用户名: 密码: 验证码:
甘肃小陇山森林生物量及碳储量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球碳循环是全球气候变化研究的核心问题之一,森林生态系统碳循环是全球碳循环的重要组成部分,目前在全球碳循环的研究中还存在很大的不确定性,这种不确定性同样存在于森林生态系统碳循环的研究中,尤其表现在对区域森林生态系统碳库大小及其与大气CO2交换通量的估计上。因此准确估计区域森林生态系统碳库的大小及其相关碳库之间的交换通量一直是森林生态系统碳循环研究中的热点与难点。
     本文以甘肃小陇山地区锐齿栎,油松,栓皮栎,杨、桦,落叶松,华山松,云、冷杉,其他阔叶混交等8类林分为研究对象,重点在这些林分的生物量估算,林分乔木层生物量相容性模型建立,林分乔木层主要建群树种、灌木层、草本层各器官含碳率和枯落物含碳率测定,区域森林生态系统储碳密度、碳储量估算及现实碳库的空间分布特征等方面进行了研究,旨在探索基于森林资源调查数据来估算区域森林生态系统碳库的合适方法,期待能够为我国区域尺度的森林生态系统碳汇功能研究及中国生态地理区域森林生态系统碳循环研究提供部分基础研究数据,为在全球气候变化的条件下中国区域生态环境建设、制定区域森林生态系统碳汇管理对策以及为中国政府参与世界“碳汇贸易”谈判提供依据和参考。经过几年的大量研究,在以下方面取得一些进展。
     1.生物量估算
     (1)8类林分的单木生物量(W)与胸径(D)、与胸径一树高(D2H)之间均存在着紧密的相关关系。利用11种数学模型拟合了小陇山8类林分的单木生物量与胸径、树高之间的相关关系回归方程,结果表明均具有显著水平,其中以Power(幂回归)模型拟合的效果最好。
     (2)小陇山林区锐齿栎,油松,栓皮栎,杨、桦,落叶松,华山松,云、冷杉,其他阔叶混交等8类林分的乔木层生物量依次为:81.8388,60.6976,79.7980,75.3828,67.3706,67.9786,94.3733,96.5533 t hm-2;灌木层生物量依次为:1.5126,0.9884,1.2504,1.3746,1.3618,1.3691,1.3746,1.5944 t hm-2;草本层生物量依次为:0.1208,0.2266,0.1738,0.2043,0.2658,0.1968,0.2043,0.1393 t hm-2;林分生物量依次为:84.0472,62.4424,81.7747,77.4367,68.9982,70.0695,
     96.4865,98.7235 t hm-2。
     2.基于森林资源清查资料的林分乔木层生物量预测模型的建立
     (1)图形分析、相关分析与回归分析结果表明,甘肃小陇山8类林分各组分生物量(W)与林分活立木蓄积(V)之间存在极显著的线性相关关系。采用相关指数、相关系数、剩余标准差、平均相对误差、预估精度等5个评价指标,综合比较分析了多个回归模型的拟合结果,认为基于森林资源清查统计数据对甘肃小陇山各类林分各组分生物量估计W~V的最优模型应为W=a+bV的形式,并从理论上证明了这种建立在林分水平上的生物量线性估计模型可直接推广应用到区域尺度。
     (2)从估计效果来看,W~V的相容性线性模型可用于直接利用标准地资料、林分蓄积量等资料来推算林分乔木层生物量,从而避免传统生物量测定方式对森林资源的破坏。因此,这种方法上的改进具有重要的理论意义和较高的实用价值。
     (3)研究表明,小陇山8类林分的平均净生长量(△W总)与林分总生物量(W总)之间具有较好的相关性,并利用这种相关关系建立了甘肃小陇山8类林分△W总~W总生物量的多种数学模型。最优模型显示,不同林分类型的平均净增长量与林分总生物量之间的相关关系是不同的,锐齿栎林分,油松林分,落叶松林分,云、冷杉林分呈幂函数相关;栓皮栎林分,杨、桦林分,华山松林分呈线性相关;其他阔叶混交林分呈指数相关。
     与前人的研究比较,结果表明,不同地区的各类林分的平均净增长量与林分总生物量之间的相关关系不尽相同。
     3.含碳率测定
     (1)采用高精度的元素分析方法(干烧法)对甘肃小陇山8类林分不同组分(干、枝、叶、皮、根)的含碳率进行了分析测定,首次取得了甘肃小陇山地区13种乔木、14种灌木、10种草本植物的不同器官和7种林分的枯落物有机含碳率的精确测定值,并在林木个体及林分两个层次上系统地分析了这些树种各不同组分含碳率的变化特征。
     (2)小陇山主要林分类型的13种乔木树种的器官平均含碳率分别为锐齿栎0.4653,油松0.5049,栓皮栎0.4755,白桦0.4985,红桦0.4889,日本落叶松0.4963,华山松0.4962,云杉0.4906,秦岭冷杉0.4907,水曲柳0.4647,大叶椋子木0.4501,五角枫0.4689,辽东栎0.4632;14种灌木的器官平均含碳率为0.4446,10种草本的器官平均含碳率为0.3270,7种林分枯落物平均含碳率为0.4221;8类林分的乔木层平均含碳率分别为锐齿栎0.4676,油松0.4976,栓皮栎0.4681,杨、桦0.4837,落叶松0.4903,华山松0.4926,云、冷杉0.4902,其他阔叶混交0.4682;5种针叶树林分平均含碳率为0.4927,8种阔叶树种林分平均含碳率为0.4719。
     (3)在本研究对象范围内,乔木树种种内各组分的含碳率变异系数在1.55%-4.91%之间;组分含碳率的种间变异系数在1.75%-6.59%之间。阔叶树的平均含碳率值大多接近0.47,针叶树种的平均含碳率接近0.49,相对目前国内外普遍应用的两种森林植被生物量含碳率换算系数0.45与0.5,以0.48作为转换系数来估算全部森林乔木层的碳储量,估算结果可能更优。更精确的估算应该是依据不同区域不同森林类型而采用不同的含碳率转换系数。
     (4)不同树种各组分含碳率高低随机分布,并不呈现出某种规律性的变化,其大小完全由各树种自身的特性决定。但从树种的形态学特性比较可以看出,针叶树种各组分的含碳率普遍高于阔叶树种,所有针叶树种各组分的平均含碳率均高于阔叶树、灌木树种和草本。针叶树种组分碳的平均含碳率普遍高于阔叶树种平均高出1.47%-3.40%,相应的针叶林分的平均含碳率也高于阔叶林。各树种组分的平均含碳率值(算术平均)与林分的平均含碳率值(按生物量加权平均)非常接近,在本研究所涉及的13个乔木树种中其差值不超过1.81%。
     (5)与前人研究比较,小陇山地区森林植被的无论是树种还是相应林分的含碳率均普遍低于华北地区。由此可以得出结论,生长在不同区域的同一树种各组分的含碳率不尽相同,组成的林分含碳率也存在差异。因此,森林碳储量的估算精度与估算单元的区域尺度密切相关,建立在小区域尺度或区域森林生态系统尺度上的估算精度较高,树种的含碳率可能与树木的生长情况有关,即含碳率与影响林木生长的纬度、海拔、降水等气候条件相关。
     4.碳储量估算
     (1)甘肃小陇山8类林分按面积加权的森林植被层总储碳密度由大到小依次为:云、冷杉46.7342 t hm-2,其他阔叶混交46.1454 t hm-2,锐齿栎39.2335 t hm-2,栓皮栎38.1974 t hm-2,杨、桦37.3032 t hm-2,华山松34.4068 t hm-2,落叶松33.7259thm-2,油松30.9395 t hm-2。
     (2)小陇山8类林分森林植被层总碳储量由大到小依次分别为:锐齿栎7.0054Tg,其他阔叶混交3.5959 Tg,油松1.4466 Tg,栓皮栎0.6492 Tg,杨、桦0.2642 Tg,落叶松0.2105 Tg,华山松0.1656 Tg,云、冷杉0.0208 Tg。小陇山林区各林分森林植被层平均储碳密度为39.4254 t hm-2,总碳储量为1 3.3579 Tg。
     (3)研究结果表明,甘肃小陇山8类林分乔木层的平均储碳密度值与我国及世界各地森林平均储碳密度的一些估计值相比基本接近。
     5.创新点
     (1)该研究填补了我国秦岭西段森林生物量和碳储量的研究空白。
     (2)该研究为中国西部森林生态系统碳循环研究提供了部分基础研究数据。
     (3)该研究在运用森林资源清查资料估计小陇山林分各组分生物量方面取得了创新性进展,提出形如W=a+bV的区域生物量相容性线性估计模型具有很高的精度,并从理论上证明了这种建立在林分水平上的估计模型可以直接推广应用到区域尺度,对于区域生态系统生物量和碳储量研究具有重要参考价值。
Global carbon cycle is one of the core issues in the researches of global climate changes and the carbon cycle in forest ecosystem is an important part of the global carbon cycle. In present studies, there are still a lot of uncertainties in the studies of global carbon cycle and these uncertainties also exist in the estimats of the size of the regional forest ecosystem carbon storage and the exchange flux between the forest ecosystem and CO_2. Therefore to estimate the gross of carbon storage in regional forest ecosystem and its exchange flux with other carbon storages, all the while, is the hot and difficult problem.
