of this topic.
     Secondly, we transform the model into the explicit form, then put forward a so called backstepping sliding mode controller for target tracking and flexible suppression based on some reasonable assumptions. The stability proof of it has been given. Further, in order to deal with the issue of three-axis decoupling, combined with theory of Extended State Observer (ESO), the controller has been reconstructed, to estimate and compensate the uncertainties. After proving the stability, we have derivate the method of parameter setting. Simulation results achieve the mission requirements and with the aforementioned theoretical analysis. In particular, the transformation of the controller has significant advantages on accuracy and flexible suppression.
     Finally, a combination control strategy is proposed to reconcile the advantages of the two methods above. According to the simulation results of the whole mission, the strategy of using five pyramid-type control moment gyroscopes (CMG) is much-needed. For the program, the implementing agencies and the singular characteristics analysis have been done, the pseudo-inverse zero-plus campaign for the robust control law design. All the simulation results, such as the stability and steady-state performance of the satellite and panels, the actuator indicators of output and singular indicators, met the requirements of the mission. This shows that the topic is of great practical significance.
引文
1 G. T. Tsing and R. H. Mahn. Flexible Spacecraft Control Design Using Pole Allocation Technique. AAS 77-1097. 1977: 1-6
    2 P. H. Mak, M. M. Tong, A. B. Jenkin. Dynamics and Control analysis of a Satellite with a Large Flexible Spinning Antenna. AAS 87-482: 935-951
    3 M. S. Siva, N. Venkateswaran, E. Krishna Kumar, etc. Disturbance Compensator using Inverse Dynamics for Attitude Control of Flexible Spacecraft. International Astronautical Congress.1998, Melbourne, Australia
    4 S. Le Ballois and G. Due, H_∞Control of a Satellite Axis: Loop-shaping, Controller Reduction andμ-analysis. Control Engineering Practice, 1996, 4(7): 1001-1007
    5 Sandrine Le Ballols and Gilles Duc. H_∞Control of an Earth Observation Satellite. Journal of Guidance, Control, and Dynamics , 1996, 19(3): 628-635.
    6 Y. Chida, et al., On-orbit attitude control experiments using ETS-VI by H_∞control and two-degree-freedom control. Control Engineering Practice, 1998, 6: 1109-1116
    7 Charng-Shi Wu, Bor-Sen Chen and Ying-Wen Jan, Unified Design for H_2, H_∞and Mixed Control of Spacecraft . Journal of Guidance, Control, and Dynamics, 1999, 22(6): 884-896
    8 Aage Skullestad and James M. Gilbert. H_∞control of a gravity gradient stabilized satellite. Control Engineering Practice, 2000, 8: 975-983.
    9 Long-Life Show, jyh-Ching Juang and Ciann-Dong Yang. Nonlinear H_∞Robust Control for Satellite Large Angle Attitude Maneuvers, Proceedings if the American control Conference, Arlington, VA June 25-27,2001: 1357-1362
    10 Charng-Shi Wu and Bor-Sen Chen. Adaptive Attitude Control of Spacecraft: Mixed H_2 /H_∞Approach. Journal of Guidance, Control, and Dynamics, 2001, 24(4): 755-766
