用户名: 密码: 验证码:
离子注入和涂层技术对SiC陶瓷力学及防护性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着轻型杀伤性武器的发展,一些军事和执法人员的生命面临严重威胁。个体防弹装具中防弹衣的作用举足轻重,开发出性能优良、成本低廉和穿着舒适的防弹材料意义重大。目前的防弹材料主要有金属、陶瓷、纤维和复合材料,综合这些材料的防护性能、工艺条件、成本和研究现状等因素,本文选定SiC陶瓷做为研究对象。
     采用无压烧结和反应烧结方法制备出六种SiC陶瓷。研究了不同方法制备的SiC陶瓷的抗弯强度、维氏硬度、断裂韧性和抗压强度力学性能参数与其防弹性能之间的关系,结果表明无压烧结和木质SiC陶瓷的力学性能较好,具有较大抗弯强度的SiC陶瓷的防弹性能较好。
     离子注入可以改进陶瓷表层的力学性能,分别将He离子和B离子注入到SiC陶瓷中,分析结果表明离子注入后SiC陶瓷的维氏硬度普遍增大。B离子注入的增硬效果优于He离子。
     利用多弧离子镀的方法在SiC陶瓷表面镀制了TiAlN硬质膜,研究了其力学性能和热稳定性能,分析了TiAlN硬质膜对SiC陶瓷防弹性能的影响。利用化学气相沉积方法,在740℃-850℃温度范围内生长了碳纳米管阵列,制备出多层和管簇状碳纳米管结构以及碳纳米管和TiAlN硬质膜的双层结构。通过循环压缩实验,测试了碳纳米管阵列的抗压缩能力。实验结果表明多层碳纳米管阵列具有良好的抗压缩性能。
With the development of light weapons of destruction, lots of limbs of the law and soldiers were seriously threatened. The bullet-proof vests played an important part in the individual bullet-proof apparels. It is important that the bullet-proof materials with excellent performances, low costs and comfort for wearing will be developed. At present, bullet-proof materials mainly included metals, ceramics, fibers and composites. By comprehensively considerating bullet-proof performance, process conditions, costs and research status of the bullet-proof materials, SiC ceramics were chosen as the research object in this paper.
     Six types of SiC ceramics were prepared by pressureless sintering and reaction sintering. The relations between the bullet-proof performance and mechanical properties which contained flexural strength, Vickers hardness, fracture toughness and compressive strength of different types of SiC ceramics were researched. It was shown that pressureless sintered and woody SiC ceramics had better mechanical properties. Meanwhile, the SiC ceramics with high flexural strength had good bullet-proof performance.
     The mechanical properties of ceramic’s surface could be improved by ion implantation. He ions and B ions were implanted into SiC ceramics respectively. It was shown that Vickers hardness of SiC ceramics increased generally. Moreover, the surface-hardened effect of B ions implantation was better that of He ions implantation.
     TiAlN films were plated in the surface of SiC ceramics by multi-arc ion plating. The mechanical properties and thermal stability of TiAlN films were researched. Furthermore, the bullet-proof performance of SiC ceramics affected by TiAlN films was analyzed. Carbon nanotubes (CNTs) arrays were grown at 740℃-850℃by CVD. Multilayer and pipe cluster structures of CNTs and bilayer structure of TiAlN films and CNTs were prepared. The anti-compression ability of CNTs array was tested under cyclic compression. It was shown that Multilayer CNTs array had good anti-compression property.