    This paper does investigations on eight forest stands of Xiaolong Mountains, Gansu Province: Quercus aliena var. acuteserrata, Pinus tabulaeformis, Quercus variabilis, Populus sp. and Betula sp., Larix sp., Pinus armandii, Picea sp. and Abies sp., and other broad leaved mixed forest. It focuses on stand biomass estimate, foundation of tree layer biomass model with compatibility, organic carbon ratio measures of tree layer, shrub layer and herb layer, litter fall carbon ratio measures, the evaluation of the density and amount about regional forest ecosystem carbon storage and the allocation. It is aimed to find an appropriate way to exactly estimate the size of carbon storage of the regional forest ecosystem basing on the forest resource inventory data in the hope of supplying some data for researches on carbon sequestration functions of the regional forest ecosystem and carbon circle of the ecological geographic regional forest ecosystem in China, and providing the foundation and reference for the regional environment construction, the regional forest ecosystem carbon storage management policy and the negotiation of the carbon storage trade that China government participated in. After years of extensive studies,
    we reached the following conclusings:
    Part 1 Biomass estimates
    (1) In eight stands in Xiaolong Mountains, there are close relationship among single wood biomass (W) and trunk diameter (D), and diameter-height (D~2H). With eleven mathematical models, we simulate regression equations about W-D-D~2H correlations and results show that the correlations are prominent, and the simulative effect of Power equation is best.
    (2) In the sequence of the eight stands: Quercus aliena var. acuteserrata, Pinus tabulaeformis, Quercus variabilis, Populus sp. and Betula sp., Larix sp., Pinus armandii, Picea sp. and Abies sp., and other broad leaved mixed forest:
    Their tree layer biomass are: 81.8388, 60.6976, 79.7980, 75.3828, 67.3706, 67.9786, 94.3733, 96.5533 t hm~(-2) separately.
    Their shrub layer biomass are: 1.5126, 0.9884, 1.2504, 1.3746, 1.3618, 1.3691, 1.3746, 1.59441 hm~(-2) separately.
    Their herb layer biomass are: 0.1208, 0.2266, 0.1738, 0.2043, 0.2658, 0.196 8, 0.2043, 0.1393 t hm~(-2) separately.
    Their stand biomass are: 84.0472,62.4424, 81.7747,77.4367,68.9982,70.0695, 96.4865, 98.7235 t hm~(-2) separately.
    Part 2 Foundation of Tree Layer Biomass Prediction Model Based on Forest Resource Inventory Data
    (1) Graphic Analysis, Correlative Analysis and Regression Analysis about eight stands in Xiaolong Mountains show that there exists a prominent linear relationship between species wood biomass (W) and living forest volume (V). With five evaluation indexes, i.e. Correlation index, Correlation coefficient, Residual standard deviation, Average fractional error and Prediction accuracy, by the comprehensive comparsion of the simulative results about regression equations, and basing on forest resource
    inventory statistical data for forest biomass estimates (W~V), we build that the optimal model in the form of W=a+bV, and we prove theoretically that the forest biomass linear estimation model can be directly applied to the regional scale.
    (2) As far as estimate effects as concerned, the linear models with compatibility of W~V can be used to calculate tree layer biomass by using the sample plots data, stand volume and other information directly, so as to avoid the disadvantage about the traditional methods which cause the destruction of forest resources. Therefore this improved approach is of higher theoretical and practical value.
    (3) Researches of the eight stands in Xiaolong Mountains show that there is a better correlation between average net growth (△W_(total)) and overall biomass (W_(total)).
    We make use of this relationship to build several mathematical models about eight stands for △W_(total) ~ W_(total) , which best model shows that correlations between average
    net increase in the total amount of forest biomass in different stand are different. Those of Quercus aliena var. acuteserrata, Pinus tabulaefonnis, Larix sp., Picea sp. and Abies sp., are Power model related. Those of Quercus variabilis, Populus sp. and Betula sp., Pinus armandii, are linear model related. And other broad leaved mixed forest are Exponential model related.
    Compared with previous researches, results show that, the correlativity between average stand net growth and volume of stand biomass in different area is different.
    Part 3 Measures of Carbon content Rate
    (1) Using high-precision element analytical method (Dry Combustion method) to measure the carbon content rate of different components (stems, branches, leaves, barks, roots) of eight stands of Xiaolong Mountains, we first acquire accurate value of organic carbon content rate of 13 tree species, 14 shrub species, 10 herbaceous plants, and the forest litters of 7 stand types. We also systematically analyze the changing characteristics of carbon content rate of individual tree and stand.
    (2) The average organic carbon content rate of 13 tree species, the main stand
