用户名: 密码: 验证码:
飞行中昆虫运动参数及翼变形的光学测量和演示
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型飞行器的研究是近年来兴起的一个热门课题,其在军事侦查中的重要作用使其具有很广泛的应用前景。这样,与微型飞行器尺度相近之昆虫的飞行机理研究就成了人们关注的焦点。相关课题已经有了相当深入的研究,但是由于测量条件的复杂多变及昆虫飞行的随意性,到目前为止,关于自由飞行昆虫的运动参数测量的研究还不理想,测量方法的精度都还不是很高。特别是昆虫飞行中翼的柔性效应对其飞行性能的影响还不清楚,部分原因在于飞行中的翼变形的细节没有很好的测量报告。
     本文提出了将投影正弦栅线法用于蜻蜓飞行翅膀翼面变形研究的方案。由计算机生成正弦数字光栅,并通过投影仪投射光栅到试件表面,通过拍摄由于高度调制发生畸变的光栅图像进行测量。设计了一个拍动装置驱动真实的蜻蜓翅膀以与蜻蜓相似的扇翅频率拍动,用投影正弦栅线法对翅膀翼面变形进行测量,用高速CCD摄像机记录原始数据图像,然后用空间载波相移法求解位相信息并用区域相关位相展开方法进行位相展开,最终得到了比较准确的结果,从而验证了投影正弦栅线法并不受蜻蜓翅膀表面光学性质的影响,可以用在蜻蜓翼面变形的测量试验中,从而证明了实验方案的可行性。
     本课题的主要目的是测量更有意义的自由飞行时蜻蜓的翼面变形。但是束缚状态下蜻蜓的扇翅规律更为稳定,因此在试验中用投影正弦栅线法共测量了束缚扇翅、自由直线飞行和自由转弯飞行三种不同的状态。在这部分的数据处理中,采用在位相检测中更适合于本实验的图像原始数据的二维加窗傅立叶变换的方法,配合二维加权最小二乘法位相展开技术,克服了原始数据图像亮度和对比度差的缺点,得到了更为精确的计算结果。同时对束缚扇翅,自由直线飞行,自由转弯飞行三种不同状态的扇翅角,扭转角,弓形变形等运动参数进行了对比分析。
     根据本试验数据处理的需要,设计了投影光栅法三维形状测量软件,其主要完成的功能包括Fourier变换和反Fourier变换、加窗Fourier变换、区域相关位相展开、加权最小二乘法位相展开,并针对蜻蜓翅膀的测量做了相应的优化处理。另外还设计了蜻蜓飞行测量结果显示和分析系统,将测量得到的结果以直观的方式显示出来,并提供了相应的数据分析功能。其主要功能包括蜻蜓翅膀任意截面数据分析,蜻蜓翅膀高度数据的平面拟合、二次曲面拟合和三次曲面拟合。
The research of Micro Aerial Vehicle (MAV) becomes a hotter topic in recent years, because of its importance on the scout for the military, this research area has a very bright future. The size of the MAV is similar with the insects, so many people focused their research on the aerodynamic theory of the insects. There have been many research work on the measurement of the insects' movement parameters, but by now, the research on the free flight insect still can not reach our prospect, and the measurement method which has been used can not obtain a result with high precision. Especially, it is still unknown that what influence the flexible effect have on the flight mechanism of the insect, partially it is because there is not any measurement report about the detail of the wing's deformation in free flight.
    In this thesis, the sine fringes pattern projection method is proposed to be used to mesure the wing's deformation of the dragonfly when it is flying. The digital sine fringe patterns are generated by the computer, and then projected on to the testing object by the projector, and finally the height can be measured by recording the distorted fringe patterns. A simulated flapping model is devised to drive the real dragonfly's wing flapping at about the same frequency with the real dragonfly, and the sine fringe patterns are projected onto the wing to mesure its deformation. Then the Spacial Carrier Phase method is used to calculate the wrapped phase, and the unwrapped phase can be obtained by the region correlation phase unwrapping method. Finally we obtained accurate result. And by doing this, the sine fringe patterns projection method is verified to be used in the measurement of the dragonfly's wing's deformation.