    11 Sae Kyu Nam and Ren Wei Zhang, Fuzzy Multi-Variable Control for Attitude Stabilization of Flexible Spacecraft. IEEE International Conference Processing Systems, Beijing, China, Oct. 28-31, 1997: 257-261
    12 T. Huang, B. N. Agrawal. Neural Network Attitude Control of Flexible Spacecraft. Naval Postgraduate School, Monterey, CA93943, USA, 49th International Astronautical Congress. Sep 28-Oct 2, 1998/Melbourne, Australia, IFA-98-A. 6. 03: 1~9
    13 R. M. Sanner. Adaptive Attitude Control Using Fixed and Dynamically Structured Neural Networks. AIAA Guidance, Navigation and ControlConference, 1996. 7, San Diego, CA, AIAA96-3891: 1~12
    14 Y. Zeng, A. D. Araujo, S. N. Singh. Output Feedback Variable Structure Adaptive Control of a Flexible Spacecraft. Acta Astronautica, 1999, 44(1): 11~22
    15 K. Kumar, K. D. Kumar. Variable Attitude Maneuver Through Tether for a‘Drifting’Twin Satellite System in Elliptic Orbits. Acta Astronautica, 1999, 45(3): 135~142
    16 Y. Q. Wu, X. H. Yu. Variable Structure Control Design for Uncertain Dynamic Systems with Disturbances in Input and Output Channels1. Automatica, 1999, 35 (2): 311~319
    17 A. Matthew, B. Z. Franco, S. Riccardo. Sliding Mode Control of a Large Flexible Space Structure. Control Engineering Practice. August, 2000, 8(8): 861~871
    18 N. Jalili, N. Olgac. Time-Optimal/Sliding Mode Control Implementation for Robust Tracking of Uncertain Flexible Structures. Mechstronics, 1998, 8(1): 121~142
    19 S. S. Ge, T. H. Lee, F. Hong. Variable Structure Maneuvering Control of a Flexible Spacecraft. Proceeding of the American Control Conference. 2001, Arlington: 1599-1604
    20 S.J.Welsh,K.Subbarao.Adaptive Synchronization and Control of Free Flying Robots for Capture of Dynamic Free-Floating Spacecrafts. Astrodynamics Specialist Conference and Exhibit 2004, Providence,Rhode island,AIAA 2004-5298,1~22
    21 R.Kristiansen,P.J.Nicklasson,J.T.Gravdahl. Quaternion-Based Backstepping Control of Relative Attitude in a Spacecraft Formation. 45th IEEE Conference on Decision&Control, San Diego, CA, USA, 2006, 5724-5729
    22 S.L.Gaulocher,J.P.Chretien,C.Pittet. Six-axis Control Design and Controller Switching for Spacecraft Formation Flying. AIAA Guidance,Navigation,and Conference and Exhibit 21-24 August 2006, Keystone,Colorado.AIAA 2006-6583,1~20
    23 J.K.Thienel,J.M.VanEepoel,R.M.Sanner. Accurate State Estimation and Tracking of a Non-Cooperative Target Vehicle. AIAA Guidance, Navigation, and Conference and Exhibit 21-24 August 2006, Keystone, Colorado. AIAA 2006-6802,1~12
    24 Cornick, D.E., Singularity Avoidance Control Laws for Single Gimbal Control Moment Gyros, AIAA79-1698
    25 Roser, X., and Sghedoni, M., Control Moment Gyroscpe(CMG’s) and Their Application in Future Scientific Missions, Proceedings Third International Conference on Spacecraft Guidance, Navigation and Control Systems, ESTEC, Noordwijk, the Netherlands,26-29 November 1996, ESA SP-381
    26 Lappas, V.J., Steyn, W.H., and Underwood, C.I., Experimental Testing of a CMG Cluster for Agile Microsatellites, JBIS, 57:318-324, 2004
    27 Lappas, V.J., Oosthuizen, and Madle P., Design, Analysis and In-orbit performance of the BILSAT-1 Microsatellite Twin Control Moment Gyro Experimental Cluster, AIAA 2004-5246