    types of Xiaolong Mountains, separately, Quercus aliena var. acuteserrata, 0.4653; Pinus tabulaeformis, 0.5049; Quercus variabilis, 0.4755; Betula platyphylla, 0.4985; Betula albo-sinensis, 0.4889; Larix leptolepis, 0.4963; Pinus armandii, 0.4962; Picea asperata, 0.4906; Abies chensiensis, 0.4907; Fraxinus mandschurica, 0.4647; Cornus macrophylla, 0.4501, Acer mono, 0.4689; Quercus liaotungensis, 0.4632. The average organic carbon content rate of 14 shrubs is 0.4446. The average organic carbon content rate of 10 herb plants is 0.3270. The average carbon content rate of litter fall of 7 stands is 0.4221. The average carbon content rate of tree layer of 8 stands separately, Quercus aliena var. acuteserrata, 0.4676; Pinus tabulaeformis, 0.4976; Quercus variabilis, 0.4681; Populus sp. and Betula sp., 0.4837; Larix sp., 0.4903; Pinus armandii, 0.4926, Picea sp. and Abies sp., 0.4902; and other broad leaved mixed forest, 0.4682; The average carbon content rate of 5 coniferous forests is 0.4927. The average carbon content rate of broad leaved forests of 8 stands is 0.4719.
    (3) For the objects studied in this article, the variation coefficient of carbon content rate of components is within 1.55%~4.91%. The variation coefficient between species is within 1.75%~6.59%. The average carbon content rate of broad leaved forest is close to 0.47. The average carbon content rate of coniferous forest is close to 0.49. Compared to domestic and universal application of the two types forest biomass conversion factor of carbon content rate, 0.45 and 0.5, using 0.48 as conversion coefficients to estimate the total forest tree layer of carbon storage may make estimate result in better effects. for more accurate, we should adopt corresponding conversion coefficients of carbon content rate according to different region and different forest style.
    (4) Carbon content rates of different tree species, at random distribution, do not show regular changing orderliness and are determined by the characteristics of the trees characters. Judged from the morphological characteristics of the species, component carbon content rate of coniferous forest is higher than that of broad leaved forest, shrub forest and herbaceous plants. The average carbon content rate of conifer species composition is generally in the range between 1.47% and 3.40%, higher than that of broad leaved forest. Coniferous forest corresponding rate is also higher than
    the average carbon content rate of broad leaved forest. The average carbon content rate of species (arithmetic mean) and that of stands, (by weighted average of biomass volume) is very close. In the 13 tree species in this research, the margin does not exceed 1.81%.
    (5) Compared with previous researches, in forest vegetation of Xiaolong Mountains, the carbon content rate of species and stands both are lower than those in North China. We may conclude that there exists different carbon content rate of the same species in different areas. There are also differences in the carbon content rate within the same stand. The estimation accuracy of forest carbon storage is closely related to estimation of the regional scale module. Estimation accuracy based on Regional scale or regional forest ecosystems scale is better. Carbon content rate of tree species may be related with the growth state, i.e. carbon content rate may be related with latitude, altitude, rainfall and other climate-related conditions, all of which affect tree growth.
    Part 4 Carbon Storage Estimates
    (1) The total carbon density of forest vegetation about the eight types in Xiaolong mountains weighted by the area in sequence: Picea sp. and Abies sp., 46.7342 t hm~(-2) ; other broad leaved mixed forest, 46.1454 t hm~(-2) . Quercus aliena var. acuteserrata, 39.2335 t hm~(-2); Quercus variabilis, 38.1974 t hm~(-2); Populus sp. and Betula sp., 37.3032 t hm~(-2). Pinus armandii, 34.4068 t hm~(-2). Larix sp., 33.7259 t hm~(-2); Pinus tabulaeformis, 30.9395 t hm~(-2).
    (2) Carbon storage of forest vegetation in Xiaolong mountains weighted by the the area in sequence: Quercus aliena var. acuteserrata, 7.0054 Tg, other broad leaved mixed forest, 3.5959 Tg; Pinus tabulaeformis, 1.4466 Tg; Quercus variabilis, 0.6492 Tg; Populus sp. and Betula sp., 0.2642 Tg. Larix sp., 0.2105 Tg; Pinus armandii, 0.1656 Tg; Picea sp. and Abies sp., 0.0208 Tg. The density of carbon storage of forest vegetation in each stand is 39.4254 t hm~(-2). The total carbon storage is 13.3579 Tg.
    (3) Research results show that, the average density of carbon storage in tree layer
    of 8 stands in Xiaolong Mountains is close to the estimated carbon density of other forests in China and in the world.
    Part 5 Highlights