    The purpose of this thesis is to measure the deformation of free-flight dragonfly's wings which is more significative. But the flapping mode is more stable under the restricted condition. So in this experiment, the restricted flapping mode,the direct forward flight and the turning flight were all measured by the sine fringe patterns projection method. In the data processing section, the 2-D windowed Fourier transform method is used to obtain the wrapped phase, and the 2-D weighted Least-Squares phase unwrapping method is used to unwrap the phase. By using these methods, the precise result can be obtained in despite of the bad quality of the original data. Then the flapping angle ,torsional angle and the camber deformation are compared and analysed in the three different flight modes.
    For the need of the data processing in this experiment, a software is devised to calculate the 3-D height distribution by the sine fringe projecting method. Its main function include "Fourier transform", "inverse Fourier transform", "windowed Fourier transform", "region correlation phase unwrapping method, "Weighted Least-squares phase unwrapping method", and optimized the software for the measurement of the dragonfly's wings. A software for the show and analysis of dragonfly's flight is also devised in our work. Its main function include "arbitrary transversal analysis", "complanation of the dragonfly's wing", "second curving surface fif " and "third curving surface fit".
引文
[1] 雷朝亮,荣秀兰,普通昆虫学,中国农业出版社,2003.8
    [2] 庄礼贤,尹协远,马晖扬,流体力学,中国科学技术大学出版社,1999
    [3] Jensen M., Biology and physics of locust flight. Ⅲ. The aerodynamics of locust flight, Phil. Trans. R. Soc. Lond. B, 239, 511-551, 1956
    [4] Weis-Forgh T., Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production, J. Exp. Biol, 59, 169-230, 1973
    [5] Ellington C. P., The aerodynamics of hovering insect flight. Ⅰ. The quasi-steady analysis, Phil. Trans. R. Soc. Lond. B, 305, 1-15, 1984
    [6] Sanjay P. Sane, The aerodynamics of insect flight, J. Exp. Biol, 206, 4191-4208, 2003
    [7] 宋德强,自由飞行昆虫的翅膀变形测最研究,博士学位论文,清华大学,2001
    [8] Bennett, L., Clap and fling aerodynamics-an experimental evaluation, J. Exp. Biol, 69, 261-272, 1977
    [9] Maxworthy, T., Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Ⅰ. Dynamics of the fling, Journal of Fluid Mechanics, 93, 49-63, 1979
    [10] Spedding, G. R. and Maxworthy, T., The generation of circulation and lift in a rigid two dimensional fling, Journal of Fluid Mechanics, 165, 247-272, 1986
    [11] Ellington, C. P., Van Den Berg, Willmott, A. P. and Thomas, L. R., Leading edge vortices in insect flight, Nature, 384, 626-630, 1996
    [12] Willmott, A. P., Ellington, C. P. and Thomas, L. R., Flow visualization and unsteady aerodynamics in the flight of the hawkmoth Manduca sexta, Phil. Trans. R. Soc. Lond. B, 352, 303-316, 1997
    [13] Dickinson, M. H. and Gotz, K. G., Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Exp. Boil, 174, 45-64, 1993
    [14] Dickinson, M. H., Lehmann, F. O. and Sane, S. P., Wing rotation and the aerodynamic basis of Insect flight, Science, 284, 1954-1960, 1999
    [15] James M. B. and Dickinson, M. H., The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight, J. Exp. Boil, 206, 2257-2272, 2003
    [16] Ellington, C. P., The Novel Aerodynamics of Insect Flight: Applications to Micro-Air Vehicles, J. Exp. Boil, 202, 3439-3448, 1999
    [17] Usherwood, J. R. and Ellington, C. P., The aerodynamics of revolving wings Ⅰ. Model hawkmoth wings, J. Exp. Boil, 205, 1547-1564, 2002