引文
[1]张建春,张华鹏.军用盔甲.北京:长城出版社,2003. 153, 162~163, 166~170
    [2]韩辉,李军,焦丽娟,等.陶瓷-金属复合材料在防弹领域的应用研究.材料导报. 2007, 21(2): 34-37
    [3]孙志杰,吴燕,张佐光,等.防弹陶瓷的研究现状与发展趋势.宇航材料工艺. 2000,5: 10-14
    [4]袁承军.软质防弹材料现状及防弹衣发展趋势.轻兵器. 2005,10: 8-9
    [5] Hidehiko T, Nobuo I. Polytypes, Grain Growth, and Fracture Toughness of Metal Boride Particulate SiC Composites. J. Am. Ceram. Soc. 1995, 78(5): 1223-1229
    [6] Raman V. Synthesis of silicon carbide through the sol-gel process from different precursors. J. Mater. Sci. 1995, 30(2): 2686-2691
    [7] Raymond A G, Vevin M R. Synthesis, sintering, microstructure and mechanical properties of ceramics made by exothermic reaction. J. Am. Ceram. Soc. 1992, 75(1): 36-42
    [8] Dai X G. Preparation of ultrafine powder by DC plasma technique. Sel. Pap. Eng. Chem. Metall. 1997, 3: 39-42
    [9] Lessing P A, Erickson A W, Kunerth D C. Thermal cycling of siliconized-SiC at high temperature. J. Mater. Sci. 2001, 36(6): 1389-1394
    [10] Prochazka S. Special Ceramics. London: Heywood Press, 1975
    [11] Mulla M A, Krstic V D. Low temperature pressureless sintering ofβ-silicon carbon with aluminum oxide and yttrium oxide additions. J. Am. Ceram. Soc. 1991, 70(3): 439-443
    [12] Popper P. Special Ceramics. London: Heywood Press, 1960. 209-213
    [13] Ramanathan S, Prasad R, Gupta C K. Reaction sintering studies of silicon carbide. Trans. Indian Ceram. Soc. 1989, 48(6): 107-110
    [14] Lihrmann J M, Tirlocq J, Descamps P, et al. Thermodynamics of the Al-C-O System and Properties of SiC-AlN-Al2OC Composites. J. Eur. Ceram. Soc. 1999, 19(16): 2781-2787
    [15] Zhang G J, Yue X M, Jin Z Z, et al. In-situ Synthesized TiB2 Toughened SiC. J. Eur. Ceram. Soc. 1996, 16(4): 409-412
    [16] Miao W, Tao K, Liu X T, et al. Formation of Al3Ta by Ta ion implantation into aluminum using a metal vapor vacuum arc ion source. Mater. Res. Bull. 2001, 36(10): 1759-1766
    [17] Miao W, Tao K, Liu X T, et al. Formation of Al3Hf by Hf ion implantation into aluminum using a metal vapor vacuum arc ion source. Surf. Coat. Technol. 2001, 140(2): 136-140
    [18] Miao W, Tao K, Liu X T, et al. Quantitative depth profiling of Al3Hf phase formed by Hf ions implantation into aluminum. Vacuum. 2003, 69(4): 467-472
    [19] Li X Y, Li Z C, Liu B X, et al. Formation of an ordered structure by ion beam manipulation and associated structural evolution in the nanosized Pd-Ru multilayers. J. Phys. Soc. Jpn. 2003, 72(1): 9-12
    [20] Kong Y, Li J H, Tang T A, et al. Oscillating behavior of high-pressure stability observed in the immiscible Co-Cu system by first-principles calculation. J. Appl. Phys. 2007, 101(5): 56102-1-3
    [21] Peteres S D. Effect of ion implantation on the mechanical properties of silicon nitride ceramic. High Performance Ceramic Films and Coatings Elsevier Science Publisher. 1991, 4: 553-564
    [22]龚涛.离子注入结构陶瓷表面改性技术的研究: [硕士学位论文],包头:中国兵器工业第五二研究所, 1997.10
    [23]柴志刚,崔相旭,张宁,等. Mo离子注入Al2O3陶瓷表面断裂韧性的研究.无机材料学报. 1996, 11(2): 309-312
    [24] Nakamura M. Study on the utilization of an Si3N4ceramic formed by ion implantation as a crack gage and a strain gage. J. Ceram. Soc. Jpn. 1993, 101(1): 134-136
    [25]尤大纬,李文治.离子束增强沉积技术新进展.真空科学与技术学报. 1994, 14(4): 280-286
    [26]傅永庆,朱晓东,徐可为,等.离子束辅助沉积技术及其进展.材料科学与工程. 1996, 14(3): 22-32
    [27]戴达煌,周克崧,袁镇海,等.现代材料表面技术科学.北京:冶金工业出版社.2004. 404
    [28] Buhl R, Pulker H K, Moll E. TiN coatings on steel. Thin Solid Films. 1981, 80(1-3): 265-270
    [29] Paller G, Matthes B, Herr W, et al. Tribological properties of r.f.-sputtered titanium-based hard coatings and their behaviour under plastics-processing conditions. Mater.Sci.Eng. A. 1991, 140(7): 647-654
    [30] Lee S Y, Kim S D, Hong Y S. Application of the duplex TiN coatings to improve the tribological properties of Electro Hydrostatic Actuator pump parts. Surf. Coat. Technol. 2005, 193(1-3): 266-271
    [31] Chim Y C, Ding X Z, Zeng X T, et al. Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films. 2009, doi:10.1016/j.tsf.2009.03.038
    [32] Ding X Z, Tan A, Zeng X T, et al. Corrosion resistance of CrAlN and TiAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films. 2008, 516(16): 5716–5720
    [33] Knotek O, Schrey A. Handbook of Thin Film Process Technology. PA 19106, USA, 1995