    (1) This dissertation filled the research vacancy on forest biomass and carbon storage of western Qinling Mountain in China.
    (2) This dissertation provided some basic data for research on carbon cycle of forest ecosystem in west of China.
    (3) This dissertation made an innovative progress in estimating the forest stands biomass of Xiaolong Mountains with forest resource inventory data, found linear model with regional biomass compatibility in the form of W = a + bV with high accuracy, and we has proved from theory that the model W = a + bV can be directly applied to the regional scale and it has important reference value for the biomass and carbon storage study about regional ecosystem.
引文
1.《甘肃森林》编辑委员会.甘肃森林[M].兰州:甘肃省林业厅,1998.
    2.安定国.小陇山地区高等植物志[M].兰州:甘肃民族出版社,1995.
    3.曹昀,黄兆辉,陈学林.小陇山稀有濒危、特有植物的多样性及其保护[J].甘肃科技,2003,19(4):77~79.
    4.陈存根,龚立群,彭鸿,等.秦岭锐齿栎林的生物量和生产力[J].西北林学院学报,1996,11(增刊):103-114.
    5.陈灵芝,任继凯,鲍显诚.北京西山人工油松林群落学特征及生物量的研究[J].植物生态学与地植物学报,1984,8(3):173~181.
    6.陈隆勋,朱文琴等.中国近45年来气候变化的研究[J].气象学报,1998,56(3):257~271.
    7.陈庆强等.土壤碳循环研究进展[J].地球科学进展,1998,13(6):555~563.
    8.陈遐林.华北主要森林类型的碳汇功能研究[D].北京:北京林业大学,2003.
    9.党承林,吴兆录,王崇云等.云南中甸长苞冷杉群落的生物量和净生产量研究[J].云南大学学报(自然科学版),1994,16(3):214~219.
    10.党承林,吴兆录.黄毛青冈群落的生物量研究[J].云南大学学报(自然科学版),1994,16(3):205-208.
    11.董鸣.陆地生物群落调查观测与分析[M].北京:中国标准出版社,1997.
    12.方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967~973.
    13.方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497~508.
    14.方精云,刘国华,徐嵩龄.中国陆地生态系统碳库[A].见:王如松,方精云,高林,冯宗炜编.现代生态学热点问题研究[C].北京:中国科技出版社,1996.251~277.
    15.方精云,朴世龙,赵淑清.CO_2失汇与北半球中高纬度陆地生态系统的碳汇[J].植物生态学报,2001,25(5):594~602.
    16.方精云,位梦华.北极陆地生态系统的碳循环与全球温暖化[J].环境科学学报,1998,18(2):113~121.
    17.方精云.中国森林生产力及其对全球气候变化的响应[J].植物生态学报,2000,24(5):513~517.
    18.冯志立,郑征,唐建维等.西双版纳白背桐群落生物量研究[J].生态学杂志,2005,24(3):238~242.
    19.冯仲科,罗旭,石丽萍.森林生物量研究的若干问题及完善途径[J].世界林业研究,2005,18(3):25~28.
    20.冯仲科.精准林业[M].北京:中国林业出版社,2002.
    21.冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127~134.
    22.冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.
    23.傅立国.中国珍稀濒危植物[M].上海:上海教育出版社,1989.
    24.傅志军.太白山红桦林的群落学特征及生物量的研究[J].延安大学学报(自然科学版),1994,13(2):37~40.
    25.甘肃省林业勘察设计研究院.甘肃省小陇山林业实验局森林资源规划设计调查报告暨林业经营方案[R].兰州:甘肃省林业勘察设计研究院,1996.
    26.甘肃小陇山林业实验局.小陇山林业实验局资源优势.http://www.xlsty.com/about/youshi.asp 2005.5.9.
    27.关玉秀等.油松林生态系统的研究(Ⅱ)河北承德与山西太岳油松林生产力的比较[J].北京林业大学学报,1986,(1):1~10.
    28.国家环保局情报所.关于全球气候变化的论争[内部资料](编号:9101),1991.
    29.杭州大学化学系分析化学教研室编.分析化学手册(第二分册:化学分析)[M].北京:化学工业出版社,1982.
    30.郝占庆,王力华.辽东山区主要森林类型林地土壤涵蓄水性能的研究[J].应用生态学报,1998,9(3):237~241.
    31.贺东北,骆期邦,曾伟生.立木生物量线性联立模型研究[J].浙江林学院学报,1998,15(3):298~303.
    32.贺庆棠.森林对地气系统碳素循环的影响[J].北京林业大学学报,1993,15(3):132~136.
    33.黄成林,赵昌恒,傅松玲等.安徽休宁倭竹水分生理及生物量的研究[J].水土保持学报,2005,19(1):188~191.
    34.黄良文.统计学原理[M],北京:中国统计出版社,2000.
    35.蒋高明.陆地生态系统净第一性生产力对全球变化的响应[J].植物资源与环境,1995,4(4):53~49.
    36.蒋宗垲.香叶树人工林生长及生物生产力[J].福建林学院学报,2005,25(3):206~210.
    37.康惠宁,等.中国森林C汇功能基本估计[J].应用生态学报,1996,7(3):230~234.
    38.亢新刚.森林资源经营管理[M].北京:中国林业出版社,2001.
    39.李钢铁,张密柱,张补在等.梭梭林生物量研究[J].内蒙古林学院学报(自然科学版),1995,17(2):35~43.
    40.李海涛,杨柳春,严茂超等.鸡公山自然保护区森林生物量动态模拟及其宏观价值评估[J].资源科学,2005,27(4):154~159.
    41.李铭红,于明坚,陈启瑺,等.青冈常绿阔叶林的碳素动态[J].生态学报,1996,16(6):645~651.
    42.李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究[J].森林生态系统研究(试刊),1981.34~50.
    43.李意德,等.我国热带天然林植被C贮存量的估算[J].林业科学研究,1999,11(2):156~162.
    44.李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林群落生产和二氧化碳同化净增量的初步研究[J].植物生态学报,1998,22(2):127~134.
    45.廖军,王新根.森林凋落量研究概述[J].江西林业科技,2000,1:31~34.
    46.林德喜,罗水发,高小坤.引种的尾叶桉林生物量的动态特征研究[J].福建林学院学报,2003,23(3):261~265.
    47.林开敏,俞新妥,何智英.不同密度杉木林分生物量结构与土壤肥力差异研究[J].林业科学,1996,32(5):385~392.
    48.林益明,林鹏,叶勇.绿竹种群生物量结构研究[J].竹子研究汇刊,1998,17(2):9~13.
    49.刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733~740.
    50.刘世荣,徐德应,王兵.气候变化对中国森林生产力的影响Ⅱ.中国森林第一性生产力的模拟[J].林业科学研究,1994,7(4):425~430.
    51.刘世荣.兴安落叶松人工林群落生物量及净初级生产力的研究[J].东北林业大学学报,1990,18(2):40~46.
    52.刘卫国,潘晓玲,高炜等.新疆阜新绿洲生态系统生物量遥感估算分析[J].资源科学, 2005,27(5):134~140.
    53.刘玉萃,吴明作,郭宗民,等.内乡宝天曼自然保护区锐齿栎林生物量和净生产力研究[J].生态学报,2001,21(9):1450-1456.
    54.刘增兰.浅谈全球环境变化的生态后果[J].安徽农学通报,2004,10(2):74~75.
    55.刘振亚.小陇山林业志[内部资料].天水:甘肃小陇山林业实验局,2002.
    56.刘志刚,马钦彦,潘向丽.兴安落叶松天然林生物量及生物力的研究[J].植物生态学报,1994,18(4):328~337.
    57.卢义山,张金池,冯福生等.苏北海堤防护林主要造林树种生物量研究[J].南京林业大学学报,1995,19(3):71~76.
    58.马钦彦,谢征鸣.中国油松林储碳量基本估计[J].北京林业大学学报,1996,18(3):31~34.
    59.马钦彦.油松生物量及第一性生产力的研究[D].北京:北京林业大学,1988.
    60.马钦彦.中国油松生物量的研究[J].北京林业大学学报,1989,11(4):1~10.
    61.毛学文,张海林,孔红.小陇山种子植物区系组成及特征的研究[J].植物研究,2003,23(4):485~491.
    62.毛学文.小陇山植物区系的研究[J].西北植物学报,1998,18(6):110~112.
    63.潘维俦,李利村,高正衡.2个不同地域类型杉木林的生物产量和营养元素分布[J].中南林业科技,1979(4):1~14.
    64.潘维俦,田大伦.森林生态系统第一性生产量的测定技术与方法[J].湖南林业科学,1981,2:1~12.
    65.彭少麟.南亚热带森林群落动态学[M].北京:科学出版社,1996.