    28 Suzuki, A., Kurokawa, H., and Kokaji, S., Robust Attitude Control Using A CMG System and An Experiment with A Simulation Platform, IFAC Automatic Control in Aerospace, Ottobrum, Germany 1992
    29 Yevgeny, I.S., Precision Nonlinear Gyromoment Attitude Control of The Large-scale Flexible Spacecrafts, IEEE Control of Oscillations and Chaos, 1997
    30 Mason, A.P., Practicable Gyroelastic Technology, AAS 04-023
    31 Margulies, G., and Aubrun, J.N., Geometric Theory of Single-Gimbal Control Moment Gyro System, Journal of Astronautical Sciences, 26(2):159-191, 1978
    32 Bedrossian, N.S., Paradiso, J., Bergmann, E.V., and Rowell, D., Redundant Single Gimbal Control Moment Gyroscope Singularity Analysis, Journal of Guidance, Control and Dynamics, 13(6):1096-1101, 1990
    33 Cornick, D.E., Singularity Avoidance Control Laws for Single Gimbal Control Moment Gyros, AIAA79-1698
    34 Giulio, A., and Guido, d.M., A Local Optimization Technique for Attitude Motion Tracking Using Control Moment Gyroscopes, AAS 01-106, p.109-123
    35 Giulio, A., and Guido, d.M., A Local Optimization Technique for Attitdue Motion Tracking Using Control Moment Gyroscopes, The Journal of the Astronautical Sciences, 50(2):213-229, 2002
    36 Kurokawa, H., Constrained Steering Law of Pyramid-Type Control Moment Gyros and Ground Tests, Journal of Guidance, Control and Dynamics, 20(3):445-449, 1997
    37 Jacot, A.D., and Donald, J.L., Control Moment Gyros in Attitude Control, Journal of Spacecraft and Rockets, 3(9):13131320, 1966
    38吴忠,吴宏鑫,丑胜武,一类单框架控制力矩陀螺系统奇异的有限性,中国空间科学技术, (4):15-21, 2000
    39吴忠,吴宏鑫,单框架控制力矩陀螺系统的构形分析,航天控制, (1):19-27, 1998
    40张锦江,单框架控制力矩陀螺系统的构型分析和对比研究,中国空间科学技术, (3):52-56, 2003
    41吴忠,吴宏鑫,“和平号”空间站SGCMG系统及其操纵,航天控制, (2):76-80, 1999
    42汤亮,徐世杰,采用单框架控制力矩陀螺群的卫星侧摆机动控制研究,航天控制, 21(82):1-5, 2003
    43吴忠,丑武胜,考虑框架伺服特性时SGCMG系统操纵律设计,北京航空航天大学学报, 30(6):489-492, 2004
    44邵立伟,韩京清,三阶扩张状态观测器的稳定性分析及其应用,信息与控制,37(2):135-139,2008
    45韩京清,一类不确定性对象的扩张状态观测器,控制与决策,10(1):85-88,1995
    46韩京清,从PID到自抗扰控制技术,控制工程,9(3):13-18,2002
    47万晖,自抗扰控制器的稳定性分析及应用,中国科学院系统工程研究所博士论文,2001
    48 M.Krstic,I.Kanellakopoulos,Nonlinear and Adaptive Control Design,New York:John Welay & Sons Inc, 1995
    49乔继红,戴亚平,基于非线性干扰观测器的直升机滑模反演控制,北京理工大学学报,29(3):224-228,2009
    50陈刚,康兴无,航天器相对大角度姿态跟踪非线性控制器设计,宇航学报,30(2):556-559,2009
    51朱良宽,马广富,挠性航天器鲁棒后步滑模姿态跟踪及主动振动控制,控制与决策,23(5):530-534,2008
    52张春朋,林飞,异步电机鲁棒控制器及其Backstepping设计,控制与决策,19(3):267-271,2004
    53 J.Lawton , R.W.Beard , Model Independent Eigenaxis Maneuvers using Quaternion Feedback,Proceedings of the American Control Conference,Arlington,June 25-27,2001
    54 R.Kristiansen , A.Loria , Spacecraft relative rotation tracking without angular velocity measurements,Automatica,45:750-756,2009
    55 R.Kristiansen , J.Nicklasson , Satellite Attitude Control by Quaternion-Based Backstepping,IEEE Transaction on Control Systems Technology,17(1):227-232,2009
    56章仁为,卫星轨道姿态动力学与控制,北京航空航天大学出版社,1998
    57武元新,对偶四元数导航算法与非线性高斯滤波研究,国防科学技术大学博士论文,2005
    58郑敏捷,徐世杰,航天器姿态控制系统的退步控制设计方法,飞行力学,23(4):63-66,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700