    [34] M?nz W D. Titanium aluminum nitride films: A new alternative to TiN coatings. J. Vac. Sci. Technol. A. 1986, 4(6): 2717-2725
    [35] Hermann A J, Siegfried H, Münz W D, et al. Surface and interface characterization of heat- treated (Ti, Al)N coatings on high speed steel substrates. Thin Solid Films. 1987, 153(1-3): 45-53
    [36] Polonsky I A, Chang T P, Keer L M, et al. A study of rolling-contact fatigue of bearing steel coated with physical vapor deposition TiN films: Coating response to cyclic contact stress and physical mechanisms underlying coating effect on the fatigue life. Wear. 1998, 215(1-2): 191-204
    [37] Hofmann S. Formation and diffusion properties of oxide films on metals and on nitride coatings studied with Auger electron spectroscopy and X-ray photoelectron spectroscopy. Thin Solid Films. 1990, 193-194(Part2): 648-664
    [38] Zeng X T, Zhang S, Tan L S. Multilayered (Ti, Al) ceramic coating for high-speed machining applications. J. Vac. Sci. Technol. A. 2001, 19(4): 1919-1922
    [39] Shieh J, Hon M H. Nanostructure and hardness of titanium aluminum nitride prepared by plasma enhanced chemical vapor deposition. Thin Solid Films. 2001, 391(1): 101–108
    [40] Bressan J D, Hesse R, Silva E M. Abrasive wear behavior of high speed steel and hard metal coated with TiAlN and TiCN. Wear. 2001, 250(1-12): 561–568
    [41] Barsoum M W, Rawn C R, Raghy T E, et al. Thermal properties of Ti4AlN3. J. Appl. Phys. 2000, 87(12): 8407–8414
    [42] Cha T H, Park D G, Kim T K, et al. Work function and thermal stability of Ti1–xAlxNy for dual metal gate electrodes. Appl. Phys. Lett. 2002, 81(22): 4192–4194
    [43] Wang D Y, Chang C L, Wong K W, et al. Improvement of the interfacial integrity of (Ti,Al)N hard coatings deposited on high speed steel cutting tools. Surf. Coat. Technol. 1999, 120–121: 388–394
    [44] Yang Q, Seo D Y, Zhao L R, et al. Erosion resistance performance of magnetron sputtering deposited TiAlN coatings. Surf. Coat. Technol. 2004, 188–189: 168–173
    [45] Chang Y Y, Chang C P, Wang D Y, et al. High temperature oxidation resistance of CrAlSiN coatings synthesized by a cathodic arc deposition process. J. Alloys Compd. 2008, 461(1-2): 336-341
    [46] Ding X Z, Bui C T, Zeng X T, et al. Abrasive wear resistance of Ti1 ? xAlxN hard coatings deposited by a vacuum arc system with lateral rotating cathodes. Surf. Coat. Technol. 2008, 203(5-7): 680-684
    [47] Ding X Z, Tan A, Zeng X T, et al. Corrosion resistance of CrAlN and TiAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films. 2008, 516(16): 5716-5720
    [48] Chang Y Y, Wang D Y. Characterization of nanocrystalline AlTiN coatings synthesized by a cathodic-arc deposition process. Surf. Coat. Technol. 2007, 201(15): 6699-6701
    [49] Barshilia H C, Deepthi B, Rajam K S, et al. Growth and characterization of TiAlN/CrAlN superlattices prepared by reactive direct current magnetron sputtering. J. Vac. Sci. Technol. A. 2009, 27(1): 29-36
    [50] Chen J T, Wang J, Zhang F, et al. Characterization and temperature controlling property of TiAlN coatings deposited by reactive magnetron co-sputtering. J. Alloys Compd. 2009, 472(1-2): 91-96
    [51] Yang Q, Zhao L R, Cai F, et al. Wear, erosion and corrosion resistance of CrTiAlN coating deposited by magnetron sputtering. Surf. Coat. Technol. 2008, 202(16): 3886-3892
    [52] Zhou M, Makino Y, Nose M, et al. Phase transition and properties of Ti–Al–N thin films prepared by r.f.-plasma assisted magnetron sputtering. Thin Solid Films. 1999, 339(1-2): 203-208
    [53] Jindal P C, Santhanam A T, Schleinkofer U, et al. Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning. Int. J. Refract. Met. Hard Mater. 1999, 17(1-3): 163-170
    [54] Roos J R, Celis J P, Vancoille E, et al. Interrelationship between processing, coatingproperties and functional properties of steered arc physically vapour deposited (Ti,AI)N and (Ti,Nb)N coatings. Thin Solid Films. 1990, 193-194(Part1): 547-556
    [55] Souto R M, Alanyali H. Electrochemical characteristics of steel coated with TiN and TiAlN coatings. Corros. Sci. 2000, 42(12): 2201-2211
    [56] Iijima S. Helical microtubules of graphitic carbon. Nature. 1991, 354: 56-58.