    66.朴世龙,方精云.1982~1999年青藏高原植被净第一性生产力及其时空变化[J].自然资源学报,2002,17(3):373~380.
    67.任振球.当代气候变化若干问题的商榷[J].地球科学进展,1996,11(5):504~507.
    68.茹文明.老顶山人工油松林生物量的研究[J].河南科学,1999,14(增刊):64~65.
    69.阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究—含量与分布规律[J].生态学杂志,1997,16(6):17~21.
    70.索安宁,巨天珍,张俊华,等.甘肃小陇山锐齿栎群落生物多样性特征分析[J].西北植物学报,2004,24(10):1877-1881.
    71.唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学,2000,36(专刊1):19~27.
    72.王凤友.森林凋落量研究综述[J].生态学进展,1989,6(2):82~89.
    73.王荷生.中国种子植物特有属的数量分析[J].植物分类学报,1985,23(4):241~258.
    74.王金叶,车克钧,傅辉恩等.祁连山水源涵养林生物量的研究[J].福建林学院学报,1997,18(4):319~323.
    75.王金叶,车克钧,蒋志荣.祁连山青海云杉林碳平衡研究[J].西北林学院学报,2000,15(1):9~14.
    76.王绍强,周成虎,夏洁.USGCRP碳循环研究的最新动向[J].地球科学进展,2000,15(5):592~597.
    77.王绍武,叶瑾琳.近百年全球气候变暖的分析[J].大气科学,1995,19(5):545~553.
    78.王效科,冯宗炜,欧阳志云.中国森林生态系统植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13~16.
    79.王效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力[J].生态学杂志,2000,19(4):72~74.
    80.王效科.中国森林生态系统的生物量、碳贮量和生物质燃烧释放的含碳气体[D].北京:中 国科学院生态环境研究中心,1997.
    81.魏殿生.造林绿化与气候变化:碳汇问题研究[M],北京:中国林业出版社,2003.
    82.魏智海,尚怀林.甘肃省小陇山林业实验局天然林资源保护工程生态、社会与经济效益分析[J].甘肃林业科技,2003,28(1):13~18.
    83.魏智海.小陇山林业局天然林保护工程社会经济效益分析[J].西北林学院学报,2004,19(1):156-160.
    84.吴庆锥.米老排人工林生物量研究[J].福建林业科技,2005,32(3):125~129.
    85.吴兆录,党承林.昆明附近灰背栎林生物量和净第一性生产力的初步研究[J].云南大学学报(自然科学版),1994,16(3):235~244.
    86.吴征镒.中国种子植物属的分布区类型[J].云南植物研究,1991,(增刊):1~139.
    87.吴仲民,李意德,曾庆波,等.尖峰岭热带山地雨林C素库及皆伐影响的初步研究[J].应用生态学报,1998,9(4):341~344.
    88.肖文发,聂道平,张家诚.我国杉木林生物量与能量利用率的研究[J].林业科学研究,1999,12(3):237~243.
    89.肖瑜.陕西省不同气候区域油松人工林生物量和生产力的比较研究[J].植物生态学与地植物学学报,1990,14(3):237~246.
    90.谢树成,姚檀栋,殷鸿福.冰心中的气候环境记录与全球变化研究[J].海洋地质与第四纪地质,1997,17(4):109~113.
    91.胥辉.一种与材积相容的生物量模型[J].北京林业大学学报,1999,21(5):32~36.
    92.杨东,杨秀琴.甘肃武都五风山林区油松人工林的生物量和生物产研究[J].西北师范大学学报(自然科学版),2004,40(1):70-75.
    93.叶笃正.中国的全球变化预研究[M].北京:气象出版社,1992.
    94.应俊生,张志松.中国植物区系中特有现象—特有属的研究[J].植物分类学报,1984,22(4):259~268.
    95.曾珍英,刘琪璟,张建萍等.灌木各测树因子相关性以及器官生物量相关性的研究[J].江西农业大学学报,2005,27(5):694~699.
    96.张会儒,唐守正,王奉瑜.与材积兼容的生物量模型的建立及其估计方法研究[J].林业科学研究,1999,12(1):25~31.
    97.张连水,庄志贤,李秀全.湿地松地上生物量变化研究[J].林业科技开发,2001,15(S):42~43.
    98.张新时,周广胜,高琼等.中国全球变化与陆地生态系统关系研究[J].地学前沿,1997,4(1~2):137~144.
    99.张峥,张涛,郭海涛等.温室效应及其生态影响综述[J].环境保护科学,2000,26(99):36~38.
    100.赵其国.土壤圈在全球变化中的意义与研究内容[J].地学前缘,1997,4(1~2):153~161.
    101.赵士洞,汪业勖,于振良,等.中国森林生态系统碳循环研究[J].见:中国生态学会编.中国生态学会通讯,2000(特刊):50~52.
    102.周玉荣,于振良,赵士洞.我国主要森林生态系统碳储量和碳平衡fJ].植物生态学报,2000,24(5)518~522.
    103.佐藤大七郎.陆地植物群落的物质生产[M].聂绍荃,译.北京:科学出版社,1986.
    104. Alberektson, A. Relations between tree biomass fractions and conventional silvicultural measurements[A]. In Persson, T. (ed) Structure and function of Northern Coniferous Forests: An Ecosystem Study[C], Ecology Bulletin 32, Stockholm, 1980, 315~327
    105. Alexeyev V, Birdsey R, Stakanov V, Korotkov I. Carbon in vegetation of Russian forests: Methods to estimate storage and geographical distribution[J]. Water, Air and Soil Pollution, 1995, 82: 271~282.
    106. Andersson, F. O, Agren, G. I, Fuhrer, E. Sustainable tree biomass production[J]. Forest Ecology and Management, 2000(132): 51~62.
    107. Aubient M, et al. Estimates of the annual net Carbon and water exchange of forests: The Euro-Flux Methodology [J]. Advances in Ecological Research, 2000, 30: 113~175.
    108. Barnola J M, Anklin M, Porcheron J, Raynaud D, Schwander J and Stauffer B. CO_2 evolution during the last millennium as recorded by Antarctic and Greenland ice[J]. Tellus, 1995, 47B: 264~272.
    109.Bate A.K.Climate in Crisis:The greenhouse effect and what we can do(气候危机:温室效应与我们的对策)[M].苗润生,成志勤译.北京:中国环境科学出版社,1992.
    110. Batjes N H, Brides E M, eds. A review of soil factor sand processes that control fluxes of heat, moisture and green-house Gases[M]. International Soil Reference and Information Center, Wageningen. 1994.
    111. Birdsey R A. Carbon storage and accumulation in United States forest ecosystems. United States Department of Agriculture Forest Service[M], General Technical Report W0-59, 1992.
    112. Boden G, Broecker W, Johnsen S, et al. Correlations between climate records for North Atlantic sediments and Greenland ice[J]. Nature, 1993, 365: 143~147.
    113. Boden T A, et al. TRENDS'91: A compendium of data on global change high lights. ORNL-CDLAC-49, Oak Ridge National Laboratory, Tennessee. 1992.
    114. Bolin B. Changes of land biota and their importance to the carbon cycle[J]. Science, 1977, 196: 613~615.
    115. Botkin, D. B., G. M. Woodwell, and N. Tempel. Forest productivity estimated from carbon dioxide uptake [J]. Ecology, 1970, 51: 1057~1060.
    116. Boysen Jensen P. Studier over skovtraernes for hold til lyset Tidsskr[J]. F. Skorvaessen, 1910, 22: 11~61.