    [18] Srygley, R. B. and Thomas, A. L. R., Unconventional lift-generating mechanisms in free-flying butterflies, Nature, 420, 660-664, 2002
    [19] Thomas, A. L. R., Taylor, G. K., Srygley, R. B., Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack, J. Exp. Biol., 207, 4299-4323, 2004
    [20] Smith, M., Wilkin, P. and Williams, M., The advantages of an unsteady panel method in modeling the aerodynamic forces on rigid flapping wings, J. Exp. Biol., 199, 1073-1083, 1996
    [21] Liu, H., Ellington, C. P., Kawachi, K., Van den Berg, C. and Willmott, A. P., A computational fluid dynamic study of hawkmoth hovering, J. Exp. Biol. 201, 461-477, 1998
    [22] Liu, H. and Kawachi, K., A numerical study of insect flight, J. Comput. Physics, 146, 124-156, 1998
    [23] Wang, Z. J., Two dimensional mechanism for insect hovering. Phys. Rev. Lett., 85, 2216-2219, 2000
    [24] Ramamurti, R. and Sandberg, W. C., A three-dimensional computational study of the aerodynamic mechanisms of insect flight, J. Exp. Biol., 205, 1507-1528, 2002
    [25] Sun, M. and Tang, J., Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion, J. Exp. Biol. 205, 55-70, 2002
    [26] 唐剑,昆虫(果蝇)悬停飞行中的高升力机理及能耗的研究,博士学位论文,北京航空航天大学,2001
    [27] Hamdani, H. and Sun, M., Aerodynamic forces and flow structures of an airfoil in some unsteady motions at small Reynolds number, Acta Mechanica, 145, 173-187, 2000
    [28] Hamdani, H. and Sun, M., A study on the mechanism of high-lift generation by an airfoil in unsteady motion at low Reynolds number, Acta Mechanica Sinica, 17, 97-114, 2001
    [29] Zeng, L., Matsumoto, H. and Kawachi, K., Simultaneous measurement of the shape and thickness of a dragonfly wing, Measurement Science and Technology, 7, 1728-1732, 1996
    [30] Zeng, L., Matsumoto, H., Sunada, S., Kawachi, K., Two-dimensional noncontact measurement of the natural frequencies of dragonfly wings using a quadrant position sensor, Opt. Eng., 34, 1226-1231, 1995
    [31] Wootton, R. J., Leading edge section and asymmetric twisting in the wings of flying butterflies (Insecta, Papilionoidea), J. Exp. Biol., 180, 105-117, 1993
    [32] Wootton, R. J.,Support and deformability in insect wings, J. Zool., 193, 447-468, 1981
    [33] Hu, J., Cheng, P. and Xu, B., Measuring the dynamics parameters of dragonfly wing by laser Doppler vibrometer and its analysis, Guangxue dishu/Optical Technique (Chinese), 31, n SUPPL., 443-444+447, 2005
    [34] Dudley R., Biomechanics of flight in neotropical butterflies: morphometrics and kinematics, J. Exp. Bilo., 150, 37-53, 1990
    [35] Zeng, L., Matsumoto, H., Kawachi, K., A fringe shadow method for measuring flapping angle and torsional angle of a dragonfly wing. Meas. Sci. and Tech., 7, 776-781, 1996
    [36] Zeng, L., Hao, Q. and Kawachi, K., A scanning projected line method for measuring a beating bumblebee wing. Opt. Commun., 183, 37-43, 2000
    [37] 宋德强,王浩,曾理江,投影梳状条纹插值法测量蜻蜓的翅膀变形。中国激光,28(5),474-477,2001
    [38] Song, D., Wang, H., Zeng, L., Measuring the camber deformation of a dragonfly wing using projected comb fringe, Rev. Sci. Instru., 72, 2450-2454, 2001
    [39] Willmott, A. P., Ellington, C. P., The mechanics of flight in the hawkmoth Manduca sexta. Ⅰ. Kinematics of hovering and forward flight., J. Exp. Biol., 200, 2705-2722, 1997
    [40] Willmott, A. P., Ellington, C. P., The mechanics of flight in the hawkmoth Manduca sexta. Ⅱ. Aerodynamic consequences of kinematic and morphological variation, J. Exp. Biol., 200, 2723-2745, 1997