    [57] Dai H J, Rinzler A G, Nikolaev P, et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 1996, 260(3-4): 471-475
    [58] Cheng H M, Li F, Su G, et al. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. App. Phys. Lett. 1998, 72(25): 3282-3284.
    [59] Cheng H M, Li F, Sun X, et al. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem. Phys. Lett. 1998, 289(5-6): 602-610
    [60] Flahaut E, Govindaraj A, Peigney A, et al. Synthesis of single-walled carbon nanotubes suing binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions. Chem. Phys. Lett. 1999, 300(1-2): 236-242
    [61] Cassell A M, Raymakers J A, Kong J, et al. Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B. 1999, 103(31): 6484-6492
    [62] Fonseca A, Hernadi K, Piedigrosso P, et al. Synthesis of single- and multi-wall carbon nanotubes over supported catalysts. Appl. Phys. A, 1998, 67(1): 11-22
    [63] Ci L J, Wei J Q, Wei B Q, et al. Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalysy method. Carbon. 2001, 39(3): 329-335
    [64] Hisashi S, Suguru N, Shigeo M, et al. Multiple‘‘optimum’’conditions for Co–Mo catalyzed growth of vertically aligned single-walled carbon nanotube forests. Carbon. 2009, 47(1): 234-241
    [65] Ayala P, Grüneis A, Grimm D, et al. Cyclohexane triggers staged growth of pure and vertically aligned single wall carbon nanotubes. Chem. Phys. Lett. 2008, 454(4-6): 332–336
    [66] Hata K, Futaba D, Mizuno K, et al. Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes. Science.2004, 306:1362-1364
    [67] Qu L T, Dai L M, Morley S, et al. Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off. Science. 2008, 322: 238-242
    [68] Li X S, Zhang X F, Ci L J, et al. Air-assisted growth of ultra-long carbon nanotube bundles. Nanotechnology. 2008, 19: 455609 (7pp)
    [69] Li X S, Cao A Y, Robert V, et al. Bottom-Up Growth of Carbon Nanotube Multilayers: Unprecedented Growth. Nano Lett. 2005, 5(10): 1997-2000
    [70] Zimmer K, B?hme R, Rauschenbach B. Local growth of aligned carbon nanotubes at surface sites irradiated by pulsed laser. Physica E. 2008, 40(7): 2223–2226
    [71] Cao A Y, Pamela L D, Ajayan P, et al. Super-Compressible Foamlike Carbon Nanotube Films. Science. 2005, 310: 1307-1310
    [72] Tong T, Zhao Y, Lance D, et al. Height Independent Compressive Modulus of Vertically Aligned Carbon Nanotube Arrays. Nano lett. 2008, 8(2): 511-515
    [73] Suhr J, Victor P, Ci L, et al. Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nature. 2007, 2: 417-421
    [74] Toshitaka O, Minoru T, Toshiyuki H, et al. Biomimetic process for producing SiC“wood”. J. Am. Ceram. Soc. 1995, 78(12): 3409~3411
    [75]龚江宏.陶瓷材料断裂力学.北京:清华大学出版社, 2001
    [76] Dong Y L, Xu F M, Shi X L, et al, Fabrication and mechanical properties of nano-/micro-sized Al2O3/SiC composites. Mater. Sci. Eng., A. 2009, 504(1-2): 49-54
    [77] Rozenberg Z, Yeshurun Y. The relation between ballastic efficiency and compressive strength of ceramic tiles. Int. Impact Eng. 1988, 7(3): 357-362
    [78] Wolfgang B, Jens C, Thomas R, et al. Ion-beam-induced amorphization of 6H-SiC. Surf. Coat. Technol. 1995, 74-75(Part2): 927-931
    [79] Kulikovsky V, Vorlí?ek V, Bohá? P, et al. Mechanical properties of amorphous and microcrystalline silicon films. Thin Solid Films, 2008, 516(16): 5368–5375
    [80] Harish C B, Prakash M S, Anjana J, et al. Structure, hardness and thermal stability of TiAlN and nanolayered TiAlN/CrN multilayer films. Vacuum. 2005, 77(2): 169-179
    [81] Zhao S S, Du H, Zheng J D, et al. Deposition of thick TiAlN coatings on 2024 Al/SiCp substrate by Arc ion plating. Surf. Coat. Technol. 2008, 202(21): 5170-5174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700