    117. Broecker, Wallace S., et al. Fate of Fossil Fuel Carbon Dioxide and the Global Carbon Budget[J]. Science, 1979, 206: 409~18
    118. Burger H. Holz, Blattmenge, Zuwachs.12 Fichten im Plenterwald Mitteil, Schweiz, Anst. Forttl[J]. Versuchsw, 1952, 28: 109~156.
    119. Businger J A, Oncley S P. Flux measurement with condition sampling.J.Atmos [J].Ocean Technol., 1990, 7:349~352.
    120. Cao M and Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change[J]. Nature, 1998, 393: 249~252.
    121. Ciais P, Tans P P, Trolier M, White J W Cand R J Francey. A large northern hemispher terrestrial CO_2 sinks indicated by the 13C/12C ration of atmospheric CO_2 [J].Science, 1995, (269): 1098~1102.
    122. Dixon R K, S Brown, R A Houghton, A M Solomon, M C Trexler & J Wisniewski. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263:185~190.
    123. Dole V. H. et al. Estimating the effects of land-usechange on global atmospheric CO_2 concentrations [J].Can. J. For. Res, 1991, 21: 87~90.
    124. Dray J R et al. Litter production in forests of the world. Adv. Eco. Res. 1964, 2: 101~157.
    125. Ebermeyer E. Die gesamte Lehreder Waldstreu mit Rucksicht auf die chemische static des Waldbaues[M]. Belin: J. Springer, 1876, 116.
    126. Etheridge D M, Steele L P, Langenfelds R L, Francey R J, Barnola J M and Morgan V I. Natural and anthropogenic changes in atmospheric CO_2 over the last 1000 years from air in Antarctic ice and firn[J]. Journal of Geophysical Research, 1996, 101: 4115~4128.
    127. Falkowski P, Scholes R J, Boyle E, et al. The Global Carbon Cycle-A Test of Our Knowledge of Earth as a System[J]. Science, 2000, 290: 291~296.
    128. Fan S, Gloor M, Mahlman J et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science, 1998, 282: 442~446.
    129. Fang J Y, Wang G G, Liu G H, Xu S L. Forest biomass of China: an estimation based on the biomass-volume relationship[J]. Ecological Applications, 1998, 8: 1084~1091.
    130. Fang J Y, Chen AP, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292: 2320~2322.
    131. Fankhauser S. Valuing Climate Change. London: Earthscan Publications Ltd. 1995.
    132. Ferguson E. (ed.) Climate Monitoring and Diagnostics Laboratory/Summary Report 1991[R], No20, ERL, NOAA, Colorado. 1992.
    133. Field, C. B., I. Y. Fung. The not-so-big U. S. carbon sink[J], Science, 1999,285:544~545.
    134. Friedli H, Lotscher H, Oeschger H, et al. Ice core record of the 13C/12C ratio of atmospheric CO_2 in the past two centuries[J]. Nature, 1986, 324: 237~238.
    135. Goreau T J. Balancing atmospheric carbon dioxide[J]. Ambio, 1990, 19: 230~236.
    136. Goulden M L, Munger J W, Fan S, Daube B C & Wofsy S C.Exchange of Carbon Dioxide by a Deciduous Forest: Response to Interannual Climate Variability[J]. Science, 1996, 271: 1576~1578.
    137. Hazel R. Delcourt W. F. Harris. Carbon budget of the southeastern U. S. Biota: analysis of historical change in trend from source to sink[J]. Science, 1980, 210: 321~323.
    138. Holland E, Brown S. North American carbon sink[J]. Science, 1999, 283: 1815a.
    139. Holland, E. A. (1997), Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake be terrestrial ecosystem[J], J. Geophys Res., 1997,102,15849~15866.
    140. Houghton J T, Jenkins G J, Ephraums J J. Climate change: the IPCC scientific assessment[M]. New York: Cambridge Univ Press, 1990, 283~310.
    141.Houghton J.全球变暖[M].戴晓苏,石广玉,董敏等译.北京:气象出版社,1998.
    142. Houghton R A & Hackler J L. Changes in terrestrial carbon storage in the United States. 1: The roles of agriculture and forestry[J]. Global Ecology & Biogeography. 2000, 9: 125~144.
    143. Houghton R A, Skole D L, Nobre C A, et al. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon[J]. Nature, 2000, 403: 301~304.
    144. Houghton R A.Changes in the storage of terrestrial carbon since 1850[A]. In: Lai R, et al. eds. Soil and Global Changes[C]. Florida: CRC Press, Boca Raton, 1995, 45~65.
    145. Houghton R. A., Hobbie J. E., Melillo J. M. et al. Changes in carbon content of terrestrial biota and soil between 1860 and 1980: A net release of CO_2 to the atmosphere[J]. Ecological Monogragh, 1983, 53: 235~262.
    146. Houghton, R. A. The annual net flux of carbon to the atmosphere from changes in land ise 1850~1990 [J]. Tellus, 1999, 51B: 298~313.
    147. IEEAF. The European Framework for Integrated Environmental and Economic Accounting for Forests(2002 Edition) [R].吴水荣,周景博,等译.
    148. IGBP Terrestrial Carbon Working Group.The terrestrial carbon cycle: Implications for the Kyoto protocol[J]. Science, 1998, 280: 1393~1394.
    149. Indermiihle A, Stocker T F, Joos F et al. Holocene carbon cycle dynamics based on CO_2 trapped in ice at Taylor Dome, Antarctica[J]. Nature, 1999, 398:121-126.
    