    [41] Dudley, R, Srygley, R. B., Flight physiology of neotropical butterflies: Allometry of airspeeds during natural free flight. J. Exp. Biol., 191, 125-139, 2001
    [42] Betts, C. R., The kinematics of heteroptera in free flight. J. Zool. Lond. B, 1, 303-315, 1986
    [43] Baker, P. S., Gewecke, M., Cooter, R. J., The natural flight of the migratory locust, Locusta migratoria L. Ⅲ. Wing-beat frequency, flight speed, and attitude. J. Comp. Phys., 141, 233-237, 1981
    [44] Azuma, A. and Watanabe, T., Flight performance of a dragonfly, J. Exp. Biol., 137, 221-252, 1998
    [45] Dudley, R. and Ellington, C. P., Mechanics of forward flight in bumblebees. Ⅰ. Kinematics and morphology, 148, 19-52, 1990
    [46] Dudley, R. and Ellington, C. P., Mechanics of forward flight in bumblebees. Ⅱ. Quasi-steady lift and power requirements, 148, 53-88, 1990
    [47] Wang, H., Zeng, L., Liu, H. and Yin, C., Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies, J. Exp. Biol., 206, 745-757, 2003
    [48] Wakeling, J. M. and Ellington, C. P., Dragonfly flight. Ⅰ. Gliding flight and steady-state aerodynamic forces, J. Exp. Biol., 200, 543-556, 1997
    [49] Wakeling, J. M. and Ellington, C. P., Dragonfly flight. Ⅱ. Velocities, accelerations and kinematics of flapping flight,, J. Exp. Biol., 200, 557-582, 1997
    [50] Wakeling, J. M. and Ellington, C. P., Dragonfly flight. Ⅲ. Lift and power requirements, J. Exp. Biol., 200, 583-600, 1997
    [51] Fry, S. N., Sayaman, R. and Dickinson, M. H., The aerodynamics of free-flight maneuvers in Drosophila, Science, 300, 495-498, 2003
    [52] Schilstra, C. and Van Hateren, J. H., Blowfly flight and optic flow Ⅰ. Thorax kinematics and flight dynamics, J. Exp. Biol. 202, 1481-1490, 1999
    [53] Schilstra, C. and Van Hateren, J. H., Blowfly flight and optic flow Ⅱ. Head movements during flight, J. Exp. Biol. 202, 1491-1500, 1999
    [54] Kutsch, W. and Schwarz, G., Short Communication: Wireless transmission of muscle potentials during free flight of a locust, J. Exp. Biol., 185, 367-373, 1993
    [55] Dudley, R., Extraordinary flight performance of orchid bees (apidae: Euglossini) hovering in heliox(80%He/20%O_2), J. Exp. Biol., 198, 1065-1070, 1995
    [56] Marden, J. H., Large-scale changes in thermal sensitivity of flight performance during adult maturation in a dragonfly, J. Exp. Biol., 198, 2095-2102, 1995
    [57] Amy, M. L., Simultaneous control of head and thoracic temperature by the green darner dragonfly anax-hunius (Odonata, Aeshnidae), J. Exp. Biol., 198, 2373-2384, 1995
    [58] Amy, M. L., Dependence of flight behavior and heat-production on air-temperature in the gree darner dragonfly anax-hunius (Odonata, Aeshnidae), J. Exp. Biol., 198, 2385-2392, 1995
    [59] Roberts, S. P. and Harrison, J. F., Mechanisms of thermoregulation in flying bees, Amer. Zool., 38, 492-502, 1998
    [60] Casey, T. M., A comparison of mechanical and energetic estimates of flight cost for hovering sphinx moths, J. Exp. Biol., 91, 117-129, 1981
    [61] 张政,光学形状检测技术及其应用,硕士学位论文,中国科学技术大学,1995
    [62] 何世平,高等试验固体力学(光测部分),中国科学技术大学,
    [63] 何世平,工程应用光测技术,中国科学技术大学,1997
    [64] Grimson, W. E. L., Binocular shading and visual surface reconstruction, Computer vision, Graphics & Image Processing, 28, 19-43, 1984
    [65] Takeda, M., Mutoh, K., Fourier transform profilometry for the automatic measurement of 3-D object shapes, Applied Optics, 22 (24), 3977-3982, 1983
    [66] Srinivasan, V., Liu, H. and Halioua, M., Automated phase-measuring profilometry of 3-D diffuse objects, Applied Optics, 23 (18), 3105-3108, 1984