    150. IPCC(Inter governmental Panel on Climate Change).Climate change 200].the scientific basis [M].Cambridge:Cambridge University Press, 2001.
    
    151. IPCC. Climate Change[A]. In: The Science of Climate Change[R]. Houghton J T, et al. (eds.) Cambridge: Cambridge University Press. 1996.
    
    152. IPCC.Climate change 1994:radiative forcing of climate change and anevaluation of the IPCC 1992 emission scenarios[R], Cambridge. U K:Cambridge University Press, 1994.
    
    153. Kauppi P E, K Miehkainen & K Kuusela.Biomass and carbon budget of European forests, 1971 to 1990[J]. Science, 1992, 256:70-74.
    
    154. Keeling C D and Whorf T P. Atmospheric CO_2 records from sites in the SIO air samplingnetwork[A]. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center[C], Oak Ridge National Laboratory, Oak Ridge, TN, USA. 1999.
    
    155. Keeling C D, Chin J F S, Whorf T P. Increased activity of northern vegetation inferred from atmospheric CO_2 measurements[J]. Nature , 1996, 382:146-149.
    
    156. Keeling C D, Whorf T P, Wahlen M, et al. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980 [J].Nature, 1995, 375:666-670.
    
    157. Keeling C. D. R. B., Bacastow A. E.Bainbridgeetal. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii [J].Tellus , 1976, 28:538-551.
    
    158. Keeling C. D., Adams. J. E., C. A. Ekdahl, et al. Atmospheric carbon dioxide variations at South Pole [J].Tellus., 1976, 28:538-551.
    
    159. Keeling C. D., Bacastow. R. B Impact of industrial gasses on climate [M].Pages72-95.in Energy and climate.National Academy of Sciences.Washington. D. C, USA, 1977.
    
    160. Kirschbaum, M. U. F. CenW, a forest growth mode) with linked carbon, energy, nutrient and water cycles [J]. Ecological Modelling, 1999, 118:17-59.
    
    161. Kittredge J. Estimation of the amount of foliage of tree and stand[J]. J. For, 1944, 42:905-912.
    
    162. Kurz W A, Apps M J, Webb T M, Mcnamee P J. Informative report. The carbon budget of the Canadian forest sector: Phase I [R]. Forestry Canada, Edmonton, Alberta, Canada. 1992.
    
    163. Lan R. Noble and Rodolfo Dirzo.Forest as Human-Dominated Ecosystems[J] .Science, 1997, 277:522-525.
    
    164. Landsberg, J.J., and S. T. Gower. Applications of physiological ecology to forest management[M]. Academic Press, 1997.
    
    165. Larcher W. Physiological plant ecology.Berlin :Springer-Verlag , 1980, 252.
    
    166. Lawler A. Research limelight falls on carbon cycle[J].Science, 1998, 280:1683-1684.
    
    167. LeithHRH, Whittaker. Primary Productivity of Biosphere [M]. Berlin: springer Verlag, 1975.
    
    168. M. J. APPS et al. Boreal Forests and Tundra[J].Water, Air, andSoil Pollution, 1993, 70:39-53.
    
    169. Malhi Y.D D Baldocchi, P G Jarvis. The carbon balance of tropical, temperate and boreal forests. Plant [J]. Cell and Environment, 1999, 22:715-740.
    
    170. Manabe S., Stouffer. R. J. A.CO_2 -Climate sensitivity study with a mathematical model of the global climate [J].Nature, 1979, 282:491-493.
    171. Melillo J M, Prentice I C, Farquhar G D, et al. Terrestrial biotic responses to environmental change and feed backs to climate.In:Houghton JT, Meira Filho LG, Callander B A, et al. eds.Climate Change. 1995: The Science of Climate Change [M].Cambrideg University Press, 1996, 444-481.
    
    172. Mitchell J F B.The Greenhouse effect and climate change[J]. Reviews of Geophysics, 1989, 27(1):115-139.
    
    173. Mitchell, C.P., Zsuffa, F. Andersson, S., Stevens, D. J. Forentry, Forest biomass and biomass conversion: the IEA bioenergy agreement (1986-1989) summary report [C]. Elsevier Science Publishers LTD, 1990.
    
    174. Moncrieff JB, PGJvis, R Valentini.Canopy fluxes In:Sala, OR Jackson, H Mooney &B Howarth eds. Methods in ecosystems cience [M].Berlin:Springer Verlag, 1999, 161-180.
    
    175. Myneni R B et al. A large carbon sink in the woody biomass of northern forests[J].PNAS, 2001, 98(26): 14784-14789.
    
    176. Nabuurs C J.Significance of wood products in forests ector carbon.In:Apps M J, Price D T.eds.Forest Ecosystems , Forest Management and the Global Carbon Cycle[M]. Berlin:Springer-Verlag, 1996, 245-256.
    
    177. Nadelhoffer K J et al .Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests [J].Nature , 1999, 398:145-148.
    
    178. NOAA/CMDL , Climate Monitoring and Diagnostics Laboratory Summary Report No.26(2000-2001)[R].Available . http://www.cmdl.noaa.gov/publications/annrpt26/index.html.accessed on 2003.03.27, 2003.
    
    179. Norby R.Carbon cycle:inside the black box[J].Nature, 1997, 388:522-523.
    
    180. Pacala S W et al.Consistent land-and atmosphere-based US carbon sink estimates[J]. Science, 2001, 292:2316-2320.
    
    181. Petit JR, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420, 000 years from the Vostokicecore, Antarctica[J] Nature , 1999, 399:429-436.
    
    182. Phillips O L et al.Changes in the carbon balance of tropical forests:evidence from long-trem plots[J].Science , 1998, 282:439-442.
    
    183. R. A. Houghton.The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use:geographic distribution of the globalflux[J].Tellus , 1987 , 39B:122-139.
    
    184. Raynaud D, Jouzel J, Barnola M, et al. The ice record of greenhouse gases[J].Science , 1993, 259:926-934.
    
    185.Reiners W A A summary of the world carbon cycle and recommendations for critical research [A].In: Woodwell G M, Pecan E V.eds.Carbon and Biosphere[C].CONF72-05l0: National Technical Information Service, Springfield, V.A., 1973, 368-382.
    