    [67] 王浩,自由飞行昆虫运动参数的测量研究,博士学位论文,清华大学,2002,
    [68] 钱克矛,光学干涉计量中的位相测量方法研究,博士学位论文,中国科学技术大学,2000
    [69] Crane, R., Interference phase measurement, Appl. Opt., 8(3): 538-542, 1969
    [70] Dandliker, R., Heterodyne holographic interferometry, in Progress in Optics, Vol. ⅩⅦ, 1-84, 1980
    [71] Massie, N. A., Real time digital heterodyne interferometry, Appl. Opt., 19(1): 154-160, 1980
    [72] Carre, P., Installation et utilisation du comparateur photoelectrique et interferentiel du Bureau International des Poids et Mesures, Metrologia, 2(1): 13-23, 1966
    [73] Takeda, M., Ina, H. and Kobayashi, S., Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry, J. Opt. Soc. Am., 72 (1), 156-160, 1982
    [74] Takeda, M., Spatial-carrier fringe-pattern analysis and its applications to precision interferometry and profilometry: An overview, Industrial Metrology, 1, 79-99, 1990
    [75] Ichioka, Y. and Inuiya., M., Direct phase detecting system, Appl. Opt., 11(7), 1507-1514, 1972
    [76] Merts, L., Real-time fringe-pattern analysis, Appl. Opt., 22(10), 1535-1539, 1983
    [77] Shough. D. M., Kwon, O. Y. and Leary, D. F., High-speed interferometric measurement of aerodynamic phenomena, Proc. SPIE, Vol. 1221, 394-403, 1990
    [78] Toyooka, S. and Tominaga, M., Spatial fringe scanning for optical phase measurement, Opt. Comm., 51(2), 68-70, 1984
    [79] Ransom, P. L. and Kokal, J. V., Interferogram analysis by a modified sinusoid fitting technique, Appl. Opt., 25(22), 4199-4204, 1986
    [80] Takeda, M. and Motoh, K., Fourier transform profilometry for the automatic measurement of 3-D object shapes, Appl. Opt., 22(24), 3977-3982, 1993
    [81] 翁嘉文,钟金钢,加窗傅立叶变换在三维形貌测量中的应用,光子学报,32(8),993-996,2003
    [82] 翁嘉文,钟金钢,伸缩窗口傅立叶变换在三维形貌测量中的应用,光学学报,24(6),725-729,2004
    [83] Qian, K., Windowed Fourier transform for fringe pattem analysis,, Appl. Opt., 43 (13), 2695-2702, 2004
    [84] Qian, K., Windowed Fourier transfer method for demodulation of carrier fringes, Opt. Eng., 43(7), 1472-1473, 2004
    [85] Qian, K., Soon, S. H. and Asundi, A., Phase-shifting windowed Fourier ridges for determination of phase derivatives, Opt. Lett., 28(18), 1657-1659, 2003
    [86] Qian, K., Windowed Fourier Tansform for fringe pattern analysis: addendum., Appl. Opt., 43(17), 3472-3473, 2004
    [87] Goodman, J.W.,詹达三,董经武,顾本源译,傅里叶光学导论,科学出版社,1979
    [88] Qian, K. and Soon, S. H., Two-dimensional windowed Fourier frames for noise reduction in fringe pattern analysis, Opt. Eng., 44(7), 075601-(1-9), 2005
    [89] Ghiglia, D. C., Gary, A. M and Romero, L. A., Cellular-automata method for phase unwrapping, J. Opt. Soc. Am. A, 4(1), 267-280, 1987
    [90] Huntley, J. M., Noise-immune phase unwrapping algorithm, Appl. Opt., 28(15), 3268-3270, 1989
    [91] Cusack, R., Huntley, J. M. And Goldrein, H. T., Improved noise-immune phase-unwrapping algorithm, Appl. Opt., 34(5), 781-789, 1995
    [92] Nakadate, S. and Saito, H., Fringe scanning specle-pattern interferometry, Appl. Opt., 24(14), 2172-2180, 1985
    [93] Robinson, D. W. And Williams, D. C., Digital phase stepping speckle interferometry, Opt. Comm., 57(1), 26-30, 1986
    [94] 苏显渝等,基于傅里叶交换轮廓术方法的复杂物体三维面型测量,光学学报,18(9),1228-1233,1998
    [95] Bone, D. J., Fourier fringe analysis: the two-dimensional phase unwrapping problem, Appl. Opt., 30(25), 3627-3632, 1991
    [96] 蒋震宇,缪泓,冯传玉,伍小平,“基于广度优先搜索的位相展开算法”,实验力学,15(3),312-316,1999
    [97] Girloff, J. J., Phase unwrapping by regions, Proc. SPIE, 818, 2-9, 1987