    186. Rodhe H.A comparison of the contribution of various gases to the green-house effect[J].Science, 1990, 248:1217-1219.
    
    187. Roger A. Sedjo.The Carbon Cycle and Global Forest Ecosystem[J]. Water, Air, And Soil Pollution, 1993, 70:295-307.
    
    
    188. SCEP.Study of Critical Environmental Problems[M].Berlin:Springer - Verlag, 1970.
    
    189. Schimel D et al.Contribution of increasing CO_2 and climate to carbon storage by ecosystems in the United States[J].Science, 2000, 287:2004-2006.
    
    190. Schimel D S.Terrestrial ecosystems and the carbon cycle[J].Global Change Biology, 1995, 1:77-91.
    
    191. Schimel, D. S., J. I. House, K. A. Hibbard, P. Bousquet, P. Ciais, P. Peylin, B. H. Braswell, M. J. Apps, D. Baker, A. Bondeau, J. Canadell, G. Churkina, W.Cramer, A. S. Denning, C. B. Field, P. Friedlingstein, C. Goodale, M. Hermann, R. A. Houghton, J. M. Melillo, B.Moore III, D. Murdiyarso, I. Noble, S.W. Pacala, I. C. Prentice, M. R. Raupach, P. J. Rayner, R. J. Scholes, W. L. Steffen & C.Wirth. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems[J] Nature , 2001, 414:169-172.
    
    192. Schindler D W. The mysterious missing sink[J]. Nature, 1999, 398:105-106.
    
    193. Schlesinger W H.Biogeochemistry:an analysis of global change[M]. San Diego, California: Academic Press, 1997.
    
    
    194. Sedjo R A.Temperate forest ecosystems in the global carbon cycle[J]. Ambio, 1992, 21:274-277.
    
    195. Shvidenko AZ, Nilsson S, Rojikov V A, et al.Carbon budget of the Russian boreal forests:a systems analysis approach to uncertainty[A].In :Apps M J, Price D T.eds.Forest Ecosystems, Forest Management and the Global Carbon Cycle[C],Berlin: Springer-Verlag , 1996.145-162.
    
    196. Siegenthaler U, Sramiento J L.Atmospheric carbon dioxide and the ocean[J]. Nature, 1993, 365:119-125.
    
    197. Sundquist E T. The global carbon dioxide budget[J] . Science , 1993, 259:934-941.
    
    198. Sykes M, Prentice C. Carbon storage and climate change in Swedish forest:a comparison of static and dynamic modeling approaches[A]. In:Apps M J, Price D T. eds. Forest Ecosystems , Forest Management and the Global Carbon Cycle[C]. Berlin Heidelberg:Springer-verlag, 1996, 69-77.
    
    199. Tans P P, Fung J Y, Takahashi T.Observational constraints on the global atmospheric CO_2 budget[J] .Science, 1990, 247:1431-1438.
    
    200 Tatyana P. Kolchugina Ted S. Vinson. 俄罗斯森林在全球碳平衡中的作用[J].朱云辉译.人类环境杂志 , 1995, 24(5):258-264.
    201.Timo Karjalainen et al. Scenarios for the carbon blance of Finnish forest and wood products[J].Environmental Science & Policy, 1999, 2:165-175.
    
    202. Trablka J R ed al. Atmospheric carbon dioxide and the global carbon cycle[R]. DOE/ER-0239, Washington D C:U S Department of Energy, 1985.
    
    203. Turner D P, Koepper G J, Harmon M E, Lee J J. A carbon budget for forests of the conterminous United States[J]. Ecological Application, 1995, 5:421-436.
    
    204. Valentini R, et al.Respiration as the main determinant of carbon balance in European forests[J] Nature , 2000, 404:861-865.
    
    205. Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of Earth's ecosystems[J] .Science , 1997, 277:494-499.
    
    206. Vogt K A, et al. Production, turnover, and nutrient dynamics of above and belowground detritus of world forests [J]. Adv. Eco. Res. 1986, 15:303-37.
    
    207. Walker B H & Steffen W L.The nature of global change[A].In: Walker B H, Steffen W L, Canadell J & Ingram J eds. The terrestrial biosphere and global change[M]. Cambridge: Cambridge University Press, 1999, 1-18.
    
    208. Watson R T, Rodhe H, et al. Greenhouse gases and aerosols[A] In: Houghton J T, et al. (eds.) The IPCC Scientific Assessment[C]. Cambridge University Press , Cambridge. 1990.1-40.
    
    209. Watson R T, Noble I R, Bolin B, et al. IPCC special report - Land use, Land-Use Change, and Forestry[R], Cambridge University Press, 2000.
    
    210. WBGU. WBGU Special Report: The Accounting of Biological Sinks and Sources Under the Kyoto Protocal[R], 1998.
    
    211. Whittaker R H and Likens G E. The biosphere and man. In: Lieth H and Whittaher R H(ed.) Primary production of the biosphere[M]. Heidelberg: Springer Verlag.1975.305-328.
    
    212. Whittaker, R. H., and G. M. Liken. Carbon in the biota [A].In: U.M.Woodwell and E. V. Pecan ed. Carbon and the biosphere[R], National Technical Information Service, CONF-720510, Springfeild, VA, 1975.
    
    213.Winjum J K, Dixon R K and Schroeder P. Forest Management and Carbon Storage: an Analysis of 12 Key Forest Nations[J]. Water, Air and Soil Pollution, 1993, 70:239-257.
    
    214. Wofsy, S. P., M.L.Goulden, J.W.Munger, S. M. Fan, P.S. Bakwin, B.C. Daube, S. L. Bassow, And F. A. Bazzaz.Net exchange of CO_2 in a mid-latitude forest [J]. Science, 1993, 260, 1314-1317.
    
    215. Wong, C. S. Atmospheric input of carbon dioxide from burning wood [J]. Science, 1978, 200, 197-200.
    
    216. Woodwell G M, Whittaker R H, Reiners W A, et al. The biota and the world carbon budget[J]. Science, 1978, 199:141-146.
    
    217. Woodwell G M Biotic effects on the concentration of atmospheric carbon Dioxide:a review and projection, in Changing Climate [M]. Washington D C:Natl Acad, 1983, 216-241.
    
    218. XU H, WANG M L. Comparison of CAR and VAR biomass models[J]. Forestry Studies in China, 2001, 3(l):32-36.
    
    219. Xu M, Beboase T A, Qi Y A.Simple technique to measure stem respiration using a horizontally oriented soil chamber [J].Can.J For.Res., 2000, 30:1555-1560.
    
    220. Yadvinder Malhi and John Grace.Tropical forests and atmospheric carbon dioxide[J].Tree, 2000, 15(8):332-337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700