    [98] Tower, D. P., Judge, T. R. and Bryanston-Cross, P. J., Automatic interferogram analysis techniques applied to quasi-heterodyne holography and ESPI, Optics and Lasers in Engineering, 14(4/5), 239-281, 1991
    [99] Schorner, J. et al, New approaches in interpreting holographic images, Optics and Lasers in Engineering, 14(4/5), 283-292, 1991
    [100] Collaro, A., Franceschetti, G., Palmieri, F. and Ferreiro, M. S., Phase unwrapping by means of genetic algorithms, J. Opt. Soc. Am. A, 15(2), 407-418, 1998
    [101] Takeda, M. And Goodman, J. W., Neural networks for computation: number representation and programming complexity, Appl. Opt., 25(18), 3033-3046, 1986
    [102] Ghiglia, D. C. and Romero, L. A., Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods, J. Opt. Soc. Am. A, 11(1), 107-117, 1994
    [103] Ghiglia, D. C. and Romero, L. A., Minimun L~P-norm two-dimensional phase unwrapping, J. Opt. Soc. Am. A, 13(10), 1999-2013, 1996
    [104] Kaufmann, G. H. and Galizzi, G. E., Unwrapping of electronic speckle pattern interferometry phase maps: evaluation of an iterative weighted algorithm, Opt. Eng., 37(2), 622-628, 1998
    [105] Kaufmann, G. H., Galizzi, G. E., Evaluation of a preconditioned conjugated-gradient algorithm for weighted least-squares unwrapping of digital speckles-pattern interferometry phase maps, Appl. Opt., 37(14), 3076-3084, 1998
    [106] Pritt, M. D., Phase unwrapping by means of multigrid techniques for interferometric SAR, IEEE Trans. on Geosicience and remote sensing, 34(3), 728-738, 1996
    [107] Davidson, G. W. and Bamler, R., Multiresolution phase unwrapping for SAR interferometry, IEEE Trans. on Geosceince and remote sensing, 37(1), 163-174, 1999
    [108] Zebker, H. A and Lu. Y., Phase unwrapping algorithms for radar interferometry: residue-cut, least-squares, and synthesis algorithms, J. Opt. Soc. Am. A, 15(3), 586-598, 1998
    [109] Fornaro. G. and Sansosti, E., A two dimension region growing least squares phase unwrapping algorithm for interferometric SAR processing, IEEE Trans. on Geoscience and Remote sensing, 37(5), 2215-2226, 1999
    [110] Hung, K. M. and Yamada, T., Phase unwrapping by regions using least-squares approach, Opt. Eng., 37(11), 2965-2970, 1998
    [111] Lee, J., Papathanassiou, K. P. and Ainsworth, T. L., A new technique for noise filtering of SAR interferometric phase images, IEEE Trans. on Geoscience and remote sensing, 36(5), 1456-1465, 1998
    [112] Fornaro, G., Franceschetti, G. and Lanari, R., Interferometric SAR phase unwrapping using Green's formulation, IEEE Transactions on Geoscience and Remote sensing, 34(3), 720-727, 1996
    [113] Fornaro, G., Franceschetti, G., Lanari, R. and Sansotsti, E., Robust phase-unwrapping techniques: a comparison, J. Opt. Soc. Am. A, 13(12),: 2355-2366, 1996
    [114] Marroquin, J. L. and Rivera, M., Quadratic regularization functionals for phase unwrapping, J. Opt. Soc. Am. A, 12(11), 2393-2400, 1995
    [115] Guerriero, L., Nico, G., Pasquariello, G. and Stramaglia, S., New regularization scheme for phase unwrapping, Appl. Opt., 37(14), 3053-3058, 1998
    [116] Stramaglia, Guerriero, L., Pasquariello, G. and Veneziani, Nicola, Mean-field annealing for phase unwrapping, Appl. Opt., 38(8), 1377-1383, 1999
    [117] 蒋震字,缪泓,张青川,伍小平,调制度分析在等步长相移法位相展开中的应用,光学学报,24(8),1032-1038,2004
    [118] Qian, K., Wu, X., Modulation analysis based weighted least-squares approach for phase unwrapping, Acta. Photonica Sinica, 30 (5), 585-588, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700